On Certain Bounds of Harmonic Univalent Functions
Abstract
:1. Introduction
- (i)
- ψ is univalent on ;
- (ii)
- ;
- (iii)
- is normalized by (3).
2. Preliminaries
3. Main Results
- (i)
- If then
- (ii)
- If then
- (iii)
- If then
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lewy, H. On the non vanishing of the Jacobian in certain one-to-one mappings. Bull. Am. Math. Soc. 1936, 42, 689–692. [Google Scholar] [CrossRef]
- Duren, P. Harmonic Mappings in the Plane; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
- Aleman, A.; Constantin, A. Harmonic maps and ideal fluid flows. Arch. Ration. Mech. Anal. 2012, 204, 479–513. [Google Scholar] [CrossRef]
- Uçar, M.; Uçar, H. A Study on Harmonic Functions. C. R. Acad. Bulg. Sci. 2024, 77, 1271–1276. [Google Scholar] [CrossRef]
- Mateljevic, M.; Mutavdžic, N.; Örnek, B.N. Note on some classes of holomorphic functions related to Jack’s and Schwarz’s lemma. Appl. Anal. Discrete Math. 2022, 16, 111–131. [Google Scholar] [CrossRef]
- Jiang, Y.; Tan, S. A sufficient condition for differential subordination of harmonic mappings. J. Math. Anal. Appl. 2025, 543, 128881. [Google Scholar] [CrossRef]
- Mostafa, A.O.; Aouf, M.K. A class of harmonic univalent functions associated with modified q-Cătaș operator. Stud. Univ. Babeș-Bolyai Math. 2024, 69, 735–748. [Google Scholar] [CrossRef]
- Priya, K.D.; Thilagavathi, K. Geometric Properties of Harmonic Function Affiliated with Fractional Operator. Int. J. Anal. Appl. 2024, 22, 133. [Google Scholar] [CrossRef]
- Yalçın, S.; Bayram, H.; Oros, G.I. Some Properties and Graphical Applications of a New Subclass of Harmonic Functions Defined by a Differential Inequality. Mathematics 2024, 12, 2338. [Google Scholar] [CrossRef]
- Clunie, J.; Shiel-Small, T. Harmonic univalent functions. Ann. Acad. Sci. Fenn. Ser. A I Math. 1984, 9, 3–25. [Google Scholar] [CrossRef]
- Avci, Y.; Zlotkiewicz, E. On harmonic univalent mappings. Ann. Univ. Mariae Curie Sklodowska Sect. A 1990, 44, 1–7. [Google Scholar]
- Silverman, H. Harmonic univalent functions with negative coefficients. J. Math. Anal. Appl. 1998, 220, 283–289. [Google Scholar] [CrossRef]
- Silverman, H.; Silvia, E.M. Subclasses of harmonic univalent functions. N. Z. J. Math. 1999, 28, 275–284. [Google Scholar]
- Jahangiri, J.M. Harmonic functions starlike in the unit disk. J. Math. Anal. Appl. 1999, 235, 470–477. [Google Scholar] [CrossRef]
- Frasin, B.A. Comprehensive family of harmonic univalent functions. SUT J. Math. 2006, 42, 145–155. [Google Scholar] [CrossRef]
- Ahuja, O.P.; Jahangiri, J.M.; Silverman, H. Convolutions for special classes of harmonic univalent functions. Appl. Math. Lett. 2003, 6, 905–909. [Google Scholar] [CrossRef]
- Jahangiri, J.; Kim, Y.C.; Srivastava, H.M. Construction of a certain class of harmonic close-to-convex functions associated with the Alexander integral transform. Integral Transform. Spec. Funct. 2003, 14, 237–242. [Google Scholar] [CrossRef]
- Yalçın, S. A new class of Sălăgean-type Harmonic univalent functions. Appl. Math. Lett. 2005, 18, 191–198. [Google Scholar] [CrossRef]
- Caglar, M.; Cotîrlă, L.-I.; Cătaș, A. A new family of harmonic functions defined by an integral operator. Acta Univ. Apulensis 2022, 72, 1–13. [Google Scholar]
- Ahuja, O.P. Planar harmonic convolution operators generated by hypergeometric functions. Integral Transform. Spec. Funct. 2007, 18, 165–177. [Google Scholar] [CrossRef]
- Ahuja, O.P. Connections between various subclasses of planar harmonic mappings involving hypergeometric functions. Appl. Math. Comput. 2008, 198, 305–316. [Google Scholar] [CrossRef]
- Jahangiri, J.M. Harmonic univalent functions defined by q-calculus operators. Int. J. Math. Anal. Appl. 2018, 5, 39–43. [Google Scholar]
- Jahangiri, J.M.; Murugusundaramoorthy, G.; Vijaya, K. Starlikeness of Rucheweyh type harmonic univalent functions. J. Indian Acad. Math. 2004, 26, 191–200. [Google Scholar]
- Zhang, C.; Khan, S.; Hussain, A.; Khan, N.; Hussain, S.; Khan, N. Applications of q-difference symmetric operator in harmonic univalent functions. AIMS Math. 2021, 7, 667–680. [Google Scholar] [CrossRef]
- Dziok, J. Classes of harmonic functions associated with Ruscheweyh derivatives. RACSAM Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. 2019, 113, 1315–1329. [Google Scholar] [CrossRef]
- El-Ashwah, R.M.; Kota, W.Y. Connections between various subclasses of uniformly harmonic starlike mappings and Poisson distribution series. Montes Taurus J. Pure Appl. Math. 2021, 3, 297–304. [Google Scholar]
- Frasin, B.A.; Oluwayemi, M.O.; Porwal, S.; Murugusundaramoorthy, G. Harmonic functions associated with Pascal distribution series. Sci. Afr. 2023, 21, e01876. [Google Scholar] [CrossRef]
- Oros, G.I.; Yalçın, S.; Bayram, H. Some properties of certain multivalent harmonic functions. Mathematics 2023, 11, 2416. [Google Scholar] [CrossRef]
- Polatoğlu, Y.; Özkan, H.E.; Yavuz Duman, E. Application of the Subordination Principle to the Harmonic Mappings Convex in One Direction with Shear Construction Method. J. Inequal. Appl. 2010, 2010, 896087. [Google Scholar] [CrossRef]
- Sharma, P.; Mishra, O. On the rotation of a linear combination of harmonic univalent functions. GANITA 2018, 68, 53–61. [Google Scholar]
- Mateljevic, M. The Lower Bound for the Modulus of the Derivatives and Jacobian of Harmonic Injective Mappings. Filomat 2015, 29, 221–244. [Google Scholar] [CrossRef]
- Mateljevic, M.; Mutavdzic, N. The Boundary Schwarz Lemma for Harmonic and Pluriharmonic Mappings and Some Generalizations. Bull. Malays. Math. Sci. Soc. 2022, 45, 3177–3195. [Google Scholar] [CrossRef]
- Hengartner, W.; Schober, G. On Schlicht mappings to domains convex in one direction. Comment. Math. Helv. 1970, 45, 303–314. [Google Scholar] [CrossRef]
- Royster, W.C.; Ziegler, M. Univalent functions convex in one direction. Publ. Math. Debr. 1976, 23, 339–345. [Google Scholar] [CrossRef]
- Pommenrenke, C. On starlike and close-to-convex functions. Proc. Lond. Math. Soc. 1963, 13, 290–304. [Google Scholar] [CrossRef]
- Schaubroeck, L.E. Growth, distortion and coefficient bound for plane harmonic mappings convex in one direction. Rocky Mt. J. Math. 2001, 31, 625–639. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sakar, F.M.; Mishra, O.; Oros, G.I.; Frasin, B.A. On Certain Bounds of Harmonic Univalent Functions. Axioms 2025, 14, 393. https://doi.org/10.3390/axioms14060393
Sakar FM, Mishra O, Oros GI, Frasin BA. On Certain Bounds of Harmonic Univalent Functions. Axioms. 2025; 14(6):393. https://doi.org/10.3390/axioms14060393
Chicago/Turabian StyleSakar, Fethiye Müge, Omendra Mishra, Georgia Irina Oros, and Basem Aref Frasin. 2025. "On Certain Bounds of Harmonic Univalent Functions" Axioms 14, no. 6: 393. https://doi.org/10.3390/axioms14060393
APA StyleSakar, F. M., Mishra, O., Oros, G. I., & Frasin, B. A. (2025). On Certain Bounds of Harmonic Univalent Functions. Axioms, 14(6), 393. https://doi.org/10.3390/axioms14060393