Advancements in Gevrey Regularity for a Coupled Kadomtsev–Petviashvili II System: New Insights and Findings
Abstract
:1. Introduction
2. Notation and Function Spaces
3. Linear and Nonlinear Estimates
4. Local Well-Posedness and Proof
5. Gevrey’s Regularity
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wazwaz, A.M. The tanh method for travelling wave solutions of nonlinear equations. Appl. Math. Comput. 2004, 154, 714–723. [Google Scholar]
- Wazwaz, A.M. Exact solutions to the double sinh-Gordon equation by the tanh method and a variable separated ODE method. Comput. Math. Appl. 2005, 50, 1685–1696. [Google Scholar]
- Jafari, H.; Soltani, R.; Khalique, C.M.; Baleanu, D. Exact solutions of two nonlinear partial differential equations by using the first integral method. Bound. Value Probl. 2013, 2013, 117. [Google Scholar]
- Abdelrahman, M.A.E.; Almatrafi, M.B.; Alharbi, A. Fundamental Solutions for the Coupled KdV System and Its Stability. Symmetry 2020, 12, 429. [Google Scholar] [CrossRef]
- Bentrcia, T.; Mennouni, A. On the asymptotic stability of a Bresse system with two fractional damping terms: Theoretical and numerical analysis. Discrete Contin. Dyn. Syst. Ser. B 2022, 28, 580–622. [Google Scholar]
- Bentrcia, T.; Mennouni, A. On the solution behavior of a nonlinear time-fractional Klein–Gordon equation: Theoretical study and numerical validation. Commun. Nonlinear Sci. Numer. Simul. 2023, 125, 107384. [Google Scholar]
- Bentrcia, T.; Mennouni, A. On the energy decay of a nonlinear time-fractional Euler–Bernoulli beam problem including time-delay: Theoretical treatment and numerical solution techniques. J. Eng. Math. 2024, 145, 21. [Google Scholar]
- Otsmane, S.; Mennouni, A. New contributions to a complex system of quadratic heat equations with a generalized kernels: Global solutions. Monatsh. Math. 2024, 204, 261–280. [Google Scholar]
- Boukarou, A.; Guerbati, K.; Zennir, K.; Alnegga, M. Gevrey regularity for the generalized Kadomtsev-Petviashvili I (gKP-I) equation. AIMS Math. 2021, 6, 10037–10054. [Google Scholar]
- Javed, S.; Ali, A.; Muhammad, T. Chaotic structures and unveiling novel insights of solutions to the (2+1)-dimensional generalized Kadomtsev–Petviashvili equation with its stability analysis. Partial. Differ. Equ. Appl. Math. 2024, 12, 100979. [Google Scholar] [CrossRef]
- Sağlam, F.N.K.; Malik, S. Various traveling wave solutions for (2+1)-dimensional extended Kadomtsev–Petviashvili equation using a newly created methodology. Chaos Solitons Fractals 2024, 186, 115318. [Google Scholar]
- Ahmad, J.; Akram, S.; Ali, A. Analysis of new soliton type solutions to generalized extended (2+1)-dimensional Kadomtsev-Petviashvili equation via two techniques. Ain Shams Eng. J. 2024, 15, 102302. [Google Scholar]
- Sun, Y.; Liu, L. Kadomtsev–Petviashvili equation with self-consistent sources: Breathers, lumps and their interactions. Nonlinear Dyn. 2024, 112, 17363–17388. [Google Scholar]
- Sun, Y.Y.; Wang, X.; Zhang, D.J. New solutions of the lattice Kadomtsev–Petviashvili system associated with an elliptic curve. Rep. Math. Phys. 2024, 94, 11–33. [Google Scholar]
- Li, C.; Li, C.; Wang, G.; Liu, W. On the line-soliton solutions of a coupled modified Kadomtsev–Petviashvili system in two-layer shallow water. Chaos Solitons Fractals 2024, 181, 114734. [Google Scholar]
- Hosseini, K.; Hincal, E.; Sadri, K.; Rabiei, F.; Ilie, M.; Akgül, A.; Osman, M.S. The positive multi-complexiton solution to a generalized Kadomtsev–Petviashvili equation. Partial. Differ. Equ. Appl. Math. 2024, 9, 100647. [Google Scholar]
- Wang, K.J. The generalized (3+1)-dimensional B-type Kadomtsev–Petviashvili equation: Resonant multiple soliton, N-soliton, soliton molecules and the interaction solutions. Nonlinear Dyn. 2024, 112, 7309–7324. [Google Scholar]
- Al-Askar, F.M.; Cesarano, C.; Mohammed, W.W. Effects of the Wiener Process and Beta Derivative on the Exact Solutions of the Kadomtsev–Petviashvili Equation. Axioms 2023, 12, 748. [Google Scholar] [CrossRef]
- Gaillard, P. Rogue Waves in the Nonlinear Schrödinger, Kadomtsev–Petviashvili, Lakshmanan–Porsezian–Daniel and Hirota Equations. Axioms 2025, 14, 94. [Google Scholar] [CrossRef]
- Wang, K.-J.; Liu, J.-H.; Si, J.; Wang, G.-D. Nonlinear Dynamic Behaviors of the (3+1)-Dimensional B-Type Kadomtsev–Petviashvili Equation in Fluid Mechanics. Axioms 2023, 12, 95. [Google Scholar] [CrossRef]
- Scott, J.M. Initial value problem for a coupled system of Kadomtsev-Petviashvili II equations in Sobolev spaces of negative indices. Pro Math. 2008, 22, 67–88. [Google Scholar]
- Boukarou, A.; Guerbati, K.; Zennir, K. Local wellposedness and time regularity for a fifth-order shallow water equations in analytic Gevrey-Bourgain spaces. Monatsh Math. 2020, 193, 763–782. [Google Scholar]
- Gorsky, J.; Himonas, A.A.; Holliman, C.; Petronilho, G. The Cauchy problem of a periodic higher order KdV equation in analytic Gevrey spaces. J. Math. Anal. Appl. 2013, 40, 349–361. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boudersa, F.; Mennouni, A.; Agarwal, R.P. Advancements in Gevrey Regularity for a Coupled Kadomtsev–Petviashvili II System: New Insights and Findings. Axioms 2025, 14, 251. https://doi.org/10.3390/axioms14040251
Boudersa F, Mennouni A, Agarwal RP. Advancements in Gevrey Regularity for a Coupled Kadomtsev–Petviashvili II System: New Insights and Findings. Axioms. 2025; 14(4):251. https://doi.org/10.3390/axioms14040251
Chicago/Turabian StyleBoudersa, Feriel, Abdelaziz Mennouni, and Ravi P. Agarwal. 2025. "Advancements in Gevrey Regularity for a Coupled Kadomtsev–Petviashvili II System: New Insights and Findings" Axioms 14, no. 4: 251. https://doi.org/10.3390/axioms14040251
APA StyleBoudersa, F., Mennouni, A., & Agarwal, R. P. (2025). Advancements in Gevrey Regularity for a Coupled Kadomtsev–Petviashvili II System: New Insights and Findings. Axioms, 14(4), 251. https://doi.org/10.3390/axioms14040251