On the Abscissa of Convergence of Laplace–Stieltjes Integrals in the Euclidean Real Vector Space
Abstract
:1. Introduction
2. Some Results About Integrals in the Case
3. New Estimates
- (i)
- If the function is unbounded, then
- (ii)
- If the function is bounded, then
4. Some Results for Multiple Integrals
- (i)
- If
- (ii)
- If
5. Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Knopp, K. Über die Konvergenzabszisse des Laplace-Integrals. Math. Z. 1951, 54, 291–296. [Google Scholar] [CrossRef]
- Ugaheri, T. On the abscissa of convergence of Laplace–Stieltjes integral. Ann. Inst. Stat. Math. 1950, 2, 1–3. [Google Scholar] [CrossRef]
- Delange, H. Sur les points singuliers de la fonction définie par une intégrale de Laplace–Stieltjes. J. D’Anal. Math. 1957, 5, 1–33. [Google Scholar] [CrossRef]
- Delange, H. Un théorème sur l’intégrale de Laplace–Stieltjes. Ann. Sci. De L’École Norm. Supér. Ser. 3 1958, 75, 1–17. [Google Scholar] [CrossRef]
- Bosanquet, L.S. The Summability of Laplace–Stieltjes Integrals. Proc. Lond. Math. Soc. 1953, s3-3, 267–304. [Google Scholar] [CrossRef]
- Mayer-Kalkschmidt, J. A theorem on Laplace–Stieltjes-integrals. Proc. Am. Math. Soc. 1959, 10, 186–193. [Google Scholar] [CrossRef]
- Miskelevicius, A. Tauberian Theorem for the Laplace–Stieltjes integral and Dirichlet series. Lith. Math. J. 1989, 29, 364–369, Translated from Litov. Mat. Sb. 1989, 29, 745–753. [Google Scholar] [CrossRef]
- Miskelevicius, A. Riesz’s theorem for a Laplace–Stieltjes type integral and Dirichlet series. Lith. Math. J. 1989, 29, 277–281, Translated from Litov. Mat. Sb. 1989, 29, 525–531. [Google Scholar] [CrossRef]
- Krainova, L.I. A Tauberian theorem for the Laplace–Stieltjes integrals. Funct. Anal. Its Appl. 1986, 20, 142–143. [Google Scholar] [CrossRef]
- Das, G.L. On the behavior of the function defined by a generalized Laplace–Stieltjes integral. Proc. Koninklije Ned. Akad. Van Wetenschafen Ser. A-Math. Sci. 1980, 83, 119–123. [Google Scholar]
- Voigt, J. On the abscissa of convergence for the Laplace transform of vector valued measures. Arch. Math. 1982, 39, 455–462. [Google Scholar] [CrossRef]
- Wang, P. The P(R) type of Laplace–Stieltjes transform in the right half-plane. J. Cent. China Norm. Univ. Nat. Sci. 1987, 21, 17–25, (In Chinese with English summary). [Google Scholar]
- Wang, P. The P(R) order of the analytic function defined by Laplace–Stieltjes transform. J. Math. Wuhan Univ. 1988, 8, 287–296, (In Chinese with English summary). [Google Scholar]
- Posiko, O.S.; Skaskiv, O.B.; Sheremeta, M.M. Estimates of the Laplace–Stieltjes integral. Mat. Stud. 2004, 21, 179–186. (In Ukrainian) [Google Scholar]
- Posiko, O.S.; Sheremeta, M.M. Asymptotic estimates for Laplace–Stieltjes integrals. Ukr. Math. Bull. 2005, 2, 547–555. [Google Scholar]
- Sheremeta, M. Asymtotical Behaviour of Laplace–Stieltjes Integrals; VNTL Publishers: Lviv, Ukraine, 2010; 211p. [Google Scholar]
- Xu, H.Y.; Xuan, Z.X. Some inequalities on the convergent abscissas of Laplace–Stieltjes transforms. J. Math. Inequal. 2023, 17, 163–164. [Google Scholar] [CrossRef]
- Posiko, O.; Sheremeta, M. Logarithms of Laplace–Stiltjes integral and maximum of the integrand. Integral Transform. Spec. Funct. 2007, 18, 271–283. [Google Scholar] [CrossRef]
- Xu, H.; Li, H.; Xuan, Z. Some New Inequalities on Laplace–Stieltjes Transforms Involving Logarithmic Growth. Fractal Fract. 2022, 6, 233. [Google Scholar] [CrossRef]
- Sheremeta, M.M.; Mulyava, O.M. Belonging of Laplace–Stieltjes integrals to convergence classes. J. Math. Sci. 2021, 258, 346–364, Translated from Ukr. Math. Bull. 2021, 18, 255–278. [Google Scholar] [CrossRef]
- Shen, X.; Xu, H.-Y. The Approximation of Laplace–Stieltjes Transforms Concerning Sun’s Type Function. J. Funct. Spaces 2021, 2021, 9970287. [Google Scholar] [CrossRef]
- Cui, Y.-Q.; Xu, H.-Y. Growth and Approximation of Laplace–Stieltjes Transform with (p,q)-Proximate Order Converges on the Whole Plane. J. Funct. Spaces 2020, 2020, 9624131. [Google Scholar] [CrossRef]
- Singhal, C.; Srivastava, G.S. On the growth and approximation of entire functions represented by Laplace–Stieltjes’ transformation. Ann. Dell’Univ. Ferrara 2017, 63, 365–376. [Google Scholar] [CrossRef]
- Singhal, C.; Srivastava, G.S. On the approximation of an analytic function represented by Laplace–Stieltjes transformations. Anal. Theory Appl. 2019, 31, 407–420. [Google Scholar] [CrossRef]
- Xu, H.Y.; Kong, Y.Y. The approximation of analytic function defined by Laplace–Stieltjes transformations convergent in the left half-plane. Houst. J. Math. 2017, 43, 783–806. [Google Scholar]
- Xu, H.Y.; Wang, H. The growth and approximation for an analytic function represented by Laplace–Stieltjes transforms with generalized order converging in the half plane. J. Inequal. Appl. 2018, 2018, 185. [Google Scholar] [CrossRef] [PubMed]
- Guo, K.; Hu, S.; Sun, X. Conditionally positive-definite functions and Laplace–Stieltjes integrals. J. Approx. Theory 1993, 74, 249–265. [Google Scholar] [CrossRef]
- Liu, S.; Xu, H.; Cui, Y.; Gong, P. Results on analytic functions defined by Laplace–Stieltjes transforms with perfect ϕ-type. Open Math. 2020, 18, 1814–1829. [Google Scholar] [CrossRef]
- Xu, H.; Kong, Y. Entire Functions Represented by Laplace–Stieltjes Transforms Concerning the Approximation and Generalized Order. Acta Math. Sci. 2021, 41, 646–656. [Google Scholar] [CrossRef]
- Sheremeta, M.M. Geometric Properties of Laplace–Stieltjes Integrals. J. Math. Sci. 2025, 287, 134–152. [Google Scholar] [CrossRef]
- Castillo, R.E.; Chaparro, H.C. The Laplace–Stieltjes transform in Hp spaces: An overview. Asian-Eur. J. Math. 2023, 16, 2350152. [Google Scholar] [CrossRef]
- Kuryliak, A.O.; Sheremeta, M.M. On Banach Spaces and Fréchet Spaces of Laplace–Stieltjes Integrals. J. Math. Sci. 2023, 270, 280–293, Translated from Neliniini Kolyvannya 2021, 24, 185–196. [Google Scholar] [CrossRef]
- Sheremeta, M.M.; Dobushovskyy, M.S.; Kuryliak, A.O. On a Banach space of Laplace–Stieltjes integrals. Mat. Stud. 2017, 48, 143–149. [Google Scholar] [CrossRef]
- Sheremeta, M. Relative Growth of Series in Systems of Functions and Laplace–Stieltjes-Type Integrals. Axioms 2021, 10, 43. [Google Scholar] [CrossRef]
- Sheremeta, M. On the growth of series in system of functions and Laplace–Stieltjes integrals. Mat. Stud. 2021, 55, 124–131. [Google Scholar] [CrossRef]
- Dobushovskyy, M.S.; Sheremeta, M.M. Analogues of Whittaker’s theorem for Laplace-Stieltles integrals. Carpathian Math. Publ. 2016, 8, 239–250. [Google Scholar] [CrossRef]
- Dobushovs’kyi, M.S.; Sheremeta, M.M. Estimation of the Laplace–Stieltjes Integrals. Ukr. Math. J. 2017, 68, 1694–1714. [Google Scholar] [CrossRef]
- Sheremeta, M.M. Properties of Laplace–Stieltjes-type integrals. Mat. Stud. 2023, 60, 115–131. [Google Scholar] [CrossRef]
- Sheremeta, M.M.; Dobushovskyy, M.S. Two-member asymptotic of Laplace–Stieltjes integrals. Mat. Stud. 2017, 47, 3–9. [Google Scholar] [CrossRef]
- Zadorozhna, O.Y.; Skaskiv, O.B. On the elementary remarks about of the abscissas of the convergence of Laplace–Stieltjes integrals. Bukovinian Math. J. 2013, 1, 43–48. (In Ukrainian) [Google Scholar]
- Mulyava, O.M. On the convergence abscissa of a Dirichlet series. Mat. Stud. 1998, 9, 171–176. (In Ukrainian) [Google Scholar]
- Janusauskas, A.I. Properties of conjugate abscissas of convergence of double Dirichleet series. Lith. Math. J. 1979, 19, 213–228, Translated from Litov. Mat. Sb. 1979, 19, 152–164. [Google Scholar] [CrossRef]
- Zadorozhna, O.Y.; Mulyava, O.M. On the conjugate abscissas convergence of the double Dirichlet series. Mat. Stud. 2007, 28, 29–36. (In Ukrainian) [Google Scholar]
- Skaskiv, O.B.; Zadorozhna, O.Y. On domains of convergence of multiple random Dirichlet series. Mat. Stud. 2011, 36, 51–57. [Google Scholar]
- Zadorozhna, O.Y.; Skaskiv, O.B. On the domains of convergence of the double Dirichlet series. Mat. Stud. 2009, 32, 81–86. (In Ukrainian) [Google Scholar]
- Zadorozhna, O.Y.; Skaskiv, O.B. On the conjugate abscissas convergence of multiple Dirichlet series. Carpathian Math. Publ. 2009, 1, 152–160. (In Ukrainian) [Google Scholar]
- Kuryliak, A.O.; Skaskiv, O.B.; Stasiv, N.Y. On the convergence of random multiple Dirichlet series. Mat. Stud. 2018, 49, 122–137. [Google Scholar] [CrossRef]
- Kuryliak, M.R.; Skaskiv, O.B. On the domain of convergence of general Dirichlet series with complex exponents. Carpathian Math. Publ. 2023, 15, 594–607. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bandura, A.; Skaskiv, O.; Zadorozhna, O.
On the Abscissa of Convergence of Laplace–Stieltjes Integrals in the Euclidean Real Vector Space
Bandura A, Skaskiv O, Zadorozhna O.
On the Abscissa of Convergence of Laplace–Stieltjes Integrals in the Euclidean Real Vector Space
Bandura, Andriy, Oleh Skaskiv, and Olha Zadorozhna.
2025. "On the Abscissa of Convergence of Laplace–Stieltjes Integrals in the Euclidean Real Vector Space
Bandura, A., Skaskiv, O., & Zadorozhna, O.
(2025). On the Abscissa of Convergence of Laplace–Stieltjes Integrals in the Euclidean Real Vector Space