A Partitioning-Based Approach to Variable Selection in WLW Model for Multivariate Survival Data
Abstract
:1. Introduction
2. Notation and Assumptions
- a.s. for , and some constant
- is a continuous function of , and there exist constants and such that
- There exists a neighborhood of such that, for and ,
- (k = 1, …, K; d = 0, 1, 2) is a continuous function of uniformly in and is bounded on , , is a constant, , , and
- is a positive definite matrix on ,
- For all sufficiently large n, there exists . We use to denote the partition index for partition , is an increasing positive sequence, and there exists a constant such that
- Let and . Let
- Assume that the penalty function satisfies
3. Main Results
3.1. Construction of Estimators
3.2. Asymptotic and Oracle Properties of the Proposed Estimator
- 1.
- (Sparsity);
- 2.
- (Asymptotic normality)
4. Implementation
4.1. Solution of Penalized Partition-Estimating Equation
4.2. Abnormal Condition Handling Within Zero Neighborhood
Algorithm 1 Abnormal condition handling within zero neighborhood |
|
4.3. Tuning Parameter Selection
5. Simulation Study
5.1. Different Numbers of Partitions
5.2. Different Correlations Between Various Events in Multivariate Survival Data
6. The Colon Cancer Study
7. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. Proofs
References
- Liang, K.Y.; Self, S.G.; Chang, Y.C. Modelling marginal hazards in multivariate failure time data. J. R. Stat. Soc. Ser. B Stat. Methodol. 1993, 55, 441–453. [Google Scholar] [CrossRef]
- Lin, D.Y. Cox regression analysis of multivariate failure time data: The marginal approach. Stat. Med. 1994, 13, 2233–2247. [Google Scholar] [CrossRef] [PubMed]
- Spiekerman, C.F.; Lin, D.Y. Marginal regression models for multivariate failure time data. J. Am. Stat. Assoc. 1998, 93, 1164–1175. [Google Scholar] [CrossRef]
- Wei, L.J.; Lin, D.Y.; Weissfeld, L. Regression analysis of multivariate incomplete failure time data by modeling marginal distributions. J. Am. Stat. Assoc. 1989, 84, 1065–1073. [Google Scholar] [CrossRef]
- Cox, D.R. Regression models and life-tables. J. R. Stat. Soc. Ser. B Methodol. 1972, 34, 187–202. [Google Scholar] [CrossRef]
- Cox, D.R. Partial likelihood. Biometrika 1975, 62, 269–276. [Google Scholar] [CrossRef]
- Cui, W.Q.; Ying, Z.L.; Zhao, L.C. A simple construction of optimal estimation in multivariate marginal Cox regression. Sci. China Math. 2012, 55, 1827–1857. [Google Scholar] [CrossRef]
- Tibshirani, R. The lasso method for variable selection in the Cox model. Stat. Med. 1997, 16, 385–395. [Google Scholar] [CrossRef]
- Zou, H. The adaptive lasso and its oracle properties. J. Am. Stat. Assoc. 2006, 101, 1418–1429. [Google Scholar] [CrossRef]
- Zhang, H.H.; Lu, W. Adaptive Lasso for Cox’s proportional hazards model. Biometrika 2007, 94, 691–703. [Google Scholar] [CrossRef]
- Zhang, C.H. Nearly unbiased variable selection under minimax concave penalty. Ann. Statist. 2010, 38, 894–942. [Google Scholar] [CrossRef] [PubMed]
- Cai, J.W.; Fan, J.Q.; Li, R.Z.; Zhou, H.B. Variable selection for multivariate failure time data. Biometrika 2005, 92, 303–316. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.C.; Zhang, R.Q.; Zhao, W.H.; Lv, Y.Z. Variable selection in semiparametric hazard regression for multivariate survival data. J. Multivar. Anal. 2015, 142, 26–40. [Google Scholar] [CrossRef]
- Sun, L.; Li, S.; Wang, L.; Song, X.; Sui, X. Simultaneous variable selection in regression analysis of multivariate interval-censored data. Biometrics 2022, 78, 1402–1413. [Google Scholar] [CrossRef]
- Fan, J.Q.; Li, R.Z. Variable Selection via Penalized Likelihood; Department of Statistics, UCLA: Los Angeles, CA, USA, 1999. [Google Scholar]
- Fan, J.Q.; Li, R.Z. Variable selection for Cox’s proportional hazards model and frailty model. Ann. Stat. 2002, 30, 74–99. [Google Scholar] [CrossRef]
- Andersen, P.K.; Gill, R.D. Cox’s regression model for counting processes: A large sample study. Ann. Stat. 1982, 10, 1100–1120. [Google Scholar] [CrossRef]
- Cai, J.W. Hypothesis testing of hazard ratio parameters in marginal models for multivariate failure time data. Lifetime Data Anal. 1999, 5, 39–53. [Google Scholar] [CrossRef]
- Cui, W.Q. Analysis of Multivariate Survival Data by Marginal Proportional Hazards Regression Models. Ph.D. Thesis, University of Science and Technology of China, Hefei, China, 2004. (In Chinese). [Google Scholar]
- Fan, J.Q.; Li, R.Z. New estimation and model selection procedures for semiparametric modeling in longitudinal data analysis. J. Am. Stat. Assoc. 2004, 99, 710–723. [Google Scholar] [CrossRef]
- Fan, J.Q.; Li, R.Z. Variable selection via nonconcave penalized likelihood and its oracle properties. J. Am. Stat. Assoc. 2001, 96, 1348–1360. [Google Scholar] [CrossRef]
- Cai, K. Bi-level Variable Selection and Dimension-reduction Methods in Complex Lifetime Data Analytics. Ph.D. Thesis, University of Calgary, Calgary, AB, Canada, 2019. [Google Scholar]
- Raftery, A.E. A continuous multivariate exponential distribution. Commun. Stat. Theory Methods 1984, 13, 947–965. [Google Scholar] [CrossRef]
- Raftery, A.E. Some properties of a new continuous bivariate exponential distribution. Stat. Decis. Suppl. Issue 1985, 2, 53–58. [Google Scholar]
- Moertel, C.G.; Fleming, T.R.; Macdonald, J.S.; Haller, D.G.; Laurie, J.A.; Goodman, P.J.; Ungerleider, J.S.; Emerson, W.A.; Tormey, D.C.; Glick, J.H.; et al. Levamisole and fluorouracil for adjuvant therapy of resected colon carcinoma. N. Engl. J. Med. 1990, 322, 352–358. [Google Scholar] [CrossRef] [PubMed]
- Moertel, C.G.; Fleming, T.R.; Macdonald, J.S.; Haller, D.G.; Laurie, J.A.; Tangen, C.M.; Ungerleider, J.S.; Emerson, W.A.; Tormey, D.C.; Glick, J.H.; et al. Fluorouracil plus levamisole as effective adjuvant therapy after resection of stage III colon carcinoma: A final report. Ann. Intern. Med. 1995, 122, 321–326. [Google Scholar] [CrossRef] [PubMed]
Method | q | RME | Number of Zeros | RME | Number of Zeros | ||
---|---|---|---|---|---|---|---|
C | IC | C | IC | ||||
c = 1 | c = 5 | ||||||
n = 200 | |||||||
LASSO | 0.473 | 10.458 | 0.036 | 0.531 | 10.513 | 0.006 | |
SCAD | 0.98 | 0.677 | 10.703 | 0.024 | 0.745 | 10.783 | 0.004 |
PPEE | 0.733 | 10.712 | 0.024 | 0.801 | 10.785 | 0.004 | |
LASSO | 0.469 | 10.471 | 0.030 | 0.518 | 10.543 | 0.005 | |
SCAD | 0.8 | 0.691 | 10.710 | 0.030 | 0.753 | 10.770 | 0.006 |
PPEE | 0.703 | 10.705 | 0.036 | 0.783 | 10.776 | 0.004 | |
LASSO | 0.479 | 10.443 | 0.036 | 0.520 | 10.412 | 0.004 | |
SCAD | 0.25 | 0.682 | 10.702 | 0.026 | 0.747 | 10.773 | 0.002 |
PPEE | 0.691 | 10.719 | 0.024 | 0.756 | 10.775 | 0.002 | |
n = 1000 | |||||||
LASSO | 0.583 | 10.498 | 0.000 | 0.612 | 10.532 | 0.000 | |
SCAD | 0.98 | 0.752 | 10.811 | 0.000 | 0.796 | 10.848 | 0.000 |
PPEE | 0.813 | 10.819 | 0.000 | 0.857 | 10.855 | 0.000 | |
LASSO | 0.590 | 10.473 | 0.000 | 0.593 | 10.528 | 0.000 | |
SCAD | 0.8 | 0.743 | 10.802 | 0.000 | 0.790 | 10.842 | 0.000 |
PPEE | 0.792 | 10.811 | 0.000 | 0.824 | 10.847 | 0.000 | |
LASSO | 0.591 | 10.482 | 0.000 | 0.588 | 10.541 | 0.000 | |
SCAD | 0.25 | 0.755 | 10.807 | 0.000 | 0.781 | 10.837 | 0.000 |
PPEE | 0.761 | 10.811 | 0.000 | 0.792 | 10.841 | 0.000 |
Effect | UNM | LASSO | SCAD | PPEE |
---|---|---|---|---|
Recurrence | ||||
Lev | −0.026 (0.111) | 0.000 | 0.000 | 0.000 |
Lev + 5FU | −0.499 (0.122) | −0.441 (0.108) | −0.416 (0.108) | −0.428 (0.107) |
Sex | −0.138 (0.096) | 0.000 | 0.000 | 0.000 |
Age | −0.003 (0.004) | 0.000 | 0.000 | 0.000 |
Obstruct | 0.194 (0.119) | 0.061 (0.095) | 0.050 (0.134) | 0.048 (0.103) |
Perfor | 0.211 (0.257) | 0.000 | 0.000 | 0.000 |
Adhere | 0.161 (0.130) | 0.028 (0.137) | 0.028 (0.136) | 0.000 |
Nodes | 0.038 (0.015) | 0.037 (0.017) | 0.000 | 0.000 |
Differ | 0.153 (0.098) | 0.118 (0.108) | 0.036 (0.106) | 0.024 (0.105) |
Extent | 0.451 (0.119) | 0.414 (0.120) | 0.393 (0.119) | 0.532 (0.116) |
Surg | 0.240 (0.104) | 0.072 (0.110) | 0.084 (0.108) | 0.000 |
Node4 | 0.591 (0.141) | 0.641 (0.103) | 0.772 (0.146) | 0.751 (0.106) |
Death | ||||
Lev | −0.041 (0.114) | 0.000 | 0.000 | 0.000 |
Lev + 5FU | −0.362 (0.122) | −0.294 (0.109) | −0.209 (0.108) | −0.226 (0.107) |
Sex | 0.007 (0.097) | 0.000 | 0.000 | 0.000 |
Age | 0.008 (0.004) | 0.006 (0.004) | 0.002 (0.004) | 0.000 |
Obstruct | 0.269 (0.120) | 0.118 (0.135) | 0.098 (0.135) | 0.094 (0.131) |
Perfor | 0.017 (0.270) | 0.000 | 0.000 | 0.000 |
Adhere | 0.170 (0.131) | 0.138 (0.145) | 0.130 (0.141) | 0.135 (0.126) |
Nodes | 0.044 (0.015) | 0.043 (0.014) | 0.000 | 0.000 |
Differ | 0.138 (0.101) | 0.106 (0.110) | 0.007 (0.106) | 0.003 (0.110) |
Extent | 0.446 (0.118) | 0.420 (0.114) | 0.377 (0.111) | 0.427 (0.112) |
Surg | 0.240 (0.106) | 0.021 (0.113) | 0.079 (0.110) | 0.000 |
Node4 | 0.667 (0.143) | 0.641 (0.128) | 0.657 (0.143) | 0.899 (0.153) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, W.; Cui, W. A Partitioning-Based Approach to Variable Selection in WLW Model for Multivariate Survival Data. Axioms 2025, 14, 348. https://doi.org/10.3390/axioms14050348
Tian W, Cui W. A Partitioning-Based Approach to Variable Selection in WLW Model for Multivariate Survival Data. Axioms. 2025; 14(5):348. https://doi.org/10.3390/axioms14050348
Chicago/Turabian StyleTian, Wenjian, and Wenquan Cui. 2025. "A Partitioning-Based Approach to Variable Selection in WLW Model for Multivariate Survival Data" Axioms 14, no. 5: 348. https://doi.org/10.3390/axioms14050348
APA StyleTian, W., & Cui, W. (2025). A Partitioning-Based Approach to Variable Selection in WLW Model for Multivariate Survival Data. Axioms, 14(5), 348. https://doi.org/10.3390/axioms14050348