Extensions of Göhde and Kannan Fixed Point Theorems in Strictly Convex Banach Spaces
Abstract
:1. Introduction
2. Preliminaries
- (i)
- for any and is cyclic, that is, ;
- (ii)
- are isometric;
- (iii)
- are affine;
- (iv)
- , where denotes the identity mapping on a nonempty subset M of X.
3. Göhde’s Theorem for Noncyclic Relatively Nonexpansive Maps
4. Noncyclic Kannan Contractions
5. Relatively Kannan Nonexpansive Mappings
6. Conclusions and Future Works
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Brodskii, M.S.; Mil’man, D.P. On the center of a convex set. Dokl. Akad. Nauk. 1948, USSR 59, 837–840. [Google Scholar]
- Khamsi, M.A.; Kirk, W.A. An Introduction to Metric Spaces and Fixed Point Theory, Pure and Applied Mathematics; Wiley-Interscience: New York, NY, USA, 2001. [Google Scholar]
- Zizler, V. On some rotundity and smoothness properties of Banach spaces. Diss. Mat. 1971, 87, 1–33. [Google Scholar]
- Kirk, W.A. A fixed point theorem for mappings which do not increase distances. Amer. Math. Mon. 1965, 72, 1004–1006. [Google Scholar] [CrossRef]
- Göhde, D. Uber Fixpunkte bei stetigen Selbstabbildungen mit kompakten Iterierten. Math. Nachr. 1964, 28, 45–55. (In German) [Google Scholar] [CrossRef]
- Raj, V.S.; Gomathi, S. A best proximity point theorem for relatively nonexpansive mappings in the absence the proximal normal structure property. Fixed Point Theory 2024, 25, 333–338. [Google Scholar]
- Kannan, R. Fixed point theorems in reflexive Banach spaces. Proc. Am. Math. Soc. 1973, 38, 111–118. [Google Scholar] [CrossRef]
- Soardi, P.M. Struttura quasi normale e teoremi di punto unito. Int. J. Math. 1972, 4, 105–114. [Google Scholar]
- Wong, C. On Kannan maps. Proc. Am. Math. Soc. 1975, 47, 105–111. [Google Scholar] [CrossRef]
- Eldred, A.A.; Kirk, W.A.; Veeramani, P. Proximal normal structure and relatively nonexpansive mappings. Stud. Math. 2005, 171, 283–293. [Google Scholar] [CrossRef]
- Kirk, W.A.; Reich, S.; Veeramani, P. Proximinal retracts and best proximity pair theorems. Numer. Funct. Anal. Optim. 2003, 24, 851–862. [Google Scholar] [CrossRef]
- Gabeleh, M. Semi-normal structure and best proximity pair results in convex metric spaces. Banach J. Math. Anal. 2014, 8, 214–228. [Google Scholar] [CrossRef]
- Gabeleh, M. Remarks on the paper “A characterization of weak proximal normal structure and best proximity pairs”. Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat. 2024, 118, 1–9. [Google Scholar] [CrossRef]
- Gabeleh, M. Existence results of some nonlinear minimization problems with application to a system of PDE. Numer. Funct. Anal. Optim. 2024, 45, 552–570. [Google Scholar] [CrossRef]
- Suzuki, T.; Kikkawa, M.; Vetro, C. The existence of best proximity points in metric spaces with the property UC. Nonlinear Anal. 2009, 71, 2918–2926. [Google Scholar] [CrossRef]
- Eldred, A.A.; Veeramani, P. Existence and convergence of best proximity points. J. Math. Anal. Appl. 2006, 323, 1001–1006. [Google Scholar] [CrossRef]
- Gabeleh, M. Proximal weakly contractive and proximal nonexpansive non-self mappings in metric and Banach spaces. J. Optim. Theory Appl. 2013, 158, 615–625. [Google Scholar] [CrossRef]
- Petric, M.A. Best proximity point theorems for weak cyclic Kannan contractions. Filomat 2011, 25, 145–154. [Google Scholar] [CrossRef]
- Lin, S.-Y.T. Set Theory With Applications; Mancorp Pub: Sofia, Bulgaria, 1985. [Google Scholar]
- Antón-Sancho, Á. Spin(8,C)-Higgs Bundles and the Hitchin Integrable System. Mathematics 2024, 12, 3436. [Google Scholar] [CrossRef]
- Antón-Sancho, Á. Fixed points of principal E6-bundles over a compact algebraic curve. Quaest. Math. 2024, 47, 501–513. [Google Scholar] [CrossRef]
- Antón-Sancho, Á. Higgs pairs with structure group over a smooth projective connected curve. Results Math. 2025, 80, 42. [Google Scholar] [CrossRef]
- Gabeleh, M. Pointwise cyclic relatively nonexpansive mappings in Busemann convex spaces. J. Nonlinear Convex Anal. 2019, 20, 2027–2040. [Google Scholar]
- Gabeleh, M.; Patle, P.R. Best proximity point (pair) results via MNC in Busemann convex metric spaces. Appl. Gen. Topol. 2022, 23, 405–424. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gabeleh, M.; Aphane, M. Extensions of Göhde and Kannan Fixed Point Theorems in Strictly Convex Banach Spaces. Axioms 2025, 14, 400. https://doi.org/10.3390/axioms14060400
Gabeleh M, Aphane M. Extensions of Göhde and Kannan Fixed Point Theorems in Strictly Convex Banach Spaces. Axioms. 2025; 14(6):400. https://doi.org/10.3390/axioms14060400
Chicago/Turabian StyleGabeleh, Moosa, and Maggie Aphane. 2025. "Extensions of Göhde and Kannan Fixed Point Theorems in Strictly Convex Banach Spaces" Axioms 14, no. 6: 400. https://doi.org/10.3390/axioms14060400
APA StyleGabeleh, M., & Aphane, M. (2025). Extensions of Göhde and Kannan Fixed Point Theorems in Strictly Convex Banach Spaces. Axioms, 14(6), 400. https://doi.org/10.3390/axioms14060400