Eigenvalues for Laplacian Operator on Submanifolds in Locally Conformal Kaehler Space Forms
Abstract
:1. Introduction and Motivations
2. Preliminaries
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Babuska, I.; Osborn, J. Handbook of Numerical Analysis: Finite Element Methods (Part 1); Elsevier: Amsterdam, The Netherlands, 1991; Volume 2, pp. 641–787. [Google Scholar]
- Lindqvist, P.; Peter, A. A nonlinear eigenvalue problem, Topics in mathematical analysis. Anal. Appl. Comput. 2008, 3, 175–203. [Google Scholar]
- Veron, L. Some existence and uniqueness results for solution of some quasilinear elliptic equations on compact Riemannian manifolds. In Colloquia Mathematica Societatis János Bolyai; Elsevier: Amsterdam, The Netherlands, 1991; pp. 317–352. [Google Scholar]
- Chavel, I. Eigenvalues in Riemannian Geometry; Academic Press: New York, NY, USA, 1984. [Google Scholar]
- Grigoryan, A.; Yau, S.T. Surveys in Differential Geometry: Eigenvalues of Laplacians and Other Geometric Operators; International Press of Boston: Boston, MA, USA, 2004; Volume 9. [Google Scholar]
- Mao, J.; Wu, C.X.; Du, F. Eigenvalue Problems on Manifolds; Science Press: Beijing, China, 2017. [Google Scholar]
- Perelman, G. The entropy formula for the Ricci flow and its geometric applications. arXiv 2002, arXiv:math/0211159. [Google Scholar]
- Cao, X.D. Eigenvalues of (−Δ+) on manifolds with nonnegative curvature operator. Math. Ann. 2007, 337, 435–441. [Google Scholar] [CrossRef]
- Huisken, G.; Ilmanen, T. The inverse mean curvature flow and the Riemannian Penrose inequality. J. Differ. Geom. 2001, 59, 353–437. [Google Scholar] [CrossRef]
- Ritore, M.; Sinestrari, C. Mean Curvature Flow, and Isoperimetric Inequalities; Birkhauser: Basel, Switzerland, 2010. [Google Scholar]
- Wu, J. The first eigenvalue of the Laplace operator under the Yamabe flow. Chin. Ann. Math. Ser. A 2009, 30, 631–638. [Google Scholar]
- Zhao, L. The first eigenvalue of the Laplace operator under Yamabe flow. Math. Appl. 2011, 24, 274–278. [Google Scholar]
- Wang, E.M.; Zheng, Y. Regularity of the first eigenvalue of the p-Laplacian and Yamabe invariant along geometric flows. Pac. J. Math. 2011, 254, 239–255. [Google Scholar] [CrossRef]
- Guo, H.X.; Philipowski, R.; Thalmaier, A. Entropy and lowest eigenvalue on evolving manifolds. Pac. J. Math. 2013, 264, 61–81. [Google Scholar] [CrossRef]
- Ali, A.; Alkhaldi, A.H.; Laurian-Ioan, P.; Ali, R. Eigenvalue inequalities for the p-Laplacian operator on C-totally real submanifolds in Sasakian space forms. Appl. Anal. 2022, 101, 702–713. [Google Scholar] [CrossRef]
- Ali, A.; Lee, J.W.; Alkhaldi, A.H. The first eigenvalue for the p-Laplacian on Lagrangian submanifolds in complex space forms. Int. J. Math. 2022, 33, 2250016. [Google Scholar] [CrossRef]
- Li, Y.L.; Ali, A.; Mofarreh, F.; Abolarinwa, A.; Ali, R. Some eigenvalues estimate for the ϕ-Laplace operator on slant submanifolds of Sasakian space forms. J. Funct. Spaces 2021, 2021, 1–10. [Google Scholar]
- Li, Y.L.; Mofarreh, F.; Agrawal, R.P.; Ali, A. Reilly-type inequality for the Φ-Laplace operator on semi-slant submanifolds of Sasakian space forms. J. Inequal. Appl. 2022, 2022, 102. [Google Scholar] [CrossRef]
- Alluhaibi, N.; Ali, A. The eigenvalue estimates of p-Laplacian of totally real submanifolds in generalized complex space forms. Ric. Mat. 2024, 73, 1307–1321. [Google Scholar] [CrossRef]
- Li, Y.L.; Ali, A.; Mofarreh, F.; Abolarinwa, A.; Alshehri, N.; Ali, A. Bounds for eigenvalues of q-Laplacian on contact submanifolds of Sasakian space forms. Mathematics 2023, 11, 4717. [Google Scholar] [CrossRef]
- Li, Y.; Siddesha, M.S.; Kumara, H.A.; Praveena, M.M. Characterization of Bach and Cotton Tensors on a Class of Lorentzian Manifolds. Mathematics 2024, 12, 3130. [Google Scholar] [CrossRef]
- Li, Y.; Bhattacharyya, S.; Azami, S.; Hui, S. Li-Yau type estimation of a semilinear parabolic system along geometric flow. J. Inequal. Appl. 2024, 131, 2024. [Google Scholar] [CrossRef]
- Li, Y.; Mallick, A.K.; Bhattacharyya, A.; Stankovic, M.S. A Conformal η-Ricci Soliton on a Four-Dimensional Lorentzian Para-Sasakian Manifold. Axioms 2024, 13, 753. [Google Scholar] [CrossRef]
- El Chami, F.; Habib, G.; Makhoul, O. Eigenvalue estimate for the basic Laplacian on manifolds with foliated boundary. Ric. Di Mat. 2018, 67, 765–784. [Google Scholar] [CrossRef]
- Sorin, D.; Liviu, O. Locally Conformal Kähler Geometry; Progress in Mathematics; Birkhäuser Inc.: Boston, MA, USA, 1998; Volume 155, pp. xiv+327. ISBN 0-8176-4020-7. [Google Scholar]
- Kashiwada, T. Some properties of locally conformally Kaehler manifolds. Hokkaido J. Math. 1979, 8, 191–198. [Google Scholar] [CrossRef]
- Vaisman, I. On locally and globally conformal Kähler manifolds. Trans. Am. Math. Soc. 1980, 262, 533–542. [Google Scholar]
- Koji, M.; Ion, M. An obstruction to the existence of minimal totally real immersions in a locally conformal Kähler space form. Bull. Yamagata Univ. Nat. Sci. 1997, 14, 83–87. [Google Scholar]
- Chen, B.-Y.; Ogiue, K. On totally real submanifolds. Trans. Am. Math. Soc. 1974, 193, 257–266. [Google Scholar] [CrossRef]
- Cai, K.R. Toplogy of a certain closed submanifold in a Euclidean space. Chin. Ann. Math. 1987, 8A, 234–241. [Google Scholar]
- Leung, P.F. Minimal submanifolds in a sphere. Math. Z. 1983, 183, 75–86. [Google Scholar] [CrossRef]
- Zhao, G.S. An intrinsic rigidity theorem for totally real minimal submanifolds in a complex projective space. J. Sichuan Univ. 1992, 29, 174–178. [Google Scholar]
- Huafei, S. The first eigenvalue of the totally real submanifolds with constant mean curvature in the complex space form. Mem. Fac. Sci. Kyushu Univ. Ser. Math. 1993, 47, 411–419. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alhouiti, N.M.; Alkhaldi, A.H.; Ali, A.; Mofarreh, F.; Laurian-Ioan, P. Eigenvalues for Laplacian Operator on Submanifolds in Locally Conformal Kaehler Space Forms. Axioms 2025, 14, 356. https://doi.org/10.3390/axioms14050356
Alhouiti NM, Alkhaldi AH, Ali A, Mofarreh F, Laurian-Ioan P. Eigenvalues for Laplacian Operator on Submanifolds in Locally Conformal Kaehler Space Forms. Axioms. 2025; 14(5):356. https://doi.org/10.3390/axioms14050356
Chicago/Turabian StyleAlhouiti, Noura M., Ali H. Alkhaldi, Akram Ali, Fatemah Mofarreh, and Piscoran Laurian-Ioan. 2025. "Eigenvalues for Laplacian Operator on Submanifolds in Locally Conformal Kaehler Space Forms" Axioms 14, no. 5: 356. https://doi.org/10.3390/axioms14050356
APA StyleAlhouiti, N. M., Alkhaldi, A. H., Ali, A., Mofarreh, F., & Laurian-Ioan, P. (2025). Eigenvalues for Laplacian Operator on Submanifolds in Locally Conformal Kaehler Space Forms. Axioms, 14(5), 356. https://doi.org/10.3390/axioms14050356