Osculating Mate of a Curve in Minkowski 3-Space
Abstract
1. Introduction
- Timelike if .
- Spacelike if .
- Lightlike (null) if and .
- is the unit tangent;
- is the principal normal;
- is the binormal vector defined through the Lorentzian cross-product [1].
- for spacelike surfaces with spacelike congruence;
- for timelike surfaces with spacelike congruence;
- for timelike surfaces with timelike congruence.
2. Osculating Curve Pairs
- i.
- .
- ii.
- .
- iii.
- .
- i.
- ξ and are timelike.
- ii.
- ξ and are spacelike curves with spacelike normals.
- iii.
- ξ and are spacelike curves with timelike normals.
- i.
- The distance between the matching points of the curves ξ and remains constant, provided that , given that .
- ii.
- Given that η equals along the curves and , the distance between the matching points of the curves ξ and is
3. Frenet Apparatus and Its Relation in Osculating Curve Pairs
4. Relations for the Curvature and Torsion of the Osculating Curve
5. Analysis of Curvature and Torsion of the Osculating Curve
6. Rotation Matrix Between Frenet Frame of Osculating Curve
7. Special Cases for Osculating Curve Pairs
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- O’Neill, B. Semi-Riemannian Geometry; Academic Press: New York, NY, USA; London, UK, 1983. [Google Scholar]
- Balgetir, H.; Bektas, M.; Ergut, M. Bertrand curves for nonnull curves in 3-dimensional Lorentzian space. Hadron. J. 2004, 27, 229–236. [Google Scholar]
- Burke, J.F. Bertrand curves associated with a pair of curves. Math. Mag. 1960, 34, 60–62. [Google Scholar] [CrossRef]
- Cheng, Y.M.; Lini, C.C. On the Generalized Bertrand Curves in Euclidean-spaces. Note Mat. 2010, 29, 33–39. [Google Scholar]
- Choi, J.H.; Kim, Y.H. Associated curves of a Frenet curve and their applications. Appl. Math. Comput. 2012, 218, 9116–9124. [Google Scholar] [CrossRef]
- Dede, M.; Ekici, C. Directional Bertrand curves. Gazi Univ. J. Sci. 2018, 31, 202–211. [Google Scholar]
- Ekmekci, N.; İlarslan, K. On Bertrand curves and their characterization. Differ. Geom. Dyn. Syst. 2001, 3, 17–24. [Google Scholar]
- İlarslan, K.; Kılıç Aslan, N. On Spacelike Bertrand Curves in Minkowski 3-Space. Konuralp J. Math. 2017, 5, 214–222. [Google Scholar]
- Matsuda, H.; Yorozu, S. Notes on Bertrand Curves. Yokohama Math. J. 2003, 50, 41–58. [Google Scholar]
- Babaarslan, M.; Yayli, Y. On helices and Bertrand curves in Euclidean 3-space. Math. Comput. Appl. 2013, 18, 1–11. [Google Scholar] [CrossRef]
- Honda, S.I.; Takahashi, M. Bertrand and Mannheim curves of framed curves in the 3-dimensional Euclidean space. Turk. J. Math. 2020, 44, 883–899. [Google Scholar] [CrossRef]
- Izumiya, S.; Takeuchi, N. Generic properties of helices and Bertrand curves. J. Geom. 2002, 74, 97–109. [Google Scholar] [CrossRef]
- Uçum, A.; İlarslan, K. On The Timelike Bertrand Curves in Minkowski 3-Space. Honam Math. J. 2016, 38, 467–477. [Google Scholar] [CrossRef]
- Zhang, C.; Pei, D. Generalized Bertrand Curves in Minkowski 3-Space. Mathematics 2020, 8, 2199. [Google Scholar] [CrossRef]
- Liu, H.; Wang, F. Mannheim partner curves in 3-space. J. Geom. 2008, 88, 120–126. [Google Scholar] [CrossRef]
- Orbay, K.; Kasap, E. On Mannheim partner curves in E3. Int. J. Phys. Sci. 2009, 4, 261–264. [Google Scholar]
- Ilarslan, K.; Ucum, A.; Nešović, E. On Generalized Spacelike Mannheim Curves in Minkowski Space–Time. Proc. Natl. Acad. Sci. India Sect. A Phys. Sci. 2016, 86, 249–258. [Google Scholar] [CrossRef]
- Ucum, A.; Nesovic, E.; Ilarslan, K. On Generalized Timelike Mannheim Curves in Minkowski Space-Time. J. Dyn. Syst. Geom. Theor. 2015, 13, 71–94. [Google Scholar]
- Calini, A.; Ivey, T. Backlund transformations and knots of constant torsion. J. Knot Theory Ramifications 1998, 7, 719–746. [Google Scholar] [CrossRef]
- Németh, S. Backlund transformations of n-dimensional constant torsion curves. Publ. Math. Debr. 1998, 53, 271–279. [Google Scholar] [CrossRef]
- Németh, S. Bäcklund transformations of constant torsion curves in 3-dimensional constant curvature spaces. Ital. J. Pure Appl. Math. 2000, 7, 125–138. [Google Scholar]
- Abdel-Baky, R.A. The Bäcklund’s theorem in Minkowski 3-space . Appl. Math. Comput. 2005, 160, 41–55. [Google Scholar]
- Özdemir, M.; Çöken, A.C. Backlund transformation for non-lightlike curves in Minkowski 3-space. Chaos Solitons Fractals 2009, 42, 2540–2545. [Google Scholar] [CrossRef]
- Özdemir, M.; Erdoğdu, M.; Şimşek, H.; Ergin, A.A. Backlund Transformation for Spacelike Curves in the Minkowski Space-Time. Kuwait J. Sci. Eng. 2014, 41, 63–80. [Google Scholar]
- Grbović, M.; Nesovic, E. On Bäcklund transformation and vortex filament equation for pseudo null curves in Minkowski 3-space. Int. J. Geom. Methods Mod. Phys. 2016, 13, 1650077. [Google Scholar] [CrossRef]
- Deshmukh, S.; Chen, B.Y.; Alghanemi, A. Natural mates of Frenet curves in Euclidean 3-space. Turk. J. Math. 2018, 42, 2826–2840. [Google Scholar] [CrossRef]
- Celik, O.; Ozdemir, M. A new generalization of some curve pairs. Int. Electron. J. Geom. 2022, 15, 214–224. [Google Scholar] [CrossRef]
- Jafari, M.; Yayli, Y. Generalized Quaternions and Rotation in 3-Space . TWMS J. Pure Appl. Math. 2015, 6, 224–232. [Google Scholar]
- Özdemir, M.; Ergin, A.A. Rotations with unit timelike quaternions in Minkowski 3-space. J. Geom. Phys. 2006, 56, 322–336. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Öztürk, İ.; Çakır, H.; Özdemir, M. Osculating Mate of a Curve in Minkowski 3-Space. Axioms 2025, 14, 468. https://doi.org/10.3390/axioms14060468
Öztürk İ, Çakır H, Özdemir M. Osculating Mate of a Curve in Minkowski 3-Space. Axioms. 2025; 14(6):468. https://doi.org/10.3390/axioms14060468
Chicago/Turabian StyleÖztürk, İskender, Hasan Çakır, and Mustafa Özdemir. 2025. "Osculating Mate of a Curve in Minkowski 3-Space" Axioms 14, no. 6: 468. https://doi.org/10.3390/axioms14060468
APA StyleÖztürk, İ., Çakır, H., & Özdemir, M. (2025). Osculating Mate of a Curve in Minkowski 3-Space. Axioms, 14(6), 468. https://doi.org/10.3390/axioms14060468