Eigenvalues for Laplacian Operator on Submanifolds in Locally Conformal Kaehler Space Forms
Abstract
1. Introduction and Motivations
2. Preliminaries
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Babuska, I.; Osborn, J. Handbook of Numerical Analysis: Finite Element Methods (Part 1); Elsevier: Amsterdam, The Netherlands, 1991; Volume 2, pp. 641–787. [Google Scholar]
- Lindqvist, P.; Peter, A. A nonlinear eigenvalue problem, Topics in mathematical analysis. Anal. Appl. Comput. 2008, 3, 175–203. [Google Scholar]
- Veron, L. Some existence and uniqueness results for solution of some quasilinear elliptic equations on compact Riemannian manifolds. In Colloquia Mathematica Societatis János Bolyai; Elsevier: Amsterdam, The Netherlands, 1991; pp. 317–352. [Google Scholar]
- Chavel, I. Eigenvalues in Riemannian Geometry; Academic Press: New York, NY, USA, 1984. [Google Scholar]
- Grigoryan, A.; Yau, S.T. Surveys in Differential Geometry: Eigenvalues of Laplacians and Other Geometric Operators; International Press of Boston: Boston, MA, USA, 2004; Volume 9. [Google Scholar]
- Mao, J.; Wu, C.X.; Du, F. Eigenvalue Problems on Manifolds; Science Press: Beijing, China, 2017. [Google Scholar]
- Perelman, G. The entropy formula for the Ricci flow and its geometric applications. arXiv 2002, arXiv:math/0211159. [Google Scholar]
- Cao, X.D. Eigenvalues of (−Δ+) on manifolds with nonnegative curvature operator. Math. Ann. 2007, 337, 435–441. [Google Scholar] [CrossRef]
- Huisken, G.; Ilmanen, T. The inverse mean curvature flow and the Riemannian Penrose inequality. J. Differ. Geom. 2001, 59, 353–437. [Google Scholar] [CrossRef]
- Ritore, M.; Sinestrari, C. Mean Curvature Flow, and Isoperimetric Inequalities; Birkhauser: Basel, Switzerland, 2010. [Google Scholar]
- Wu, J. The first eigenvalue of the Laplace operator under the Yamabe flow. Chin. Ann. Math. Ser. A 2009, 30, 631–638. [Google Scholar]
- Zhao, L. The first eigenvalue of the Laplace operator under Yamabe flow. Math. Appl. 2011, 24, 274–278. [Google Scholar]
- Wang, E.M.; Zheng, Y. Regularity of the first eigenvalue of the p-Laplacian and Yamabe invariant along geometric flows. Pac. J. Math. 2011, 254, 239–255. [Google Scholar] [CrossRef]
- Guo, H.X.; Philipowski, R.; Thalmaier, A. Entropy and lowest eigenvalue on evolving manifolds. Pac. J. Math. 2013, 264, 61–81. [Google Scholar] [CrossRef]
- Ali, A.; Alkhaldi, A.H.; Laurian-Ioan, P.; Ali, R. Eigenvalue inequalities for the p-Laplacian operator on C-totally real submanifolds in Sasakian space forms. Appl. Anal. 2022, 101, 702–713. [Google Scholar] [CrossRef]
- Ali, A.; Lee, J.W.; Alkhaldi, A.H. The first eigenvalue for the p-Laplacian on Lagrangian submanifolds in complex space forms. Int. J. Math. 2022, 33, 2250016. [Google Scholar] [CrossRef]
- Li, Y.L.; Ali, A.; Mofarreh, F.; Abolarinwa, A.; Ali, R. Some eigenvalues estimate for the ϕ-Laplace operator on slant submanifolds of Sasakian space forms. J. Funct. Spaces 2021, 2021, 1–10. [Google Scholar]
- Li, Y.L.; Mofarreh, F.; Agrawal, R.P.; Ali, A. Reilly-type inequality for the Φ-Laplace operator on semi-slant submanifolds of Sasakian space forms. J. Inequal. Appl. 2022, 2022, 102. [Google Scholar] [CrossRef]
- Alluhaibi, N.; Ali, A. The eigenvalue estimates of p-Laplacian of totally real submanifolds in generalized complex space forms. Ric. Mat. 2024, 73, 1307–1321. [Google Scholar] [CrossRef]
- Li, Y.L.; Ali, A.; Mofarreh, F.; Abolarinwa, A.; Alshehri, N.; Ali, A. Bounds for eigenvalues of q-Laplacian on contact submanifolds of Sasakian space forms. Mathematics 2023, 11, 4717. [Google Scholar] [CrossRef]
- Li, Y.; Siddesha, M.S.; Kumara, H.A.; Praveena, M.M. Characterization of Bach and Cotton Tensors on a Class of Lorentzian Manifolds. Mathematics 2024, 12, 3130. [Google Scholar] [CrossRef]
- Li, Y.; Bhattacharyya, S.; Azami, S.; Hui, S. Li-Yau type estimation of a semilinear parabolic system along geometric flow. J. Inequal. Appl. 2024, 131, 2024. [Google Scholar] [CrossRef]
- Li, Y.; Mallick, A.K.; Bhattacharyya, A.; Stankovic, M.S. A Conformal η-Ricci Soliton on a Four-Dimensional Lorentzian Para-Sasakian Manifold. Axioms 2024, 13, 753. [Google Scholar] [CrossRef]
- El Chami, F.; Habib, G.; Makhoul, O. Eigenvalue estimate for the basic Laplacian on manifolds with foliated boundary. Ric. Di Mat. 2018, 67, 765–784. [Google Scholar] [CrossRef]
- Sorin, D.; Liviu, O. Locally Conformal Kähler Geometry; Progress in Mathematics; Birkhäuser Inc.: Boston, MA, USA, 1998; Volume 155, pp. xiv+327. ISBN 0-8176-4020-7. [Google Scholar]
- Kashiwada, T. Some properties of locally conformally Kaehler manifolds. Hokkaido J. Math. 1979, 8, 191–198. [Google Scholar] [CrossRef]
- Vaisman, I. On locally and globally conformal Kähler manifolds. Trans. Am. Math. Soc. 1980, 262, 533–542. [Google Scholar]
- Koji, M.; Ion, M. An obstruction to the existence of minimal totally real immersions in a locally conformal Kähler space form. Bull. Yamagata Univ. Nat. Sci. 1997, 14, 83–87. [Google Scholar]
- Chen, B.-Y.; Ogiue, K. On totally real submanifolds. Trans. Am. Math. Soc. 1974, 193, 257–266. [Google Scholar] [CrossRef]
- Cai, K.R. Toplogy of a certain closed submanifold in a Euclidean space. Chin. Ann. Math. 1987, 8A, 234–241. [Google Scholar]
- Leung, P.F. Minimal submanifolds in a sphere. Math. Z. 1983, 183, 75–86. [Google Scholar] [CrossRef]
- Zhao, G.S. An intrinsic rigidity theorem for totally real minimal submanifolds in a complex projective space. J. Sichuan Univ. 1992, 29, 174–178. [Google Scholar]
- Huafei, S. The first eigenvalue of the totally real submanifolds with constant mean curvature in the complex space form. Mem. Fac. Sci. Kyushu Univ. Ser. Math. 1993, 47, 411–419. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alhouiti, N.M.; Alkhaldi, A.H.; Ali, A.; Mofarreh, F.; Laurian-Ioan, P. Eigenvalues for Laplacian Operator on Submanifolds in Locally Conformal Kaehler Space Forms. Axioms 2025, 14, 356. https://doi.org/10.3390/axioms14050356
Alhouiti NM, Alkhaldi AH, Ali A, Mofarreh F, Laurian-Ioan P. Eigenvalues for Laplacian Operator on Submanifolds in Locally Conformal Kaehler Space Forms. Axioms. 2025; 14(5):356. https://doi.org/10.3390/axioms14050356
Chicago/Turabian StyleAlhouiti, Noura M., Ali H. Alkhaldi, Akram Ali, Fatemah Mofarreh, and Piscoran Laurian-Ioan. 2025. "Eigenvalues for Laplacian Operator on Submanifolds in Locally Conformal Kaehler Space Forms" Axioms 14, no. 5: 356. https://doi.org/10.3390/axioms14050356
APA StyleAlhouiti, N. M., Alkhaldi, A. H., Ali, A., Mofarreh, F., & Laurian-Ioan, P. (2025). Eigenvalues for Laplacian Operator on Submanifolds in Locally Conformal Kaehler Space Forms. Axioms, 14(5), 356. https://doi.org/10.3390/axioms14050356