New Bounds for the Davis–Wielandt Radius via the Moore–Penrose Inverse of Bounded Linear Operators
Abstract
:1. Introduction
2. Main Results
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gustafson, K.E.; Rao, D.K.M. Numerical Range: The Field of Values of Linear Operators and Matrices; Springer: New York, NY, USA, 1997. [Google Scholar]
- Horn, R.A.; Johnson, C.R. Topics in Matrix Analysis; Cambridge University Press: New York, NY, USA, 1991. [Google Scholar]
- Goldberg, M.; Tandmor, E. On the numerical radius and its applications. Linear Algebra Appl. 1982, 42, 263–284. [Google Scholar] [CrossRef]
- Groetsch, C.W. Generalized Inverses of Linear Operators: Representation and Approximation; Marcel Dekker: New York, NY, USA, 1997. [Google Scholar]
- Sababheh, M.; Djordjević, D.S.; Moradi, H.R. Numerical radius and norm bounds via the Moore-Penrose inverse. Complex Anal. Oper. Theory 2024, 18, 117. [Google Scholar] [CrossRef]
- Bhunia, P.; Kittaneh, F.; Sahoo, S. Improved numerical radius bounds using the Moore-Penrose inverse. Linear Algebra Appl. 2025, 711, 1–16. [Google Scholar] [CrossRef]
- Corach, G.; Maestripieri, A. Weighted generalized inverses, oblique projections, and least-squares problems. Numer. Funct. Anal. Optim. 2005, 26, 659–673. [Google Scholar] [CrossRef]
- Fongi, G.; Gonzalez, M. Moore-Penrose inverse and partial orders on Hilbert space operators. Linear Algebra Appl. 2023, 674, 1–20. [Google Scholar] [CrossRef]
- Toeplitz, O. Das algebraische Analogon zu einem Satze von Fejér. Math. Z. 1918, 2, 187–197. [Google Scholar] [CrossRef]
- Abu-Omar, A.; Kittaneh, F. A generalization of the numerical radius. Linear Algebra Appl. 2019, 569, 323–334. [Google Scholar] [CrossRef]
- Bhunia, P.; Paul, K. Some improvements of numerical radius inequalities of operators and operator matrices. Linear Multilinear Algebra 2022, 70, 1995–2013. [Google Scholar] [CrossRef]
- Zamani, A. Characterization of numerical radius parallelism in C*-algebras. Positivity 2019, 23, 397–411. [Google Scholar] [CrossRef]
- Zamani, A.; Wójcik, P. Another generalization of the numerical radius for Hilbert space operators. Linear Algebra Appl. 2021, 609, 114–128. [Google Scholar] [CrossRef]
- Chandra Rout, N.; Sahoo, S.; Mishra, D. Some A-numerical radius inequalities for semi-Hilbertian space operators. Linear Multilinear Algebra 2020, 69, 980–996. [Google Scholar] [CrossRef]
- Liu, J.; Wu, D.; Chen, A. The upper bounds of the numerical radius on Hilbert C*-modules. Axioms 2025, 14, 199. [Google Scholar] [CrossRef]
- Guesba, M. Some generalizations of A-numerical radius inequalities for semi-Hilbert space operators. Boll. Unione Mat. Ital. 2021, 14, 681–692. [Google Scholar] [CrossRef]
- Davis, C. The shell of a Hilbert space operator. Acta Sci. Math. 1968, 29, 69–86. [Google Scholar]
- Wielandt, H. On eigenvalues of sums of normal matrices. Pacific J. Math. 1955, 5, 633–638. [Google Scholar] [CrossRef]
- Zamani, A.; Moslehian, M.S.; Chien, M.-T.; Nakazato, H. Norm-parallelism and the Davis-Wielandt radius of Hilbert space operators. Linear Multilinear Algebra 2019, 67, 2147–2158. [Google Scholar] [CrossRef]
- Dong, X.; Wu, D. Davis-Wielandt radius inequalities for off-diagonal operator matrices. Linear Multilinear Algebra 2023, 71, 1158–1181. [Google Scholar] [CrossRef]
- Bhunia, P.; Paul, K.; Barik, S. Further refinements of Davis-Wielandt radius inequalities. Oper. Matrices 2023, 17, 767–778. [Google Scholar] [CrossRef]
- Zamani, A.; Shebrawi, K. Some upper bounds for the Davis-Wielandt radius of Hilbert space operators. Mediterr. J. Math. 2020, 17, 1–13. [Google Scholar] [CrossRef]
- Bhunia, P.; Bhanja, A.; Bag, S.; Paul, K. Bounds for the Davis-Wielandt radius of bounded linear operators. Ann. Funct. Anal. 2021, 12, 1–23. [Google Scholar] [CrossRef]
- Bhunia, P.; Bhanja, A.; Paul, K. New inequalities for Davis–Wielandt radius of Hilbert space operators. Bull. Malays. Math. Sci. Soc. 2021, 2, 1–17. [Google Scholar] [CrossRef]
- Alomari, M.W. On the Davis-Wielandt radius inequalities of Hilbert space operators. Linear Multilinear Algebra 2023, 71, 1804–1828. [Google Scholar] [CrossRef]
- Alomari, M.W.; Bakherad, M.; Hajmohamadi, M. A generalization of the Davis-Wielandt radius for operators. Bol. Soc. Mat. Mex. 2024, 30, 1–18. [Google Scholar] [CrossRef]
- Moghaddam, S.F.; Mirmostafaee, A.K.; Janfada, M. Some sharp estimations for Davis-Wielandt radius in B(H). Mediterr. J. Math. 2022, 19, 283. [Google Scholar] [CrossRef]
- Guesba, M.; Barik, S.; Bhunia, P.; Paul, K. A-Davis-Wielandt radius bounds of semi-Hilbertian space operators. Bull. Iran. Math. Soc. 2024, 50, 1–21. [Google Scholar] [CrossRef]
- Kittaneh, F. Notes on some inequalities for Hilbert space operators. Publ. Res. Inst. Math. Sci. 1988, 24, 283–293. [Google Scholar] [CrossRef]
- Khosravi, M.; Drnovsek, R.; Moslehian, M.S. A commutator approach to Buzano’s inequality. Filomat 2012, 26, 827–832. [Google Scholar] [CrossRef]
- Buzano, M.L. Generalizzazione della diseguaglianza di Cauchy-Schwarz. Rend. Sem. Mat. Univ. Politech. Torino. 1974, 31, 405–409. [Google Scholar]
- Aldolat, M.; Kittaneh, F. Upper bounds for the numerical radii of powers of Hilbert space operators. Quaest. Math. 2024, 47, 341–352. [Google Scholar] [CrossRef]
- Li, C.-K.; Poon, Y.-T.; Sze, N.S. Davis-Wielandt shells of operators. Oper. Matrices 2008, 2, 341–355. [Google Scholar] [CrossRef]
- El-Haddad, M.; Kittaneh, F. Numerical radius inequalities for Hilbert space operators. II. Stud. Math. 2007, 182, 133–140. [Google Scholar] [CrossRef]
Corollary 1 | 1.414 | 16.492 | 5.843 |
Corollary 3 | 1.25 | 17 | 5.457 |
Corollary 4 | 1.25 | 20 | 5.744 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, X.; Guo, Y.; Wu, D. New Bounds for the Davis–Wielandt Radius via the Moore–Penrose Inverse of Bounded Linear Operators. Axioms 2025, 14, 439. https://doi.org/10.3390/axioms14060439
Dong X, Guo Y, Wu D. New Bounds for the Davis–Wielandt Radius via the Moore–Penrose Inverse of Bounded Linear Operators. Axioms. 2025; 14(6):439. https://doi.org/10.3390/axioms14060439
Chicago/Turabian StyleDong, Xiaomei, Yuzhen Guo, and Deyu Wu. 2025. "New Bounds for the Davis–Wielandt Radius via the Moore–Penrose Inverse of Bounded Linear Operators" Axioms 14, no. 6: 439. https://doi.org/10.3390/axioms14060439
APA StyleDong, X., Guo, Y., & Wu, D. (2025). New Bounds for the Davis–Wielandt Radius via the Moore–Penrose Inverse of Bounded Linear Operators. Axioms, 14(6), 439. https://doi.org/10.3390/axioms14060439