Fuzzy Treatment for Meromorphic Classes of Admissible Functions Connected to Hurwitz–Lerch Zeta Function
Abstract
1. Introduction
- (i)
- For and the operator reduces to , as introduced by Aqlan et al. (see [26], with );
- (ii)
- For the operator reduces to , as introduced by Lashin (see [27]);
- (iii)
- For and the operator reduces to , as introduced by Miller and Mocanu (see [28], p. 389).
2. Definitions and Preliminaries
3. Main Results
- (1)
- for some
- (2)
- There exists such that for all .
- (1)
- and
- (2)
- is univalent in and for some
- (3)
- is univalent in and there exists such that for all .
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Oros, G.I.; Oros, G. The notion of subordination in fuzzy sets theory. Gen. Math. 2011, 19, 97–103. [Google Scholar]
- Miller, S.S.; Mocanu, P.T. Second order-differential inequalities in the complex plane. J. Math. Anal. Appl. 1978, 65, 289–305. [Google Scholar] [CrossRef]
- Miller, S.S.; Mocanu, P.T. Differential subordinations and univalent functions. Mich. Math. J. 1981, 28, 157–172. [Google Scholar] [CrossRef]
- Oros, G.I.; Oros, G. Fuzzy differential subordination. Acta Univ. Apulensis 2012, 30, 55–64. [Google Scholar]
- Dzitac, I.; Filip, F.G.; Manolescu, M.J. Fuzzy logic is not fuzzy: World-renowned computer scientist Lotfi A. Zadeh. Int. J. Comput. Commun. 2017, 12, 748–789. [Google Scholar] [CrossRef]
- Oros, G.I.; Oros, G. Dominants and best dominants in fuzzy differential subordinations. Stud. Univ. Babes-Bolyai Math. 2012, 57, 239–248. [Google Scholar]
- Zadeh, L.A. Fuzzy sets. Inf. Control. 1965, 8, 338–353. [Google Scholar] [CrossRef]
- Haydar, E.A. On fuzzy differential subordination. Math. Moravica 2015, 19, 123–129. [Google Scholar] [CrossRef]
- Lupas, A.A. A note on special fuzzy differential subordinations using generalized Salagean operator and Ruscheweyh derivative. J. Comput. Anal. Appl. 2013, 15, 1476–1483. [Google Scholar]
- Venter, A.O. On special fuzzy differential subordination using Ruscheweyh operator. An. Univ. Oradea Fasc. Mat. 2015, 22, 167–176. [Google Scholar]
- Ali, E.E.; Cortez, M.V.; El-Ashwah, R.M. Fuzzy differential subordination for classes of admissible functions defined by a class of operators. Fractal Fract. 2024, 8, 405. [Google Scholar] [CrossRef]
- Shah, S.A.; Ali, E.E.; Maitlo, A.A.; Abdeljawad, T.; Albalahi, A.M. Inclusion results for the class of fuzzy α-convex functions. AIMS Math. 2023, 8, 1375–1383. [Google Scholar] [CrossRef]
- Oros, E.E.A.G.I.; El-Ashwah, R.M.; Albalahi, A.M. Applications of fuzzy differential subordination theory on analytic p-valent functions connected with q-calculus operator. AIMS Math. 2024, 9, 21239–21254. [Google Scholar] [CrossRef]
- Soren, M.M.; Cotîrla, L.I. Fuzzy differential subordination and superordination results for the Mittag-Leffler type Pascal distribution. AIMS Math. 2024, 9, 21053–21078. [Google Scholar] [CrossRef]
- Ali, E.E.; Cortez, M.V.; El-Ashwah, R.M.; Albalahi, A.M. Fuzzy subordination results for meromorphic functions Connected with a Linear Operator. Fractal Fract. 2024, 8, 308. [Google Scholar] [CrossRef]
- Lupas, A.A. A note on special fuzzy differential subordinations using multiplier transformation and Ruscheweyh derivative. J. Comput. Anal. Appl. 2018, 25, 1116–1124. [Google Scholar]
- Ali, E.E.; Oros, G.I.; El-Ashwah, R.M.; Albalahi, A.M.; Ennaceur, M. Fuzzy subordination results for meromorphic functions associated with Hurwitz–Lerch Zeta Function. Mathematics 2024, 12, 3721. [Google Scholar] [CrossRef]
- El-Ashwah, R.M. Inclusion properties regarding the meromorphic structure of Srivastava-Attiya operator. South. Asian Bull. Math. 2014, 38, 501–512. [Google Scholar]
- Srivastava, H.M.; Gaboury, S.; Ghanim, F. Partial sums of certain classes of meromorphic functions related to the Hurwitz–Lerch zeta function. Moroc. J. Pure Appl. Anal. 2015, 1, 38–50. [Google Scholar] [CrossRef]
- Ghanim, F.; Batiha, B.; Ali, A.H.; Darus, M. Geometric properties of a linear complex operator on a subclass of meromorphic functions an analysis of Hurwitz–Lerch-Zeta functions. Appl. Math. Nonlinear Sci. 2023, 8, 2229–2240. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Choi, J. Series Associated with the Zeta and Related Functions; Springer: Dordrecht, The Netherlands, 2001. [Google Scholar]
- Ferreira, C.; Lopez, J.L. Asymptotic expansions of the Hurwitz-Lerch Zeta function. J. Math. Anal. Appl. 2004, 298, 210–224. [Google Scholar] [CrossRef]
- Lin, S.-D.; Srivastava, H.M. Some families of the Hurwitz-Lerrch Zeta functions and associated fractional dervtives and other integral representations. Appl. Math. Comput. 2004, 154, 725–733. [Google Scholar]
- Bulboaca, T. Integral operators that preserve the subordination. Bull. Korean Math. Soc. 1997, 34, 627–636. Available online: https://www.researchgate.net/publication/263631204 (accessed on 3 July 2025).
- Choi, J.; Srivastava, H.M. Certain families of series associated with the Hurwitz-Lerch Zeta functions. Appl. Math. Comput. 2005, 170, 399–409. [Google Scholar] [CrossRef]
- Aqlan, E.; Jahangiri, J.M.; Kulkarni, S.R. Certain integral operators applied to meromorphic p-valent functions. J. Nat. Geom. 2003, 24, 111–120. [Google Scholar]
- Lashin, A.Y. On certain subclass of meromorphic functions associated with certain integral operators. Comput. Math Appl. 2010, 59, 524–531. [Google Scholar] [CrossRef]
- Miller, S.S.; Mocanu, P.T. Differential Subordinations: Theory and Applications; Marcel Dekker Inc.: New York, NY, USA, 2000. [Google Scholar]
- Cho, N.E.; Kwon, O.S.; Srivastava, H.M. Inclusion relationships for certain subclasses of meromorphic functions associated with a family of multiplier transformations. Integral Transform. Spec. Funct. 2005, 16, 647–659. [Google Scholar] [CrossRef]
- Oros, G.I.; Oros, G.; Güney, O. Introduction in third-order fuzzy differential subordination. Hacet. J. Math. Stat. 2024, 12, 1–15. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ali, E.E.; El-Ashwah, R.M.; Albalahi, A.M.; Sidaoui, R. Fuzzy Treatment for Meromorphic Classes of Admissible Functions Connected to Hurwitz–Lerch Zeta Function. Axioms 2025, 14, 523. https://doi.org/10.3390/axioms14070523
Ali EE, El-Ashwah RM, Albalahi AM, Sidaoui R. Fuzzy Treatment for Meromorphic Classes of Admissible Functions Connected to Hurwitz–Lerch Zeta Function. Axioms. 2025; 14(7):523. https://doi.org/10.3390/axioms14070523
Chicago/Turabian StyleAli, Ekram E., Rabha M. El-Ashwah, Abeer M. Albalahi, and Rabab Sidaoui. 2025. "Fuzzy Treatment for Meromorphic Classes of Admissible Functions Connected to Hurwitz–Lerch Zeta Function" Axioms 14, no. 7: 523. https://doi.org/10.3390/axioms14070523
APA StyleAli, E. E., El-Ashwah, R. M., Albalahi, A. M., & Sidaoui, R. (2025). Fuzzy Treatment for Meromorphic Classes of Admissible Functions Connected to Hurwitz–Lerch Zeta Function. Axioms, 14(7), 523. https://doi.org/10.3390/axioms14070523