Next Article in Journal
Equivalence Test and Sample Size Determination Based on Odds Ratio in an AB/BA Crossover Study with Binary Outcomes
Previous Article in Journal
Semi-Analytical Solutions for the Shimizu–Morioka Dynamical System
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Another New Sequence Which Converges Faster Towards to the Euler–Mascheroni Constant

by
Jenică Crînganu
Department of Mathematics and Computer Sciences, “Dunărea de Jos” University of Galaţi, 111 Domnească Street, 800201 Galaţi, Romania
Axioms 2025, 14(8), 581; https://doi.org/10.3390/axioms14080581
Submission received: 3 July 2025 / Revised: 18 July 2025 / Accepted: 25 July 2025 / Published: 27 July 2025
(This article belongs to the Section Mathematical Analysis)

Abstract

In this paper, we introduce a new sequence, which approximates the Euler–Mascheroni constant γ and converges faster to its limit, with the convergence rate n 5 . Also, for this constant, new inequalities are established. Our result, compared to other sequences with convergence rates n 2 , n 3 , or n 4 , improves some known results.

1. Introduction

The sequence γ n = 1 + 1 2 + + 1 n log n , n 1 , converges very slowly to a limit denoted by γ = 0.5772 , defined by γ = n = 1 1 n log 1 + 1 n and known as the Euler–Mascheroni constant. This constant serves as an important bridge between discrete and continuous mathematics, linking sums and integrals. Both the sequence ( γ n ) n 1 and the Euler–Mascheroni constant γ have multiple applications in diverse fields of mathematics, such as number theory ( γ is involved in the asymptotic distribution of prime numbers, particularly in relation to the harmonic series and the prime number theorem), analysis ( γ appears in integrals and sums involving logarithmic functions), special function theory ( γ appears in the definitions and properties of special functions, like the digamma function), applied statistics and probability theory ( γ appears in the study of distributions, including the normal distribution and in the analysis of algorithms, particularly in expected values), and other sciences (for example, in quantum physics, γ shows up in calculations related to quantum field theory and other advanced topics).
Over the years, numerous estimations for γ n γ have been obtained. For example, Tims and Tyrrel [1] proved that
1 2 ( n + 1 ) < γ n γ < 1 2 ( n 1 ) , n 2 ,
Young [2] obtained that
1 2 ( n + 1 ) < γ n γ < 1 2 n , n 1 ,
Vernescu [3] demonstrated that
1 2 n + 1 < γ n γ < 1 2 n , n 1 ,
and Tóth [4] showed that
1 2 n + 2 5 < γ n γ < 1 2 n + 1 3 , n 1 .
Anderson et al. [5] proved that
1 γ n < γ n γ < 1 2 n , n 1
and Alzer [6] obtained that
1 2 n + 2 γ 1 1 γ < γ n γ < 1 2 n + 1 3 , n 1 .
The convergence of the sequence γ n to γ is very slow.
Modifying the logarithmic term of γ n , DeTemple [7] proved that the sequence
R n = 1 + 1 2 + + 1 n log n + 1 2
converges to γ with a rate of convergence of n 2 , since
1 24 ( n + 1 ) 2 < R n γ < 1 24 n 2 , n 1 .
Chen [8] showed that for all integers n 1 ,
1 24 ( n + a ) 2 R n γ < 1 24 ( n + b ) 2 ,
with the best possible constants
a = 1 24 γ + 1 log 3 2 1 = 0.55106 and b = 1 2 .
Vernescu [9] provided the sequence
V n = 1 + 1 2 + + 1 n 1 + 1 2 n log n ,
which also converges to γ with a rate of convergence of n 2 , since
1 12 ( n + 1 ) 2 < γ V n < 1 12 n 2 .
Similarly, Ivan [10] obtained the convergence to γ with a rate of convergence of n 2 :
lim n n 2 ( c n γ ) = 1 6 ,
where
c n = 1 + 1 2 + + 1 n log n ( n + 1 ) .
Cristea and Mortici [11] introduced the family of sequences
v n ( a , b ) = 1 + 1 2 + + 1 n 2 + a n + b n ( n 1 ) log n ,
where a , b are real parameters. They proved that, among these sequences, v n 3 2 , 5 12 n 1 is the privileged one because it provides the best approximation to γ , since it has a rate of convergence of n 3 . More precisely, they obtained the bounds
1 12 n 3 + 11 120 n 4 < v n 3 2 , 5 12 γ < 1 12 n 3 + 13 120 n 4 ( n 9 ) ,
where
v n 3 2 , 5 12 = 1 + 1 2 + + 1 n 2 + 13 12 ( n 1 ) + 5 12 n log n .
Using continued fraction approximation, Lu [12] obtained the following faster sequences converging to the Euler–Mascheroni constant:
r n ( 2 ) = 1 + 1 2 + + 1 n 3 6 n + 1 log n ,
r n ( 3 ) = 1 + 1 2 + + 1 n 6 n 1 12 n 2 log n ,
which satisfy
1 72 ( n + 1 ) 3 < γ r n ( 2 ) < 1 72 n 3 ,
1 120 ( n + 1 ) 4 < r n ( 3 ) γ < 1 120 ( n 1 ) 4 .
Modifying the logarithmic term of γ n , Negoi [13] proved that the sequence
T n = 1 + 1 2 + + 1 n log n + 1 2 + 1 24 n ,
is strictly increasing and convergent to γ with the rate of convergence n 3 . Furthermore, he proved that
1 48 ( n + 1 ) 3 < γ T n < 1 48 n 3 , n 1 .
Chen and Mortici [14] showed that for all integers n 1 ,
1 48 ( n + a ) 3 γ T n < 1 48 ( n + b ) 3 ,
with the best possible constants
a = 1 48 1 γ + log 37 24 3 1 = 0.27380525
and
b = 83 360 = 0.23055555
Recently, You and Chen [15] modified the logarithmic term of γ n and demonstrated that the sequences
r 2 ( n ) = 1 + 1 2 + + 1 n log n + 1 2 + 1 24 n + 1 48 n 2 ,
r 3 ( n ) = 1 + 1 2 + + 1 n log n + 1 2 + 1 24 n 1 48 n 2 1 48 n 3 1 576 n 4 1 1152 n 5 ,
converge to γ with rates of convergence n 3 and n 4 , respectively, since
1 24 ( n + 1 ) 3 < γ r 2 ( n ) < 1 24 n 3 ,
143 5760 ( n + 1 ) 4 < r 3 ( n ) γ < 143 5760 n 4 .
Quite recently, also by modifying the logarithmic term of γ n , Crînganu [16] defined a new sequence
S n = 1 + 1 2 + + 1 n log n + 1 2 + 1 24 n 1 48 n 2
and showed that it converges to γ , with the rate of convergence n 4 , since
23 5760 ( n + a ) 4 S n γ < 23 5760 ( n + b ) 4 ,
with the best possible constants
a = 23 5760 1 γ log 73 48 4 1 = 0.0315
and
b = 7 46 = 0.1521 .
Our aim is to obtain a new sequence that converges to the Euler–Mascheroni constant at a faster rate of convergence.

2. Main Results

Inspired by Crînganu [16], we consider, for a , b , c , d R , n 1 , the family of sequences
L n ( a , b , c , d ) = 1 + 1 2 + + 1 n log n + a + b n + c n 2 + d n 3 ,
and
K n ( a , b , c , d ) = L n ( a , b , c , d ) γ = 1 + 1 2 + + 1 n log n + a + b n + c n 2 + d n 3 γ ,
which converges to zero.
Using a Maclaurin growth series, we get
K n + 1 ( a , b , c , d ) K n ( a , b , c , d ) = A ˜ n 2 + B ˜ n 3 + C ˜ n 4 + D ˜ n 5 + E ˜ n 6 + O 1 n 7 ,
where
A ˜ = a 1 2 , B ˜ = a 2 a + 2 b + 2 3 , C ˜ = a 3 3 a b + 3 a 2 2 + a 3 b + 3 c 3 4 , D ˜ = a 4 2 a 3 + 4 a 2 b 2 a 2 2 b 2 + 6 a b 4 a c a + 4 b 6 c + 4 d + 4 5 , E ˜ = a 5 + 5 a 4 2 5 a 3 b 10 a 2 b + 5 a b 2 + 5 a 2 c + 10 a 3 3 + 5 a 2 2 + + 5 b 2 10 a b + 10 a c 5 a d 5 b c + a 5 b + 10 c 10 d 5 6 .
If
A ˜ = 0 , B ˜ = 0 , C ˜ = 0 , D ˜ = 0 ,
then
a = 1 2 , b = 1 24 , c = 1 48 , d = 23 5760
and so
E ˜ = 17 768 .
Thus
L n = L n 1 2 , 1 24 , 1 48 , 23 5760 = 1 + 1 2 + 1 3 + + 1 n log n + 1 2 + 1 24 n 1 48 n 2 + 23 5760 n 3
and
K n = K n 1 2 , 1 24 , 1 48 , 23 5760 = 1 + 1 2 + 1 3 + + 1 n log n + 1 2 + 1 24 n 1 48 n 2 + 23 5760 n 3 γ .
Thus, we get
K n + 1 K n = 17 768 n 6 + O 1 n 7 .
By a variant of the Stolz lemma, we know that if a sequence ( x n ) n 1 converges to zero and there exists the limit
lim n n k ( x n x n + 1 ) = l R , k > 1 ,
then
lim n n k 1 x n = l k 1 .
Therefore, for K n , we have
lim n n 6 ( K n K n + 1 ) = 17 768
and so
lim n n 5 K n = 17 3840 .
Starting from this result, using an elementary sequence method and MATLAB 24.1 software for calculations, we obtain the following:
Theorem 1.
For every integer n 1 we have
17 3840 ( n + a ) 5 W n γ < 17 3840 ( n + b ) 5 ,
with the best possible constants
a = 17 3840 1 γ log 8783 5760 5 1 = 0.37407
and
b = 3305 12852 = 0.25715 .
Proof. 
We define the sequence
a n = L n γ 17 3840 ( n + a ) 5 = 1 + 1 2 + 1 3 + + 1 n log n + 1 2 + 1 24 n 1 48 n 2 + 23 5760 n 3 γ 17 3840 ( n + a ) 5 ,
for a > 0 and so
a n + 1 a n = f ( n ) ,
where
f ( n ) = 1 n + 1 log n + 3 2 + 1 24 ( n + 1 ) 1 48 ( n + 1 ) 2 + 23 5760 ( n + 1 ) 3 + + log n + 1 2 + 1 24 n 1 48 n 2 + 23 5760 n 3 17 3840 ( n + a + 1 ) 5 + 17 3840 ( n + a ) 5 .
The derivative of function f is equal to
f ( n ) = 1 ( n + 1 ) 2 3 ( 1920 n 4 + 7680 n 3 + 11440 n 2 + 7600 n + 1897 ) ( n + 1 ) ( 5760 n 4 + 25920 n 3 + 43440 n 2 + 32040 n + 8783 ) + + 3 ( 1920 n 4 80 n 2 + 80 n 23 ) n ( 5760 n 4 + 2880 n 3 + 240 n 2 120 n + 23 ) 17 768 ( n + a + 1 ) 6 ( n + a ) 6 ( n + a ) 6 ( n + a + 1 ) 6 = P ( n ) Q ( n ) ,
where
P ( n ) = 768 ( 4406400 n 4 + 7490400 n 3 + 2117280 n 2 1647796 n 606027 ) · · ( n + a ) 6 · ( n + a + 1 ) 6 17 n ( n + 1 ) 2 ( 5760 n 4 + 2880 n 3 + 240 n 2 120 n + 23 ) · · ( 5760 n 4 + 25920 n 3 + 43440 n 2 + 32040 n + 8783 ) · ( n + a + 1 ) 6 ( n + a ) 6 ,
and
Q ( n ) = 768 n ( n + 1 ) 2 ( 5760 n 4 + 2880 n 3 + 240 n 2 120 n + 23 ) · · ( 5760 n 4 + 25920 n 3 + 43440 n 2 + 32040 n + 8783 ) · ( n + a ) 6 ( n + a + 1 ) 6 .
Using MATLAB 24.1 software, we obtain that
P ( n ) = p 0 · n 15 + p 1 · n 14 + p 2 · n 13 + p 3 · n 12 + p 4 · n 11 + p 5 · n 10 + p 6 · n 9 + p 7 · n 8 + + p 8 · n 7 + p 9 · n 6 + p 10 · n 5 + p 11 · n 4 + p 12 · n 3 + p 13 · n 2 p 14 · n p 15 ,
where
p 0 = 23688806400 a 6091776000 , p 1 = 189510451200 a 2 + 140097945600 a 54101237760 , p 2 = 710664192000 a 3 + 1208781619200 a 2 + 283562311680 a 216840281088 , p 3 = 1658216448000 a 4 + 4345122816000 a 3 + 3195768176640 a 2 + 27217096704 a 517434349824 , p 4 = 2676835123200 a 5 + 9421194240000 a 4 + 11191051468800 a 3 + + 4313542551552 a 2 951258977280 a 816556190976 , p 5 = 3126922444800 a 6 + 13913159270400 a 5 + 22443335884800 a 4 + + 15431215165440 a 3 + 2584804713984 a 2 2085448478976 a 895178414400 , p 6 = 2680219238400 a 7 + 14696194867200 a 6 + 29955583918080 a 5 + 28487564835840 a 4 + + 11558431964160 a 3 677704596480 a 2 2380540040640 a 696766207680 , p 7 = 1675137024000 a 8 + 11256628838400 a 7 + 28108735119360 a 6 + 33662464303104 a 5 + + 19582377488640 a 4 + 3364432450560 a 3 2380953893760 a 2 1694043099360 a 386195711526 , p 8 = 744505344000 a 9 + 6197824512000 a 8 + 18769457479680 a 7 + 27144229367808 a 6 + + 19496312727552 a 5 + 5329924312320 a 4 1566049991040 a 3 1857543344640 a 2 777633703566 a 149937998355 , p 9 = 223351603200 a 10 + 2382336000000 a 9 + 87842838528008 a 8 + 15008630759424 a 7 + + 12269823390720 a 6 + 3216811753728 a 5 1958475850560 a 4 1844984923200 a 3 744713732028 a 2 224024317080 a 38882029144 , p 10 = 40609382400 a 11 + 603024998400 a 10 + 2763719884800 a 9 + 5475548298240 a 8 + + 4600589211648 a 7 + 13519070208 a 6 2858407439040 a 5 2140061613120 a 4 720254785500 a 3 155641811586 a 2 36388303746 a 6000763190 , p 11 = 3384115200 a 12 + 89336217600 a 11 + 537755811840 a 10 + 1188768215040 a 9 + + 700593096960 a 8 1318070983680 a 7 2664208535040 a 6 1999216550880 a 5 736245769470 a 4 1130981320660 a 3 12904066140 a 2 2408847810 a 423322168 , p 12 = 5752627200 a 12 + 54028615680 a 11 + 110086612992 a 10 161048540160 a 9 936009699840 a 8 1519292712960 a 7 1239385743360 a 6 540538312566 a 5 116468696355 a 4 9205598920 a 3 99484425 a 2 131085198 a 40496924 , p 13 = 1626071040 a 12 5429661696 a 11 89850714624 a 10 310896161280 a 9 517564650240 a 8 477213143040 a 7 247005305856 a 6 66245936460 a 5 7106635020 a 4 235621700 a 3 228228570 a 2 111896346 a 22083544 ) n 2 p 14 = 1265507328 a 12 + 13178188800 a 11 + 49700906496 a 10 + 95124456960 a 9 + + 102759782400 a 8 + 63444492288 a 7 + 20813514240 a 6 + 2813177334 a 5 + + 51512295 a 4 + 68683060 a 3 + 51512295 a 2 + 20604918 a + 3434153 , p 15 = 465428736 a 12 + 2792572416 a 11 + 6981431040 a 10 + 9308574720 a 9 + + 6981431040 a 8 + 2792572416 a 7 + 465428736 a 6 .
If p 0 = 0 , i.e., a = 3305 12852 , then
P ( n ) = 1978301112320 357 n 14 6614222397555712 127449 n 13 267750738778833992704 1228480911 n 12 6410863378097015826387904 11841327501129 n 11 11203462396425132464117874560 12682061753709159 n 10 283656463491678607733321331433820 285232250902672695069 n 9 9458940152242502727508996226916173 11979754537912253192898 n 8 31432492089149854440508935518270759137255 70669386642452959618122419064 n 7 80478660328007330472740977151857448170459391 454121478564402718506054664905264 n 6 16214760589885408521174449082511424923648820905 324242735694983541013323030742358496 n 5 1566232538811809753079292526805082299432018352507841 150018035009469424887716193279628490061312 n 4 508047894224609605857698089286221126579528398762921383 275433112277385864093846930861397907752568832 n 3 20244841378617164823764709930798913021994554417695397 68858278069346466023461732715349476938142208 n 2 197879846675513964816443737481433155667954876842757889 6610394694657260738252326340673549786061651968 n 4683428037913070737204329712156882479692563209390625 8813859592876347651003101787564733048082202624 < 0 ,
for all n 1 , and then f is strictly decreasing.
We have lim n f ( n ) = 0 , and then it follows that f ( n ) > 0 for all n 1 , such that ( a n ) n 1 is strictly increasing.
Since ( a n ) converges to zero, it results that a n < 0 for all n 1 , such that
L n γ < 17 3840 n + 3305 12852 5 , for all n 1 .
If
a = 17 3840 1 γ log 8783 5760 5 1 = 0.37407 ,
then
a 1 = L 1 γ 17 3840 ( 1 + a ) 5 = 0 ,
P ( n ) > 0 for all n 2
and, consequently, f is strictly increasing on [ 2 , ) .
Since lim n f ( n ) = 0 , it results that f ( n ) < 0 for all n 2 , such that ( a n ) n 2 is strictly decreasing.
The sequence ( a n ) converges to zero and then it results that a n > 0 for all n 2 , such that
17 3840 ( n + a ) 5 L n γ , for all n 1 .
Remark 1.
Let us remark that, if a > 3305 12852 , then 23688806400 a 6091776000 > 0 , so there exists n a 1 such that P ( n ) > 0 for all n n a and we have
17 3840 ( n + a ) 5 < L n γ < 17 3840 n + 3305 12852 5 ,
for all n n a .
Remark 2.
After a few iterations, we can observe that, compared to sequences
R n = 1 + 1 2 + + 1 n log n + 1 2 ,
T n = 1 + 1 2 + + 1 n log n + 1 2 + 1 24 n ,
and
S n = 1 + 1 2 + + 1 n log n + 1 2 + 1 24 n 1 48 n 2 ,
with rates of convergence n 2 , n 3 , and n 4 , respectively, the sequence
L n = 1 + 1 2 + + 1 n log n + 1 2 + 1 24 n 1 48 n 2 + 23 5760 n 3
with rate of convergence n 5 convergences faster to γ:
n R n T n S n L n
10 0.5775929968 0.5771962501 0.5772160837 0.5772157035
11 0.5775303095 0.5772009829 0.5772159500 0.5772156892
12 0.5774820339 0.5772042946 0.5772158656 0.5772156808
13 0.5774440696 0.5772066809 0.5772158102 0.5772156756
14 0.5774136771 0.5772084436 0.5772157727 0.5772156723
15 0.5773889693 0.5772097738 0.5772157465 0.5772156702
16 0.5773686123 0.5772107964 0.5772157278 0.5772156687
17 0.5773516417 0.5772115954 0.5772157142 0.5772156677
18 0.5773373461 0.5772122288 0.5772157040 0.5772156670
19 0.5773251915 0.5772127372 0.5772156964 0.5772156665
20 0.5773147709 0.5772131501 0.5772156905 0.5772156661
21 0.5773057696 0.5772134889 0.5772156859 0.5772156659
22 0.5772979410 0.5772137694 0.5772156823 0.5772156657
23 0.5772910899 0.5772140037 0.5772156795 0.5772156655
24 0.5772850602 0.5772142010 0.5772156772 0.5772156654
25 0.5772797255 0.5772143682 0.5772156753 0.5772156653
26 0.5772749832 0.5772145109 0.5772156738 0.5772156652
27 0.5772707485 0.5772146334 0.5772156725 0.5772156651
28 0.5772669516 0.5772147391 0.5772156715 0.5772156651
29 0.5772635342 0.5772148309 0.5772156706 0.5772156651
30 0.5772604473 0.5772149110 0.5772156699 0.5772156650
40 0.5772410648 0.5772153449 0.5772156664 0.5772156649
50 0.5772320020 0.5772155005 0.5772156654 0.5772156649

3. Conclusions

By modifying the logarithmic term of γ n , we have constructed the sequence
L n = 1 + 1 2 + + 1 n log n + 1 2 + 1 24 n 1 48 n 2 + 23 5760 n 3 , for n 1 ,
that converges faster to the Euler–Mascheroni constant, with a rate of convergence of n 5 , compared to the sequences from [7,8,9,10] which have a rate of convergence of n 2 , those from [11,12,13,14,15] which have a rate of convergence of n 3 , or those from [12,15,16] which have a convergence rate of n 4 .
Furthermore, the idea of constructing the sequence L n allows the construction of a new sequence with a rate of convergence of n 6 , starting from the family of sequences
L n ( 5 ) ( a , b , c , d , e ) = 1 + 1 2 + + 1 n log n + a + b n + c n 2 + d n 3 + e n 4 ,
for a , b , c , d , e R , n 1 .
More generally, it can be proved that starting from the family of sequences
L n ( k ) ( a 1 , a 2 , , a k ) = 1 + 1 2 + + 1 n log n + a 1 + a 2 n + + a k n k 1 ,
for a 1 , a 2 , , a k R , k 5 , n 1 , we obtain a sequence with a rate of convergence of n k 1 .
Focusing on faster convergence for sequences related to the Euler–Mascheroni constant γ is crucial for advancing both theoretical understanding and practical applications of this important mathematical constant.

Funding

The APC was funded by “Dunărea de Jos” University of Galaţi, Romania.

Data Availability Statement

The original contributions presented in the study are included in the article; further inquiries can be directed to the author.

Acknowledgments

The author thanks the editor and anonymous referees for useful ideas which greatly improved the initial form of the manuscript.

Conflicts of Interest

The author declares no conflicts of interest.

References

  1. Tims, S.R.; Tyrrel, J.A. Approximate evaluation of Euler’s constant. Math. Gaz. 1971, 55, 65–67. [Google Scholar] [CrossRef]
  2. Young, R.M. Euler’s constant. Math. Gaz. 1991, 75, 187–190. [Google Scholar] [CrossRef]
  3. Vernescu, A. Convergence order of the definition sequence of Euler’s constant. Gaz. Mat. 1983, 10–11, 380–381. (In Romanian) [Google Scholar]
  4. Tóth, L. Probem E3432. Am. Math. Mon. 1991, 98, 264. [Google Scholar]
  5. Anderson, G.D.; Barnard, R.W.; Richards, K.C.; Vamanamurthy, M.K.; Vuorinen, M. Inequalities for zero-balanced hypergeometric functions. Trans. Am. Math. Soc. 1995, 345, 1713–1723. [Google Scholar] [CrossRef]
  6. Alzer, H. Inequalities for the gamma and polygamma functions. Abh. Aus Dem Math. Semin. Der Univ. Hambg. 1998, 68, 363–372. [Google Scholar] [CrossRef]
  7. DeTemple, D.W. A quicker convergence to Euler’s constant. Am. Math. Mon. 1993, 100, 468–470. [Google Scholar] [CrossRef]
  8. Chen, C.P. Inequalities for the Euler-Mascheroni constant. Appl. Math. Lett. 2010, 23, 161–164. [Google Scholar] [CrossRef]
  9. Vernescu, A. A new accelerate convergence to the constant of Euler. Gaz. Mat. Ser. A 1999, 104, 273–278. (In Romanian) [Google Scholar]
  10. Ivan, D.M. Calculus; Editura Mediamira: Cluj-Napoca, Romania, 2002; p. 215. [Google Scholar]
  11. Cristea, V.G.; Mortici, C. Latter research on Euler-Mascheroni constant. Contemp. Anal. Appl. Math. 2013, 2, 1–8. [Google Scholar] [CrossRef]
  12. Lu, D. A new quicker sequence convergent to Euler’s constant. J. Number Theory 2014, 136, 320–329. [Google Scholar] [CrossRef]
  13. Negoi, T. A faster convergence to the constant of Euler. Gaz. Mat. Ser. A 1997, 15, 111–113. (In Romanian) [Google Scholar]
  14. Chen, C.P.; Mortici, C. Limits and inequalities associated with the Euler-Mascheroni constant. Appl. Math. Comput. 2013, 219, 9755–9761. [Google Scholar] [CrossRef]
  15. You, X.; Chen, D.R. A new sequence convergent to Euler-Mascheroni constant. J. Inequalities Appl. 2018, 2018, 75. [Google Scholar] [CrossRef] [PubMed]
  16. Crînganu, J. A new sequence which converges faster towards to the Euler-Mascheroni constant. J. Math. 2023, 7408231. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Crînganu, J. Another New Sequence Which Converges Faster Towards to the Euler–Mascheroni Constant. Axioms 2025, 14, 581. https://doi.org/10.3390/axioms14080581

AMA Style

Crînganu J. Another New Sequence Which Converges Faster Towards to the Euler–Mascheroni Constant. Axioms. 2025; 14(8):581. https://doi.org/10.3390/axioms14080581

Chicago/Turabian Style

Crînganu, Jenică. 2025. "Another New Sequence Which Converges Faster Towards to the Euler–Mascheroni Constant" Axioms 14, no. 8: 581. https://doi.org/10.3390/axioms14080581

APA Style

Crînganu, J. (2025). Another New Sequence Which Converges Faster Towards to the Euler–Mascheroni Constant. Axioms, 14(8), 581. https://doi.org/10.3390/axioms14080581

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop