A Penalty Approach for Solving Generalized Absolute Value Equations
Abstract
1. Introduction
2. GAVE and Its Penalty Formulation
- (i)
- is a continuous operator on .
- (ii)
- For any ,
3. Theoretical Aspects of Problem 4
4. Algorithm and Its Convergence
Algorithm 1 Penalty algorithm for GAVE |
Step 1. Let be a given precision and |
|
Step 2. Find the solution of . |
Step 3. If or then stop: |
If not, take
|
4.1. Comments and Remarks
4.2. Convergence of Penalty Algorithm
- Existence of the solution forIn Step 2: The operator is strongly coercive on , since F is strongly coercive; therefore:, and such that .
- Is this bounded?We suppose the contrary, i.e., there exists such thatFrom Step 2 of Algorithm 1, we haveAccording to the property () in Definition 1 of , we have,On the other hand, the strongly coercive of F leads to the following:
- Since the sequence is bounded, we can extract a subsequence converging to , the adhesion value of the sequence Note that for allTherefore,F is continuous over ; then,We deduce thatThis shows that is a solution of Problem 1.
5. Computational Experiments
Remarks
6. Conclusions
- The need to further relax the convergence assumptions.
- The search for an efficient strategy for choosing the penalty parameter.
- The need to conduct comparative numerical studies with other recent methods.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Achache, M.; Hazzam, N. Solving absolute value equations via linear complementarity and interior-point methods. J. Nonl. Funct. Anal. 2018, 2018, 39. [Google Scholar] [CrossRef]
- Lehmann, L.; Radons, M.; Rump, M.; Strom, C.H. Sign controlled solvers for the absolute value equation with an application to support vector machines. arXiv 2010, arXiv:1707.09174. [Google Scholar]
- Mangasarian, O.L.; Meye, R.R. Absolute value equations. Linear Algebra Appl. 2006, 419, 359–367. [Google Scholar] [CrossRef]
- Migot, T.; Abdellah, L.; Haddou, M. Solving absolute value equation using complementarity and smoothing functions. Comput. Appl. Math. 2018, 327, 196–207. [Google Scholar]
- Rohn, J. An algorithm for computing all solutions of an absolute value equation. Optimiz. Lett. 2012, 6, 851–856. [Google Scholar] [CrossRef]
- Zhang, Y.; Yu, D.; Yuan, Y. On the Alternative SOR-like Iteration Method for Solving Absolute Value Equations. Symmetry 2023, 15, 589. [Google Scholar] [CrossRef]
- Achache, M.; Anane, N. On the Unique Solvability and Picard’s Iterative Method for Absolute Value Equations; Bulletin of Transilvania, Series III: Mathematics and Computer Sciences; Transilvania University Press: Braşov, Romania, 2021; Volume 1, pp. 13–26. [Google Scholar]
- Prokopyev, O. On Equivalent Reformulations for Absolute Value Equations. Comput. Optim. Appl. 2009, 44, 363–372. [Google Scholar] [CrossRef]
- Noor, M.A.; Iqbal, J.; Al-Said, E. Residual iterative method for solving absolute value equations. Abst. Appl. Anal. 2012, 2012, 406232. [Google Scholar] [CrossRef]
- Anane, N.; Achache, M. Preconditioned conjugate gradient methods for absolute value equations. J. Numer. Anal. Approx. Theory 2020, 48, 3–14. [Google Scholar] [CrossRef]
- Alcantara, J.H.; Chen, J.-S.; Tam, M.K. Method of alternating projections for the general absolute value equation. J. Fixed Point Theory Appl. 2023, 25, 39. [Google Scholar] [CrossRef]
- Bello, J.Y.; Cruz, O.P.; Prudente, L.F. On the global convergence of the inexact semi-smooth Newton method for absolute value equation. Comput. Optim. Appl. 2016, 65, 93–108. [Google Scholar] [CrossRef]
- Caccetta, L.; Qu, B.; Zhou, G. A globally and quadratically convergent method for absolute value equations. Comput. Optim. Appl. 2011, 48, 45–58. [Google Scholar] [CrossRef]
- Mangasarian, O.L. A generalized Newton method for absolute value equations. Optimiz. Lett. 2009, 3, 101–108. [Google Scholar] [CrossRef]
- Yong, L.Q. A smoothing Newton method for absolute value equation. Int. J. Control. Autom. Syst. 2016, 9, 119–132. [Google Scholar] [CrossRef]
- Huang, C.; Wang, S. A penalty method for a mixed nonlinear complementarity problem. Nonlinear Anal. 2012, 75, 588–597. [Google Scholar] [CrossRef]
- Hu, X.; Huang, C.; Luo, A.; Chen, H. A Power Penalty Approach to a Horizontal Linear Complementarity, Problem. Res. J. Appl. Sci. Eng. Technol. 2013, 5, 1830–1835. [Google Scholar] [CrossRef]
- Huang, C.; Wang, S. A power Penalty approach to a nonlinear complementarity problem. Oper. Res. Lett. 2010, 38, 72–76. [Google Scholar] [CrossRef]
- Wang, S.; Yang, X.Q. A power penalty method for linear complementarity problems. Oper. Res. Lett. 2008, 36, 211–214. [Google Scholar] [CrossRef]
- Kebaili, Z.; Benterki, D. A penalty approach for a box constrained variational inequality problem. Appl. Math. 2018, 63, 439–454. [Google Scholar] [CrossRef]
- Chen, M.; Huang, C. A power penalty method for a class of linearly constrained variational inequality. J. Ind. Manag. Optim. (JIMO) 2018, 63, 1381–1396. [Google Scholar] [CrossRef]
- Auslender, A. Optimization: Méthodes Numériques; Masson: Paris, France, 1976. (In French) [Google Scholar]
- Achache, M. On the unique solvability and numerical study of absolute value equations. J. Numer. Anal. Approx. Theory 2019, 48, 112–121. [Google Scholar]
- Mangasarian, O.L. Absolute value equation solution via concave minimization. Optim. Lett. 2007, 1, 3–8. [Google Scholar] [CrossRef]
10 | ||||||||
---|---|---|---|---|---|---|---|---|
Size | Iter | CPU (s) | Iter | CPU (s) | Iter | CPU (s) | Iter | CPU (s) |
20 | 8 | 0.6194 | 5 | 0.5213 | 4 | 0.2653 | // | // |
500 | 9 | 60.2795 | 5 | 46.8847 | 4 | 45.9938 | // | // |
1000 | 9 | 120.2547 | 5 | 94.5488 | 4 | 89.0125 | // | // |
1500 | 9 | 178.2166 | 5 | 138.1186 | 4 | 129.9565 | // | // |
10 | ||||||||
---|---|---|---|---|---|---|---|---|
Size | Iter | CPU (s) | Iter | CPU (s) | Iter | CPU (s) | Iter | CPU (s) |
100 | 8 | 6.7529 | 5 | 5.1120 | 4 | 4.9464 | // | // |
200 | 9 | 49.2267 | 5 | 45.6289 | 4 | 29.5840 | // | // |
1500 | 9 | 115.2275 | 5 | 67.6533 | 4 | 53.9052 | // | // |
3000 | 9 | 145.9822 | 5 | 139.1002 | 4 | 120.6812 | // | // |
10 | ||||||||
---|---|---|---|---|---|---|---|---|
Size | Iter | CPU (s) | Iter | CPU (s) | Iter | CPU (s) | Iter | CPU (s) |
32 | 1 | 0.1068 | 1 | 0.0832 | 1 | 0.0418 | // | // |
64 | 1 | 0.1510 | 1 | 0.1236 | 1 | 0.0749 | // | // |
128 | 1 | 0.7348 | 1 | 0.6432 | 1 | 0.4250 | // | // |
256 | 1 | 3.3251 | 1 | 3.3038 | 1 | 3.2497 | // | // |
528 | 1 | 31.7037 | 1 | 31.3189 | 1 | 31.2446 | // | // |
1024 | 1 | 460.8303 | 1 | 459.8112 | 1 | 452.9188 | // | // |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kebaili, Z.; Grar, H.; Achache, M. A Penalty Approach for Solving Generalized Absolute Value Equations. Axioms 2025, 14, 488. https://doi.org/10.3390/axioms14070488
Kebaili Z, Grar H, Achache M. A Penalty Approach for Solving Generalized Absolute Value Equations. Axioms. 2025; 14(7):488. https://doi.org/10.3390/axioms14070488
Chicago/Turabian StyleKebaili, Zahira, Hassina Grar, and Mohamed Achache. 2025. "A Penalty Approach for Solving Generalized Absolute Value Equations" Axioms 14, no. 7: 488. https://doi.org/10.3390/axioms14070488
APA StyleKebaili, Z., Grar, H., & Achache, M. (2025). A Penalty Approach for Solving Generalized Absolute Value Equations. Axioms, 14(7), 488. https://doi.org/10.3390/axioms14070488