A New Class of Interval-Valued Discrete Sugeno-like Integrals
Abstract
:1. Introduction
2. Preliminary Concepts
2.1. n-Ary Aggregation Functions
- (A1)
- A is non-decreasing in each argument: for each , if , then ;
- (A2)
- A satisfies boundary conditions (i) and (ii) .
- (T1)
- Symmetry: ;
- (T2)
- Associativity: ;
- (T3)
- Non-decreasing: if , then ;
- (T4)
- Boundary condition: .
2.2. Fuzzy Measures
- (1)
- Increasingness: if then ;
- (2)
- Boundary conditions: and .
- 1.
- The power measure: for a fix with ;
- 2.
- The relative measure [41]: ;
- 3.
- Let . The measure
- 4.
- The λ-Dirac measure for and :
- 5.
- The uniform measure: ;
- 6.
- The Dirac measure [21] for a given :
- 7.
- The weakest and strongest fuzzy measures [21]: and
- 8.
- Let . The 3-valued measure
- 9.
- Maximum (introduced here):
Fuzzy Measure | Symmetric | Additive | Boolean | Self Dual |
---|---|---|---|---|
for | ✓ | × | × | × |
× | ✓ | × | ✓ | |
for | × | × | ✓ | × |
for and | × | × | × | ✓ |
✓ | ✓ | × | ✓ | |
× | ✓ | ✓ | ✓ | |
✓ | × | ✓ | × | |
✓ | × | ✓ | × | |
for | ✓ | × | × | × |
for | ✓ | × | × | ✓ |
× | × | × | × |
2.3. Discrete Sugeno Integrals
- 1.
- min-homogeneous: for each and ;
- 2.
- max-homogeneous: for each and ;
- 3.
- Idempotent: for each ;
- 4.
- Comonotone maxitive: for each pair of comonotone vectors ;
- 5.
- Comonotone minimitive: for each pair of comonotone vectors ;
- 6.
- Kernel: for each .
3. Interval-Valued pt-Norms
- Lexical 1: if and only if or ( and );
- Lexical 2: if and only if or ( and );
- Xu-Yager: if and only if or ( and );
- order for a fixed :
- order for : if and only if or ( and ).
- (1)
- is non-decreasing in each argument: for each , if , then ;
- (2)
- satisfies the boundary conditions: (i) and(ii) .
- (1)
- Symmetry: ;
- (2)
- ⪯-Increasing: if , then ;
- (3)
- Boundary condition: .
- ;
- Let ,
- 1.
- for each ;
- 2.
- .
- 1.
- If , then because is strict. Therefore, .
- 2.
- If and , then we have and . Hence, .
4. Interval-Valued Fuzzy Measures
- 1.
- ;
- 2.
- ;
- 3.
- If , then .
- 1.
- The power interval measure: for a fixed such that is symmetric, and is additive and self-dual just when , in which case it is called uniform;
- 2.
- The Dirac interval measure for a given : is Boolean, crisp, and self-dual;
- 3.
- The weakest and strongest interval fuzzy measures: and both are Boolean, crisp, and symmetric;
- 4.
- Let such that . The 3-interval-valued measure:;
- 5.
- Uniform-Maximum (introduced here):
5. Interval-Valued Discrete Sugeno-like Integrais Based on ⪯-IV pt-Norms
- 1.
- Symmetric if for each and permutation σ of N;
- 2.
- Averaging if ;
- 3.
- -homogeneous if for each ;
- 4.
- -homogeneous if for each ;
- 5.
- Idempotent if for each ;
- 6.
- Comonotone maxitive wheneverfor each ⪯-comonotone pair of vectors ;
- 7.
- Comonotone minimitive if for each ⪯-comonotone pair of vectors ;
6. Final Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Correction Statement
References
- Sugeno, M. Theory of Fuzzy Integrals and Its Applications. Ph.D Thesis, Tokyo Institute of Technology, Tokyo, Japan, 1974. [Google Scholar]
- Brabant, Q.; Couceiro, M.; Dubois, D.; Prade, H.; Rico, A. Learning rule sets and Sugeno integrals for monotonic classification problems. Fuzzy Sets Syst. 2020, 401, 4–37. [Google Scholar] [CrossRef]
- Wieczynski, J.; Lucca, G.; Borges, E.; Dimuro, G. Application of the Sugeno integral in fuzzy rule-based classification. In Proceedings of the Intelligent Systems—BRACIS 2022, Campinas, Brazil, 28 November–1 December 2022; Lecture Notes in Computer Science. Xavier-Junior, J.C., Rios, R.A., Eds.; Springer: Cham, Switzerland, 2022; Volume 13653. [Google Scholar] [CrossRef]
- Wilbik, A.; Pekala, B.; Szkoła, J.; Dyczkowski, K. The Sugeno integral used for federated learning with uncertainty for unbalanced data. In Proceedings of the 2023 IEEE International Conference on Fuzzy Systems (FUZZ), Songdo Incheon, Republic of Korea, 13–17 August 2023; Xavier-Junior, J.C., Rios, R.A., Eds.; IEEE: New York, NY, USA, 2023; Volume 10309680. [Google Scholar] [CrossRef]
- Chitescu, I. The Sugeno integral. A point of view. Inf. Sci. 2022, 582, 648–664. [Google Scholar] [CrossRef]
- Dimuro, G.P.; Fernández, J.; Bedregal, B.R.C.; Mesiar, R.; Sanz, J.A.; Lucca, G.; Bustince, H. The state-of-art of the generalizations of the Choquet integral: From aggregation and pre-aggregation to ordered directionally monotone functions. Inf. Fusion 2020, 57, 27–43. [Google Scholar] [CrossRef]
- Mao, X.; Temuer, C.; Zhou, H. Sugeno integral based on overlap function and its application to fuzzy quantifiers and multi-attribute decision-making. Axioms 2023, 12, 734. [Google Scholar] [CrossRef]
- Mesiar, R. Choquet-like integral. J. Math. Anal. Appl. 1995, 194, 477–488. [Google Scholar] [CrossRef]
- Mesiar, R.; Kolesárová, A.; Bustince, H.; Dimuro, G.; Bedregal, B. Fusion functions based discrete Choquet-like integrals. Eur. J. Oper. Res. 2016, 252, 601–609. [Google Scholar] [CrossRef]
- Paternain, D.; Miguel, L.D.; Ochoa, G.; Lizasoain, I.; Mesiar, R.; Bustince, H. The interval-valued Choquet integral based on admissible permutations. IEEE Trans. Fuzzy Syst. 2019, 27, 1638–1647. [Google Scholar] [CrossRef]
- Radul, T. Some remarks on characterization of t-normed integrals on compacta. Fuzzy Sets Syst. 2023, 467, 108490. [Google Scholar] [CrossRef]
- Suarez, F.A. Familias de Integrales Difusas y Medidas de Entropia Relacionadas. Ph.D. Thesis, Universidad de Oviedo, Oviedo, Spain, 1983. [Google Scholar]
- Jahn, K. Intervall-wertige Mengen. Math. Nach. 1975, 68, 115–132. [Google Scholar] [CrossRef]
- Sambuc, R. Fonctions and Floues: Application a l’aide au Diagnostic en Pathologie Thyroidienne. Ph.D. Thesis, Faculté de Médecine de Marseille, Marseille, France, 1975. [Google Scholar]
- Zadeh, L.A. The concept of a linguistic variable and its application to approximate reasoning—I. Inf. Sci. 1975, 8, 199–249. [Google Scholar] [CrossRef]
- Grattan-Guiness, I. Fuzzy membership mapped onto interval and many-valued quantities. Math. Logic Quart. 1976, 22, 149–160. [Google Scholar] [CrossRef]
- Bustince, H.; Barrenechea, E.; Fernández, J.; Pagola, M.; Montero, J. The origin of fuzzy extensions. In Springer Handbook of Computational Intelligence; Kacprzyk, J., Pedrycz, W., Eds.; Springer: Berlin/Heidelberg, Germany, 2015; pp. 89–112. [Google Scholar] [CrossRef]
- Díaz-Vázquez, S.; Torres-Manzanera, E.; Díaz, I.; Montes, S. On the search for a measure to compare interval-valued fuzzy sets. Mathematics 2021, 9, 3157. [Google Scholar] [CrossRef]
- Yam, Y.; Mukaidono, M.; Kreinovich, V. Beyond [0, 1] to intervals and further: Do we need all new fuzzy values? In Proceedings of the 8th International Fuzzy Systems Association World Congress (IFSA’99), Taipei, Taiwan, 17–20 August 1999. [Google Scholar]
- Alsina, C.; Frank, M.J.; Schweizer, B. Associative Functions—Triangular Norms and Copulas; World Scientific: Singapore, 2006. [Google Scholar]
- Beliakov, G.; Pradera, A.; Calvo, T. Aggregation Functions: A Guide for Practitioners; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Beliakov, G.; Bustince, H.; Calvo, T. A Practical Guide to Averaging Functions; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- da Cruz Asmus, T.; Sanz, J.A.; Dimuro, G.P.; Bedregal, B.R.C.; Fernández, J.; Bustince, H. N-Dimensional Admissibly Ordered Interval-Valued Overlap Functions and Its Influence in Interval-Valued Fuzzy-Rule-Based Classification Systems. IEEE Trans. Fuzzy Syst. 2022, 30, 1060–1072. [Google Scholar] [CrossRef]
- Bedregal, B.R.C.; Santiago, R.H.N. Interval representations, Łukasiewicz implicators and Smets-Magrez axioms. Inf. Sci. 2013, 221, 192–200. [Google Scholar] [CrossRef]
- Pekala, B. Uncertainty Data in Interval-Valued Fuzzy Set Theory—Properties, Algorithms and Applications. In Studies in Fuzziness and Soft Computing; Springer: Cham, Switzerland, 2019; Volume 367. [Google Scholar] [CrossRef]
- Pekala, B.; Dyczkowski, K.; Grzegorzewski, P.; Bentkowska, U. Inclusion and similarity measures for interval-valued fuzzy sets based on aggregation and uncertainty assessment. Inf. Sci. 2021, 547, 1182–1200. [Google Scholar] [CrossRef]
- Bustince, H.; Fernández, J.; Kolesárová, A.; Mesiar, R. Generation of linear orders for intervals by means of aggregation functions. Fuzzy Sets Syst. 2013, 220, 69–77. [Google Scholar] [CrossRef]
- Bedregal, B.R.C.; Bustince, H.; Palmeira, E.S.; Dimuro, G.P.; Fernández, J. Generalized interval-valued OWA operators with interval weights derived from interval-valued overlap functions. Int. J. Approx. Reason. 2017, 90, 1–16. [Google Scholar] [CrossRef]
- Boczek, M.; Jin, L.; Kaluszka, M. The interval-valued Choquet-Sugeno-like operator as a tool for aggregation of interval-valued functions. Fuzzy Sets Syst. 2022, 448, 35–48. [Google Scholar] [CrossRef]
- Pu, X.; Mesiar, R.; Yager, R.R.; Jin, L. Interval Sugeno integral with preference. IEEE Trans. Fuzzy Syst. 2020, 28, 597–601. [Google Scholar] [CrossRef]
- Takác, Z.; Uriz, M.; Galar, M.; Paternain, D.; Bustince, H. Discrete IV dG-Choquet integrals with respect to admissible orders. Fuzzy Sets Syst. 2022, 441, 169–195. [Google Scholar] [CrossRef]
- Santana, F.L.; Bedregal, B.R.C.; Viana, P.; Bustince, H. On admissible orders over closed subintervals of [0, 1]. Fuzzy Sets Syst. 2020, 399, 44–54. [Google Scholar] [CrossRef]
- Fumanal-Idocin, J.; Takác, Z.; Horanská, L.; da Cruz Asmus, T.; Dimuro, G.; Vidaurre, C.; Fernandez, J.; Bustince, H. A generalization of the Sugeno integral to aggregate interval-valued data: An application to brain computer interface and social network analysis. Fuzzy Sets Syst. 2022, 451, 320–341. [Google Scholar] [CrossRef]
- Klement, E.P.; Mesiar, R.; Pap, E. Triangular Norms; Springer: Berlin/Heidelberg, Germany, 2000. [Google Scholar]
- Flondor, P.; Georgescu, G.; Iorgulescu, A. Pseudo-t-norms and pseudo-BL algebras. Soft Comput. 2001, 5, 355–371. [Google Scholar] [CrossRef]
- Liu, H.W. Two classes of pseudo-triangular norms and fuzzy implications. Comput. Math. Appl. 2011, 61, 783–789. [Google Scholar] [CrossRef]
- Fodor, J.C. Strict preference relations based on weak t-norms. Fuzzy Sets Syst. 1991, 43, 327–336. [Google Scholar] [CrossRef]
- Botur, M. A non-associative generalization of Hájek’s BL-algebras. Fuzzy Sets Syst. 2011, 178, 24–37. [Google Scholar] [CrossRef]
- Choquet, G. Theory of capacities. Ann. I Fourier 1954, 5, 131–295. [Google Scholar] [CrossRef]
- Grabisch, G. Set Functions, Games and Capacities in Decision Making; Springer International Publishing: Cham, Switzerland, 2016. [Google Scholar]
- Batista, T.V.V.; Bedregal, B.R.C.; Moraes, R.M. Constructing multi-layer classifier ensembles using the Choquet integral based on overlap and quasi-overlap functions. Neurocomputing 2022, 500, 413–421. [Google Scholar] [CrossRef]
- de Jesus, G.Q.; Palmeira, E.S. Least squares in a data fusion scenario via aggregation operators. Axioms 2022, 11, 678. [Google Scholar] [CrossRef]
- Bardozzo, F.; de la Osa, B.; Horanská, L.; Fumanal-Idocin, J.; delli Priscoli, M.; Troiano, L.; Tagliaferri, R.; Fernández, J.; Bustince, H. Sugeno integral generalization applied to improve adaptive image binarization. Inf. Fusion 2021, 68, 37–45. [Google Scholar] [CrossRef]
- Dubois, D.; Prade, H.; Rico, A. Residuated variants of Sugeno integrals: Towards new weighting schemes for qualitative aggregation methods. Inf. Sci. 2016, 329, 765–781. [Google Scholar] [CrossRef]
- Jin, L.; Yang, Y.; Mesiar, R.; Yager, R.R. Sugeno-Like operators in preference and uncertain environments. IEEE Trans. Fuzzy Syst. 2023, 31, 2092–2098. [Google Scholar] [CrossRef]
- Dubois, D.; Prade, H.; Rico, A.; Teheux, B. Generalized Sugeno integrals. In Proceedings of the Information Processing and Management of Uncertainty in Knowledge-Based Systems—16th International Conference (IPMU 2016), Eindhoven, The Netherlands, 20–24 June 2016; Proceedings, Part I. Carvalho, J.P., Lesot, M., Kaymak, U., Vieira, S.M., Bouchon-Meunier, B., Yager, R.R., Eds.; Communications in Computer and Information Science. Springer: Cham, Switzerland, 2016; Volume 610, pp. 363–374. [Google Scholar] [CrossRef]
- Wang, Z.; Klir, G.J. Generalized Measure Theory; Springer Science & Business Media: New York, NY, USA, 2010. [Google Scholar]
- da Silva, L.C.; Monks, E.M.; Yamin, A.C.; Reiser, R.; Bedregal, B.R.C. ωA-IvE methodology: Admissible interleaving entropy methods applied to video streaming traffic classification. Int. J. Approx. Reason. 2024, 164, 109061. [Google Scholar] [CrossRef]
- Deschrijver, G. The Archimedean property for t-norms in interval-valued fuzzy set theory. Fuzzy Sets Syst. 2006, 157, 2311–2327. [Google Scholar] [CrossRef]
- Dimuro, G.P.; Bedregal, B.R.C.; Santiago, R.H.N.; Reiser, R.H.S. Interval additive generators of interval t-norms and interval t-conorms. Inf. Sci. 2011, 181, 3898–3916. [Google Scholar] [CrossRef]
- Zapata, H.; Bustince, H.; Montes, S.; Bedregal, B.R.C.; Dimuro, G.P.; Takác, Z.; Baczynski, M.; Fernández, J. Interval-valued implications and interval-valued strong equality index with admissible orders. Int. J. Approx. Reason. 2017, 88, 91–109. [Google Scholar] [CrossRef]
- Durante, F.; Sarkoci, P. A note on the convex combinations of triangular norms. Fuzzy Sets Syst. 2008, 159, 77–80. [Google Scholar] [CrossRef]
- Aumann, R.J. Integrals of set-valued functions. J. Math. Anal. Appl. 1965, 12, 1–12. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jacobino, N.; Zumelzu, N.; Callejas, C.; Palmeira, E.; Bedregal, B. A New Class of Interval-Valued Discrete Sugeno-like Integrals. Axioms 2025, 14, 294. https://doi.org/10.3390/axioms14040294
Jacobino N, Zumelzu N, Callejas C, Palmeira E, Bedregal B. A New Class of Interval-Valued Discrete Sugeno-like Integrals. Axioms. 2025; 14(4):294. https://doi.org/10.3390/axioms14040294
Chicago/Turabian StyleJacobino, Nícolas, Nicolás Zumelzu, Claudio Callejas, Eduardo Palmeira, and Benjamín Bedregal. 2025. "A New Class of Interval-Valued Discrete Sugeno-like Integrals" Axioms 14, no. 4: 294. https://doi.org/10.3390/axioms14040294
APA StyleJacobino, N., Zumelzu, N., Callejas, C., Palmeira, E., & Bedregal, B. (2025). A New Class of Interval-Valued Discrete Sugeno-like Integrals. Axioms, 14(4), 294. https://doi.org/10.3390/axioms14040294