New Bounds for the Davis–Wielandt Radius via the Moore–Penrose Inverse of Bounded Linear Operators
Abstract
1. Introduction
2. Main Results
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gustafson, K.E.; Rao, D.K.M. Numerical Range: The Field of Values of Linear Operators and Matrices; Springer: New York, NY, USA, 1997. [Google Scholar]
- Horn, R.A.; Johnson, C.R. Topics in Matrix Analysis; Cambridge University Press: New York, NY, USA, 1991. [Google Scholar]
- Goldberg, M.; Tandmor, E. On the numerical radius and its applications. Linear Algebra Appl. 1982, 42, 263–284. [Google Scholar] [CrossRef]
- Groetsch, C.W. Generalized Inverses of Linear Operators: Representation and Approximation; Marcel Dekker: New York, NY, USA, 1997. [Google Scholar]
- Sababheh, M.; Djordjević, D.S.; Moradi, H.R. Numerical radius and norm bounds via the Moore-Penrose inverse. Complex Anal. Oper. Theory 2024, 18, 117. [Google Scholar] [CrossRef]
- Bhunia, P.; Kittaneh, F.; Sahoo, S. Improved numerical radius bounds using the Moore-Penrose inverse. Linear Algebra Appl. 2025, 711, 1–16. [Google Scholar] [CrossRef]
- Corach, G.; Maestripieri, A. Weighted generalized inverses, oblique projections, and least-squares problems. Numer. Funct. Anal. Optim. 2005, 26, 659–673. [Google Scholar] [CrossRef]
- Fongi, G.; Gonzalez, M. Moore-Penrose inverse and partial orders on Hilbert space operators. Linear Algebra Appl. 2023, 674, 1–20. [Google Scholar] [CrossRef]
- Toeplitz, O. Das algebraische Analogon zu einem Satze von Fejér. Math. Z. 1918, 2, 187–197. [Google Scholar] [CrossRef]
- Abu-Omar, A.; Kittaneh, F. A generalization of the numerical radius. Linear Algebra Appl. 2019, 569, 323–334. [Google Scholar] [CrossRef]
- Bhunia, P.; Paul, K. Some improvements of numerical radius inequalities of operators and operator matrices. Linear Multilinear Algebra 2022, 70, 1995–2013. [Google Scholar] [CrossRef]
- Zamani, A. Characterization of numerical radius parallelism in C*-algebras. Positivity 2019, 23, 397–411. [Google Scholar] [CrossRef]
- Zamani, A.; Wójcik, P. Another generalization of the numerical radius for Hilbert space operators. Linear Algebra Appl. 2021, 609, 114–128. [Google Scholar] [CrossRef]
- Chandra Rout, N.; Sahoo, S.; Mishra, D. Some A-numerical radius inequalities for semi-Hilbertian space operators. Linear Multilinear Algebra 2020, 69, 980–996. [Google Scholar] [CrossRef]
- Liu, J.; Wu, D.; Chen, A. The upper bounds of the numerical radius on Hilbert C*-modules. Axioms 2025, 14, 199. [Google Scholar] [CrossRef]
- Guesba, M. Some generalizations of A-numerical radius inequalities for semi-Hilbert space operators. Boll. Unione Mat. Ital. 2021, 14, 681–692. [Google Scholar] [CrossRef]
- Davis, C. The shell of a Hilbert space operator. Acta Sci. Math. 1968, 29, 69–86. [Google Scholar]
- Wielandt, H. On eigenvalues of sums of normal matrices. Pacific J. Math. 1955, 5, 633–638. [Google Scholar] [CrossRef]
- Zamani, A.; Moslehian, M.S.; Chien, M.-T.; Nakazato, H. Norm-parallelism and the Davis-Wielandt radius of Hilbert space operators. Linear Multilinear Algebra 2019, 67, 2147–2158. [Google Scholar] [CrossRef]
- Dong, X.; Wu, D. Davis-Wielandt radius inequalities for off-diagonal operator matrices. Linear Multilinear Algebra 2023, 71, 1158–1181. [Google Scholar] [CrossRef]
- Bhunia, P.; Paul, K.; Barik, S. Further refinements of Davis-Wielandt radius inequalities. Oper. Matrices 2023, 17, 767–778. [Google Scholar] [CrossRef]
- Zamani, A.; Shebrawi, K. Some upper bounds for the Davis-Wielandt radius of Hilbert space operators. Mediterr. J. Math. 2020, 17, 1–13. [Google Scholar] [CrossRef]
- Bhunia, P.; Bhanja, A.; Bag, S.; Paul, K. Bounds for the Davis-Wielandt radius of bounded linear operators. Ann. Funct. Anal. 2021, 12, 1–23. [Google Scholar] [CrossRef]
- Bhunia, P.; Bhanja, A.; Paul, K. New inequalities for Davis–Wielandt radius of Hilbert space operators. Bull. Malays. Math. Sci. Soc. 2021, 2, 1–17. [Google Scholar] [CrossRef]
- Alomari, M.W. On the Davis-Wielandt radius inequalities of Hilbert space operators. Linear Multilinear Algebra 2023, 71, 1804–1828. [Google Scholar] [CrossRef]
- Alomari, M.W.; Bakherad, M.; Hajmohamadi, M. A generalization of the Davis-Wielandt radius for operators. Bol. Soc. Mat. Mex. 2024, 30, 1–18. [Google Scholar] [CrossRef]
- Moghaddam, S.F.; Mirmostafaee, A.K.; Janfada, M. Some sharp estimations for Davis-Wielandt radius in B(H). Mediterr. J. Math. 2022, 19, 283. [Google Scholar] [CrossRef]
- Guesba, M.; Barik, S.; Bhunia, P.; Paul, K. A-Davis-Wielandt radius bounds of semi-Hilbertian space operators. Bull. Iran. Math. Soc. 2024, 50, 1–21. [Google Scholar] [CrossRef]
- Kittaneh, F. Notes on some inequalities for Hilbert space operators. Publ. Res. Inst. Math. Sci. 1988, 24, 283–293. [Google Scholar] [CrossRef]
- Khosravi, M.; Drnovsek, R.; Moslehian, M.S. A commutator approach to Buzano’s inequality. Filomat 2012, 26, 827–832. [Google Scholar] [CrossRef]
- Buzano, M.L. Generalizzazione della diseguaglianza di Cauchy-Schwarz. Rend. Sem. Mat. Univ. Politech. Torino. 1974, 31, 405–409. [Google Scholar]
- Aldolat, M.; Kittaneh, F. Upper bounds for the numerical radii of powers of Hilbert space operators. Quaest. Math. 2024, 47, 341–352. [Google Scholar] [CrossRef]
- Li, C.-K.; Poon, Y.-T.; Sze, N.S. Davis-Wielandt shells of operators. Oper. Matrices 2008, 2, 341–355. [Google Scholar] [CrossRef]
- El-Haddad, M.; Kittaneh, F. Numerical radius inequalities for Hilbert space operators. II. Stud. Math. 2007, 182, 133–140. [Google Scholar] [CrossRef]
Corollary 1 | 1.414 | 16.492 | 5.843 |
Corollary 3 | 1.25 | 17 | 5.457 |
Corollary 4 | 1.25 | 20 | 5.744 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, X.; Guo, Y.; Wu, D. New Bounds for the Davis–Wielandt Radius via the Moore–Penrose Inverse of Bounded Linear Operators. Axioms 2025, 14, 439. https://doi.org/10.3390/axioms14060439
Dong X, Guo Y, Wu D. New Bounds for the Davis–Wielandt Radius via the Moore–Penrose Inverse of Bounded Linear Operators. Axioms. 2025; 14(6):439. https://doi.org/10.3390/axioms14060439
Chicago/Turabian StyleDong, Xiaomei, Yuzhen Guo, and Deyu Wu. 2025. "New Bounds for the Davis–Wielandt Radius via the Moore–Penrose Inverse of Bounded Linear Operators" Axioms 14, no. 6: 439. https://doi.org/10.3390/axioms14060439
APA StyleDong, X., Guo, Y., & Wu, D. (2025). New Bounds for the Davis–Wielandt Radius via the Moore–Penrose Inverse of Bounded Linear Operators. Axioms, 14(6), 439. https://doi.org/10.3390/axioms14060439