Another New Sequence Which Converges Faster Towards to the Euler–Mascheroni Constant
Abstract
1. Introduction
2. Main Results
n | ||||
10 | ||||
11 | ||||
12 | ||||
13 | ||||
14 | ||||
15 | ||||
16 | ||||
17 | ||||
18 | ||||
19 | ||||
20 | ||||
21 | ||||
22 | ||||
23 | ||||
24 | ||||
25 | ||||
26 | ||||
27 | ||||
28 | ||||
29 | ||||
30 | ||||
40 | ||||
50 |
3. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tims, S.R.; Tyrrel, J.A. Approximate evaluation of Euler’s constant. Math. Gaz. 1971, 55, 65–67. [Google Scholar] [CrossRef]
- Young, R.M. Euler’s constant. Math. Gaz. 1991, 75, 187–190. [Google Scholar] [CrossRef]
- Vernescu, A. Convergence order of the definition sequence of Euler’s constant. Gaz. Mat. 1983, 10–11, 380–381. (In Romanian) [Google Scholar]
- Tóth, L. Probem E3432. Am. Math. Mon. 1991, 98, 264. [Google Scholar]
- Anderson, G.D.; Barnard, R.W.; Richards, K.C.; Vamanamurthy, M.K.; Vuorinen, M. Inequalities for zero-balanced hypergeometric functions. Trans. Am. Math. Soc. 1995, 345, 1713–1723. [Google Scholar] [CrossRef]
- Alzer, H. Inequalities for the gamma and polygamma functions. Abh. Aus Dem Math. Semin. Der Univ. Hambg. 1998, 68, 363–372. [Google Scholar] [CrossRef]
- DeTemple, D.W. A quicker convergence to Euler’s constant. Am. Math. Mon. 1993, 100, 468–470. [Google Scholar] [CrossRef]
- Chen, C.P. Inequalities for the Euler-Mascheroni constant. Appl. Math. Lett. 2010, 23, 161–164. [Google Scholar] [CrossRef]
- Vernescu, A. A new accelerate convergence to the constant of Euler. Gaz. Mat. Ser. A 1999, 104, 273–278. (In Romanian) [Google Scholar]
- Ivan, D.M. Calculus; Editura Mediamira: Cluj-Napoca, Romania, 2002; p. 215. [Google Scholar]
- Cristea, V.G.; Mortici, C. Latter research on Euler-Mascheroni constant. Contemp. Anal. Appl. Math. 2013, 2, 1–8. [Google Scholar] [CrossRef]
- Lu, D. A new quicker sequence convergent to Euler’s constant. J. Number Theory 2014, 136, 320–329. [Google Scholar] [CrossRef]
- Negoi, T. A faster convergence to the constant of Euler. Gaz. Mat. Ser. A 1997, 15, 111–113. (In Romanian) [Google Scholar]
- Chen, C.P.; Mortici, C. Limits and inequalities associated with the Euler-Mascheroni constant. Appl. Math. Comput. 2013, 219, 9755–9761. [Google Scholar] [CrossRef]
- You, X.; Chen, D.R. A new sequence convergent to Euler-Mascheroni constant. J. Inequalities Appl. 2018, 2018, 75. [Google Scholar] [CrossRef] [PubMed]
- Crînganu, J. A new sequence which converges faster towards to the Euler-Mascheroni constant. J. Math. 2023, 7408231. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Crînganu, J. Another New Sequence Which Converges Faster Towards to the Euler–Mascheroni Constant. Axioms 2025, 14, 581. https://doi.org/10.3390/axioms14080581
Crînganu J. Another New Sequence Which Converges Faster Towards to the Euler–Mascheroni Constant. Axioms. 2025; 14(8):581. https://doi.org/10.3390/axioms14080581
Chicago/Turabian StyleCrînganu, Jenică. 2025. "Another New Sequence Which Converges Faster Towards to the Euler–Mascheroni Constant" Axioms 14, no. 8: 581. https://doi.org/10.3390/axioms14080581
APA StyleCrînganu, J. (2025). Another New Sequence Which Converges Faster Towards to the Euler–Mascheroni Constant. Axioms, 14(8), 581. https://doi.org/10.3390/axioms14080581