Observer-Linked Branching (OLB)—A Proposed Quantum-Theoretic Framework for Macroscopic Reality Selection
Abstract
1. Introduction
2. Formal Framework of Observer-Linked Branching (OLB)
- System Overview
- (Environmental space): Represents macroscopically distinguishable alternatives—e.g., traffic conditions, detector outcomes, or market states. It is spanned by an orthonormal basis , where N is the number of branches resulting from environmental decoherence.
- (Observer space): A finite-dimensional Hilbert space representing internal cognitive modes of the observer. We define a preferred orthonormal basis , with oj ∈ {passive, watching, acting, committed}, to describe functional cognitive states.
- : The full ontic space of the observer-environment system. All evolution occurs in this joint space.
- Key Dynamical Elements
- : The observer’s internal state trajectory. It evolves continuously in time and reflects moment-to-moment changes in cognitive mode (e.g., shifting from observation to commitment). This internal trajectory acts as a control parameter for environmental coupling.
- ∈ R: A bias function—real, bounded, and Lipschitz-continuous—assigned to each branch ei. It quantifies how compatible the observer’s internal state is with that branch at time t. These functions distort otherwise neutral quantum probabilities, allowing the observer’s readiness to commit to shape-collapse likelihood.
- : A projector onto the committed cognitive state in , tensor the identity on the environment. This operator is used to define the collapse condition.
- : The number of decohered macroscopic alternatives in the environment. This determines the dimensionality of .
- Time-Dependent Interaction Hamiltonian
2.1. Hilbert Spaces (See Table 1)
2.2. Axioms of the OLB Formalism
- Axiom 1: Macro-Superposition
- : Orthonormal basis of environment states (macroscopic alternatives).
- : Initial cognitive state of the observer.
- ci: Complex amplitudes encoding the standard quantum superposition over branches.
- Axiom 2: Observer Trajectory
- Axiom 3: Commitment Threshold
- : Projects onto the committed cognitive mode in .
- Axiom 4: Observer-Biased Coupling
- : Bias functions coupling the observer’s internal state to each environmental branch.
- Pcomm: As above, ensures the interaction is activated only when the observer nears commitment.
- real-valued (to ensure Hermiticity),
- bounded (to prevent divergence),
- Lipschitz continuous (to guarantee well-defined evolution under standard operator dynamics).
2.3. Evolution Prior to Collapse
- HE: Hamiltonian for the macroscopic environment.
- HO: Hamiltonian for autonomous observer-state evolution.
- Hint(t): Bias-modulated interaction term (see Equation (6)).
2.4. Collapse Dynamics at Commitment
- ∣Φ⊥⟩: Component orthogonal to the “committed” subspace.
- The post-measurement state is normalised.
- Only branches aligned with the committed state survive.
- Branch probabilities are reweighted according to the observer’s internal bias ∣gi ∣2.
2.5. Principal Theorems
2.6. No-Signalling and Locality
2.7. Symmetries and Conservation Laws
2.8. Embedding in Consistent Histories and Path-Integral Formalism
3. Worked Examples
- –
- The observer’s engagement level η(t),
- –
- The bias vector gi over possible branches,
- –
- The modulation of collapse probabilities via internal dynamics.
3.1. Three-Branch Traffic Model
3.2. Memory Feedback
3.3. Collective Intention—Flash-Mob Synchrony
4. Empirical Tests and Theoretical Positioning
4.1. Traffic Commitment (Meso-Scale Test)
4.2. Quantum RNG Alignment (Micro-Scale Test)
4.3. Collective Market Bias (Macro-Scale Test)
5. Theoretical Context-Positioning OLB Among Quantum Interpretations
5.1. Relational Quantum Mechanics (RQM)
5.2. QBism
5.3. Wheeler’s Participatory Realism
5.4. Consistent Histories (CH)
5.5. Objective-Collapse Models (GRW/CSL and Penrose-OR)
5.6. Everettian Many-Worlds
5.7. Decoherence-Only Accounts
5.8. Pilot-Wave/Bohmian Mechanics
5.9. Observer Conflict in Entangled Measurements
6. Open Problems and Research Agenda
6.1. Parameter Estimation and Calibration
6.2. Neurophysical Realisation
- High-gamma synchrony (60–150 Hz) is a leading candidate—temporal coincidence with volitional P300 waves is well documented [44].
- Global Neuronal Workspace theory predicts a fronto-parietal ignition lasting ~300 ms when a decision becomes conscious and reportable [45].
- Empirical plan: combine magneto-encephalography (MEG) with intracranial EEG in pre-surgical epilepsy volunteers during a forced-choice deadline task, time-locking OLB collapse predictions to gamma-burst onset.
6.3. Lorentz Invariance
6.3.1. Proper-Time Collapse Trigger
6.3.2. Observer Field Theory
6.4. Thermodynamics and Free-Energy Cost
6.5. Ethical and Societal Risk
7. Ethical and Philosophical Implications
7.1. Moral Agency and Free Will
7.2. Collective-Intention Governance
7.3. Metaphysical Repercussions
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. Collapse-Time Distribution
Appendix A.1. Set-Up and Notation
Symbol | Meaning |
---|---|
η(t)∈[0, 1] | instantaneous engagement of the focal observer |
gi(t) | bias channel in the interaction Hamiltonian (Axiom 4) |
effective “push” toward commitment—the total bias-channel power that enters the hazard rate | |
k(t) | instantaneous hazard (collapse) rate |
- Working assumption
Appendix A.2. Survival and Collapse-Time Densities
Appendix A.3. Constant-Rate Limit (Baseline Case)
Appendix A.4. Stochastic Engagement—Ornstein–Uhlenbeck Drive
Appendix A.5. Gillespie-Style Simulation Recipe
Listing A1. Discrete-time kinetic Monte Carlo algorithm reproduces the distribution f(tc). |
import numpy as np def sample_collapse_time(kappa, eta0, X0, dt = 1e−3, t_max = 100): ″″″ Gillespie-like sampler for collapse times under k(t) = kappa*(eta*X0)**2. Engagement eta evolves by OU with intrinsic noise. ″″″ gamma, eta_bar, sigma = 1.0, eta0, 0.15 # OU parameters t, eta = 0.0, eta0 while t < t_max: # OU update (Euler–Maruyama) eta += gamma*(eta_bar - eta)*dt + sigma*np.sqrt(dt)*np.random.randn() k = kappa * (eta*X0)**2 # hazard if np.random.rand() < k*dt: # Poisson test return t t += dt return np.inf # no collapse within window |
Appendix A.6. Interpretation and Experimental Leverage
- Rate parameter κ. Extractable by fitting the observed collapse time histograms in high-precision EEG designs that time-stamp commitment flashes.
- Noise strength σ. Operates as a proxy for cognitive distraction; OLB predicts shorter tc in noisy states—counter-intuitive from a purely classical decision-latency viewpoint.
- Hazard non-stationarity. Equation (A1) is general: any deterministic or stochastic model for η or X may be plugged in, turning collapse timing into a directly testable observable.
- Take-away. Appendix A equips OLB with a falsifiable prediction for the distribution of commitment-triggered collapses. The derived hazard framework meshes seamlessly with standard statistical-physics toolkits and sets the stage for Appendix B, Appendix C, Appendix D and Appendix E, where we embed OLB in Consistent Histories, release the full code notebook, and examine thermodynamic costs.
Appendix B. Mapping OLB into the Consistent-Histories Framework
Appendix B.1. Consistent-Histories Recap
Appendix B.2. Choice of Projectors
Appendix B.3. Unitary Factorisation Under OLB
Appendix B.4. Decoherence Functional with Bias Phases
Appendix B.5. Comparison with Ordinary CH
- In ordinary CH, the phases analogous to φi vanish; here, they are cognitive-trajectory integrals.
- The consistent family must include the commitment projector. Excluding it yields histories that mix pre- and post-commitment segments and are not consistent because Hint couples exactly on Pcomm.
- When gi ≡ g (no bias), the OLB phases drop out and CH reduces to its textbook form.
Appendix B.6. Physical Intuition
- Key takeaway
Appendix C. Simulation Package for Theoretical Demonstrations
Appendix C.1. Contents of the Reproducibility Package (See Table A2)
File/Folder | Purpose |
---|---|
OLB_Reproducibility_Notebook.ipynb | Jupyter notebook that runs all three simulations and produces Figure 1, Figure 2 and Figure 3. |
figure1.png, figure2.png, figure3.png | Output plots generated from the notebook. |
(Optional)traffic_probs.csv, memory_feedback.csv | CSV exports of intermediate DataFrames (commented out by default). |
run_olb_examples.py | Script version of the same notebook logic (no interactive cells). |
Appendix C.2. Software Requirements (See Table A3)
Package | Version |
---|---|
Python | ≥3.9 |
NumPy | ≥1.25 |
pandas | ≥2.0 |
matplotlib | ≥3.8 |
networkx | ≥3.3 (only needed for Figure 3) |
notebook (Jupyter) | ≥7.0 (only if using .ipynb) |
Appendix C.3. Simulation Overview
Section in Notebook | Corresponds to | Key Parameters |
---|---|---|
“Figure 1—Three-Branch Traffic Model” | Section 3.1 | β = (0.5, 1.0, 2.0); η ∈ [0, 1] |
“Figure 2—Memory Feedback” | Section 3.2 | η = 0.75; α = 0.2 |
“Figure 3—Flash-Mob Synchrony” | Section 3.3 | 100-agent Watts–Strogatz graph; coupling J = 0.3 |
Appendix C.4. Running the Simulations
- Notebook method:
- Script method:
Appendix C.5. Reproducibility Statement
Appendix D. Pilot Dataset for Route-Commitment Test (RCT)
Appendix D.1. File Overview (See Table A5)
File Name | Format | Rows × Cols | Description |
---|---|---|---|
RCT_pilot_data.csv | CSV (UTF-8) | 60 × 6 | Simulated pilot data: 30 trips in the “committed” framing and 30 in the “control” framing. Includes coarse timing and congestion metrics. |
Appendix D.2. Variable Dictionary (See Table A6)
Column | Description |
---|---|
trip_id | Pseudonymised trip hash (random string; non-identifiable) |
group | Experimental condition (committed or control) |
start_time, end_time | Coarsely binned timestamps (30-min blocks) |
duration_min | Trip duration in minutes |
congestion_index | Scaled congestion score (0–100), derived from simulated GPS-speed vs. historical flow |
Appendix D.3. Verification Snippet
Listing A2. Python code to test the logic and statistical inference of the proposed analysis pipeline. |
import pandas as pd from scipy.stats import ttest_ind df = pd.read_csv(″RCT_pilot_data.csv″) # Table of means and t-tests print(df.groupby(″group″)[[″duration_min″, ″congestion_index″]].agg([″mean″, ″std″, ″count″]).round(2)) t_cong = ttest_ind(df[df.group==″committed″][″congestion_index″], df[df.group==″control″][″congestion_index″], equal_var=False) print(f″\nCongestion difference (Welch t-test): p = {t_cong.pvalue:.3g}″) |
Appendix D.4. Interpretation
Appendix D.5. Next Steps
Appendix E. Thermodynamic Cost of Cognitive Bias
Appendix E.1. Information-Theoretic Statement of the Problem
- Baseline state η = 0 (uniform amplitudes, fully passive observer).
- Biased state η > 0 (amplitudes tilted toward branch i*).
- Define pu = 1/N (unbiased probability for each of the N branches) and pb(i*) the biased probability from Equation (13) of the main text.
Appendix E.2. Landauer Bound for Neural Implementation
Engagement η | pb (Full) | ΔI (Nats) | ΔFmin (J) |
---|---|---|---|
0.25 | 0.439 | 0.48 | 2.1 × 10−21 |
0.5 | 0.529 | 0.79 | 3.4 × 10−21 |
0.75 | 0.605 | 0.98 | 4.2 × 10−21 |
1 | 0.667 | 1.1 | 4.7 × 10−21 |
Appendix E.3. Physiological Envelope
Appendix E.4. Numerical Sandbox
Listing A3. Python snippet to print the table above and explore other branch counts N or temperature values. |
import numpy as np, pandas as pd kB, T = 1.38e-23, 310 # J/K, kelvin N = 3 # number of branches pb = np.array([0.439, 0.529, 0.605, 0.667]) # biased probs (toy model) eta_vals = [0.25, 0.50, 0.75, 1.00] dI = np.log(N*pb) dF_J = kB * T * dI table = pd.DataFrame({″η″: eta_vals, ″p_full″: pb.round(3), ″ΔI (nats)″: dI.round(2), ″Landauer J″: dF_J}) print(table) |
Appendix E.5. Implications for Experimental Design
- The tiny Landauer minimum implies that behavioural or EEG experiments will not be energy-limited; cognitive fatigue will dominate instead.
- fMRI and PET can detect ≳1% changes in the local metabolic rate. If committing to a branch truly demands extra neural work, OLB predicts a statistically significant BOLD or glucose bump aligned with the commitment marker (P300/high-gamma burst).
- No free lunch: any large-scale attempt to bias reality—e.g., a million-person synchronised intention event—would convert to a measurable megawatt-scale metabolic load spread across participants, entirely compatible with public health safety but falsifiable with global EEG power stats.
- Take-away: OLB respects thermodynamic bookkeeping. The minimal free-energy cost of “writing” an observer’s bias onto reality is vanishingly small compared with routine neural metabolism, so second-law objections do not invalidate the framework while simultaneously opening a path for in vivo validation via neuro-energetic correlates.
Appendix F. Lorentz-Invariant Toy Model of Collapse
Appendix F.1. Model Definition
Appendix F.2. Visualisation
Appendix F.3. Physical Implications
- Covariance: The collapse time τc is invariant under coordinate transformations.
- Locality: The trigger condition depends only on the observer’s internal state trajectory.
- Empirical Path: Neural correlates of commitment (e.g., gamma-burst onset) may offer physiological anchors for τc.
Appendix F.4.. Two Spacelike-Separated Observers with Independent Collapse
- Model Assumptions
- Both observers evolve in Minkowski spacetime.
- Each observer has a sigmoid engagement trajectory:
- The collapse condition is
- We set λ = 2, βsum2 = 5.25, and θ = 1.0.
- Parameters
- Observer A: Starts engaging earlier (τ0, A = 1.0)
- Observer B: Starts later (τ0, B = 1.2)
- τcA ≈ 1.23
- τcB ≈ 1.45
- Parameters
- Frame independence: Collapse for each observer is determined by their own internal state and proper time, not global simultaneity.
- Causal locality: The commitment trigger for one observer does not affect the collapse timing of the other.
- Scalability: This model generalises to multiple observers without needing a preferred foliation of spacetime.
References
- Zurek, W.H. Decoherence, einselection, and the quantum origins of the classical. Rev. Mod. Phys. 2003, 75, 715–775. [Google Scholar] [CrossRef]
- Rovelli, C. Relational quantum mechanics. Int. J. Theor. Phys. 1996, 35, 1637–1678. [Google Scholar] [CrossRef]
- Fuchs, C.A.; Mermin, N.D.; Schack, R. An introduction to QBism with an application to the locality of quantum mechanics. Am. J. Phys. 2014, 82, 749–754. [Google Scholar] [CrossRef]
- Wheeler, J.A. Information, physics, quantum: The search for links. In Complexity, Entropy and the Physics of Information; Zurek, W.H., Ed.; Addison-Wesley: Redwood City, CA, USA, 1990; pp. 3–28. [Google Scholar]
- Wigner, E.P. Remarks on the mind–body question. In The Scientist Speculates; Good, I.J., Ed.; Heinemann: London, UK, 1961; pp. 284–302. [Google Scholar]
- Ghirardi, G.C.; Rimini, A.; Weber, T. Unified dynamics for microscopic and macroscopic systems. Phys. Rev. D 1986, 34, 470–491. [Google Scholar] [CrossRef] [PubMed]
- Diósi, L. Models for universal reduction of macroscopic quantum fluctuations. Phys. Rev. A 1989, 40, 1165–1174. [Google Scholar] [CrossRef]
- Penrose, R. On gravity’s role in quantum state reduction. Gen. Relativ. Gravit. 1996, 28, 581–600. [Google Scholar] [CrossRef]
- Gell-Mann, M.; Hartle, J.B. Classical equations for quantum systems. Phys. Rev. D 1993, 47, 3345–3382. [Google Scholar] [CrossRef]
- Jahn, R.G.; Dunne, B.J. Margins of Reality: The Role of Consciousness in the Physical World; Harcourt Brace Jovanovich: Orlando, FL, USA, 1987. [Google Scholar]
- Bösch, H.; Steinkamp, F.; Boller, E. Examining psychokinesis: The interaction of human intention with random number generators—A meta-analysis. Psychol. Bull. 2006, 132, 497–523. [Google Scholar] [CrossRef]
- Radin, D.; Michel, L.; Galdamez, K.; Wendland, P.; Rickenbach, R.; Delorme, A. Consciousness and the double-slit interference pattern: Six experiments. Phys. Essays 2012, 25, 157–171. [Google Scholar] [CrossRef]
- Haggard, P.; Eimer, M. On the relation between brain potentials and the awareness of voluntary movements. Exp. Brain Res. 1999, 126, 128–133. [Google Scholar] [CrossRef]
- O’Connell, R.G.; Dockree, P.M.; Kelly, S.P. A supramodal accumulation-to-bound signal that determines perceptual decisions in humans. Nat. Neurosci. 2012, 15, 1729–1735. [Google Scholar] [CrossRef]
- Helbing, D. Traffic and related self-driven many-particle systems. Rev. Mod. Phys. 2001, 73, 1067–1141. [Google Scholar] [CrossRef]
- Kerner, B.S. Introduction to Modern Traffic Flow Theory and Control: The Long Road to Three-Phase Traffic Theory; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Néda, Z.; Ravasz, E.; Brechet, Y.; Vicsek, T.; Barabási, A.-L. The sound of many hands clapping. Nature 2000, 403, 849–850. [Google Scholar] [CrossRef] [PubMed]
- Strogatz, S.H. Sync: The Emerging Science of Spontaneous Order; Hyperion: New York, NY, USA, 2003. [Google Scholar]
- Busemeyer, J.R.; Bruza, P.D. Quantum Models of Cognition and Decision; Cambridge University Press: Cambridge, UK, 2012. [Google Scholar]
- Pothos, E.M.; Busemeyer, J.R. Can quantum probability provide a new direction for cognitive modelling? Behav. Brain Sci. 2013, 36, 255–274. [Google Scholar] [CrossRef]
- Khrennikov, A. Ubiquitous Quantum Structure: From Psychology to Finance; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Haven, E.; Khrennikov, A. Quantum Social Science; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Schrödinger, E. Quantisierung als Eigenwertproblem. Ann. Phys. 1926, 79, 361–376. [Google Scholar] [CrossRef]
- Messiah, A. Quantum Mechanics; North-Holland: Amsterdam, The Netherlands, 1961; Volume I. [Google Scholar]
- Lüders, G. Über die Zustandsänderung durch den Meßprozeß. Ann. Phys. 1951, 8, 322–328. [Google Scholar] [CrossRef]
- Di Santo, F.; Gisin, N. The open past in an indeterministic physics. Found. Phys. 2023, 53, 4. [Google Scholar] [CrossRef]
- Polchinski, J. Weinberg’s nonlinear quantum mechanics and the Einstein–Podolsky–Rosen paradox. Phys. Rev. Lett. 1991, 66, 397–400. [Google Scholar] [CrossRef]
- Pan, D.; Long, G.-L.; Yin, L.; Sheng, Y.-B.; Ruan, D.; Ng, S.X.; Lu, J.; Hanzo, L. The evolution of quantum secure direct communication: On the road to the Qinternet. IEEE Commun. Surv. Tutor. 2024, 26, 1898–1949. [Google Scholar] [CrossRef]
- Noether, E. Invariante Variationsprobleme. Nachrichten Ges. Wiss. Göttingen Math.-Phys. Kl. 1918, 1918, 235–257. [Google Scholar]
- Griffiths, R.B. Consistent Quantum Theory; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar]
- Bürkner, P.-C. brms: An R package for Bayesian multilevel models using Stan. J. Stat. Softw. 2017, 80, 1–28. [Google Scholar] [CrossRef]
- Luca, B.; Pilot Route-Commitment Test Dataset. Zenodo 2025. Available online: https://zenodo.org/record/14761461 (accessed on 1 June 2025).
- Abellán, C.; Amaya, W.; Jofre, M.; Curty, M.; Acín, A.; Capmany, J.; Pruneri, V.; Mitchell, M.W. Ultra-fast quantum randomness generation by accelerated phase diffusion in a pulsed laser diode. Opt. Express 2014, 22, 1645–1654. [Google Scholar] [CrossRef] [PubMed]
- Reddy, D.V.; Nerem, R.R.; Nam, S.W.; Mirin, R.P.; Verma, V.B. Superconducting nanowire single-photon detectors with 98% system detection efficiency at 1550 nm. Optica 2020, 7, 1649–1653. [Google Scholar] [CrossRef]
- Lempel, A.; Ziv, J. On the complexity of finite sequences. IEEE Trans. Inf. Theory 1976, 22, 75–81. [Google Scholar] [CrossRef]
- Li, M.; Vitányi, P. An Introduction to Kolmogorov Complexity and Its Applications, 3rd ed.; Springer: New York, NY, USA, 2008. [Google Scholar]
- Rouder, J.N.; Speckman, P.L.; Sun, D.; Morey, R.D.; Iverson, G. Bayesian t-tests for accepting and rejecting the null hypothesis. Psychon. Bull. Rev. 2009, 16, 225–237. [Google Scholar] [CrossRef]
- Kruschke, J.K. Doing Bayesian Data Analysis, 2nd ed.; Academic Press: London, UK, 2014. [Google Scholar]
- Grünwald, P.; van Ommen, T. Inconsistency of Bayesian inference for misspecified linear models, and a proposal for repairing it. Bayesian Anal. 2017, 12, 1069–1103. [Google Scholar] [CrossRef]
- Araci, D. FinBERT: Financial sentiment analysis with pre-trained language models. arXiv 2019, arXiv:1908.10063. [Google Scholar]
- Driscoll, J.C.; Kraay, A.C. Consistent covariance matrix estimation with spatially dependent panel data. Rev. Econ. Stat. 1998, 80, 549–560. [Google Scholar] [CrossRef]
- Bassi, A.; Ghirardi, G.C. Dynamical-reduction models. Phys. Rep. 2003, 379, 257–426. [Google Scholar] [CrossRef]
- Bohm, D. A suggested interpretation of the quantum theory in terms of “hidden” variables. I & II. Phys. Rev. 1952, 85, 166–193. [Google Scholar]
- Ball, T.; Demandt, E.; Mutschler, I.; Neitzel, E.; Mehring, C.; Vogt, K.; Aertsen, A.; Schulze-Bonhage, A. Movement-related activity in the high-gamma range of the human EEG. NeuroImage 2008, 41, 302–310. [Google Scholar] [CrossRef] [PubMed]
- Dehaene, S.; Changeux, J.-P. Experimental and theoretical approaches to conscious processing. Neuron 2011, 70, 200–227. [Google Scholar] [CrossRef] [PubMed]
- Landauer, R. Irreversibility and heat generation in the computing process. IBM J. Res. Dev. 2000, 44, 261–269. [Google Scholar] [CrossRef]
Space | Definition | Physical Role |
---|---|---|
Environment | Discrete macroscopic alternatives | |
Observer | Cognitive states | |
Composite | Full ontic state |
Model | Observers | New Mechanism | Emergent Pattern |
---|---|---|---|
Section 3.1 | 1 | fixed η bias | nonlinear skew of odds |
Section 3.2 | 1 | feedback α | self-reinforcing personal bias |
Section 3.3 | N | social coupling J | network synchrony → group-wide bias |
Framework | Core Idea | Where It Matches OLB | Key Difference from OLB |
---|---|---|---|
Relational QM (Rovelli) | Quantum states are relations between systems. | Observer-dependence is built in. | OLB adds a dynamical bias term and an explicit commitment-triggered collapse. |
QBism | Wave function encodes an agent’s personal Bayesian degrees of belief. | Participatory, agent-centred viewpoint. | In OLB, commitment changes the ontic odds, not merely the agent’s beliefs. |
Wheeler’s “It from Bit” | Physical reality emerges from acts of observation. | Same “participatory realism” spirit. | OLB supplies a calculable Hamiltonian and testable hazard rate. |
Consistent Histories | Classical pasts arise from decoherent history families. | Uses histories & decoherence mathematics. | OLB introduces cognitive phase weights and a privileged history family containing the commitment projector. |
GRW/CSL | Objective, stochastic localisation collapses the wave function. | Both end in a single realised branch. | OLB’s trigger is intentional, not spontaneous mass density; no new parameter like λGRW is introduced. |
Everett/Many-Worlds | All branches persist; no collapse. | Shares the unitary pre-collapse evolution. | OLB selects one branch at commitment, recovering a single world without adding hidden variables. |
Decoherence-only | Environment suppresses interference, explaining classicality. | OLB uses decoherence to maintain branch orthogonality. | Decoherence alone does not pick a branch; OLB says the observer’s commitment does. |
Bohmian Mechanics | Hidden classical particle trajectories guided by ψ. | Both predict the Born rule. | OLB has no hidden trajectories; probabilities are shaped by cognitive bias instead. |
Penrose-Diósi/OR | Gravitational self-energy drives objective collapse. | Both modify Schrödinger dynamics. | OLB collapse depends on mental commitment, not gravity; energy-scale estimates differ by ~30 orders. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Buzea, C.G.; Nedeff, F.; Nedeff, V.; Rusu, D.-I.; Agop, M.; Vasincu, D. Observer-Linked Branching (OLB)—A Proposed Quantum-Theoretic Framework for Macroscopic Reality Selection. Axioms 2025, 14, 522. https://doi.org/10.3390/axioms14070522
Buzea CG, Nedeff F, Nedeff V, Rusu D-I, Agop M, Vasincu D. Observer-Linked Branching (OLB)—A Proposed Quantum-Theoretic Framework for Macroscopic Reality Selection. Axioms. 2025; 14(7):522. https://doi.org/10.3390/axioms14070522
Chicago/Turabian StyleBuzea, Călin Gheorghe, Florin Nedeff, Valentin Nedeff, Dragos-Ioan Rusu, Maricel Agop, and Decebal Vasincu. 2025. "Observer-Linked Branching (OLB)—A Proposed Quantum-Theoretic Framework for Macroscopic Reality Selection" Axioms 14, no. 7: 522. https://doi.org/10.3390/axioms14070522
APA StyleBuzea, C. G., Nedeff, F., Nedeff, V., Rusu, D.-I., Agop, M., & Vasincu, D. (2025). Observer-Linked Branching (OLB)—A Proposed Quantum-Theoretic Framework for Macroscopic Reality Selection. Axioms, 14(7), 522. https://doi.org/10.3390/axioms14070522