Next Article in Journal
Flexible and Efficient Iterative Solutions for General Variational Inequalities in Real Hilbert Spaces
Previous Article in Journal
Novel Expressions for Certain Generalized Leonardo Polynomials and Their Associated Numbers
Previous Article in Special Issue
On the Abscissa of Convergence of Laplace–Stieltjes Integrals in the Euclidean Real Vector Space Rp
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Symmetric and Asymmetric Double Series via Expansions over Legendre Polynomials

1
School of Mathematics and Statistics, Zhoukou Normal University, Zhoukou 466001, China
2
Independent Researcher, Via Dalmazio birago 9/E, 73100 Lecce, Italy
*
Author to whom correspondence should be addressed.
Axioms 2025, 14(4), 287; https://doi.org/10.3390/axioms14040287
Submission received: 7 March 2025 / Revised: 7 April 2025 / Accepted: 8 April 2025 / Published: 11 April 2025
(This article belongs to the Special Issue Recent Advances in Special Functions and Applications, 2nd Edition)

Abstract

By examining Fourier–Legendre series pairs F ( y ) and G ( y ) , fifteen classes of symmetric and asymmetric bivariate series will systematically be investigated. A compendium of 360 remarkable summation formulae will be established. They may serve as a complementary work to the paper by Chu and Campbell (The Ramanujan Journal (2023)).

1. Introduction and Outline

For n N 0 and an indeterminate x, the shifted factorials are defined by
( x ) 0 = 1 and ( x ) n = x ( x + 1 ) ( x + n 1 ) for n N .
In general, for n Z , we can express it as the Γ -function ratio
( x ) n = Γ ( x + n ) Γ ( x ) , where Γ ( x ) = 0 τ x 1 e τ d τ for ( x ) > 0 .
According to Bailey [1], the generalized hypergeometric series reads as
F q p a 1 , , a p c 1 , , c q | z = n = 0 a 1 , , a p c 1 , , c q n z n n ! ,
where for the sake of brevity, the factorial quotient is abbreviated to
α , β , , γ A , B , , C n = ( α ) n ( β ) n ( γ ) n ( A ) n ( B ) n ( C ) n .
The Fourier–Legendre series plays important rules in mathematics, theoretical physics and applied sciences (see for example [2,3]). By integrating Fourier–Legendre series, Campbell [4] recently discovered the following elegant identity:
14 ζ ( 3 ) π 2 = i , j = 0 2 i i 2 2 j j 2 4 2 i + 2 j ( 1 + i + j ) .
Subsequently, this method was systematically developed by Chu and Campbell [5] to evaluate, in closed form, numerous double series containing binomial and multinomial coefficients. Denoting by G the usual Catalan constant (cf. [6,7]), the authors confine themselves to reproduce the following remarkable ones (where the series in the middle is symmetric with respect to i and j):
i , j = 0 2 i i 2 2 j j 2 4 2 i + 2 j ( 1 + j ) ( 2 + i + j ) = 8 π 2 . i , j = 0 4 i i , i , 2 i 4 j j , j , 2 j 4 3 i + 3 j ( 1 + i + j ) = 16 G π 2 . i , j = 0 3 i i , i , i 6 j j , 2 j , 3 j 3 3 i + 3 j 4 2 j ( 1 + i + j ) = 12 3 ln 2 π 2 .
Observe that the common feature among these double series is that they are almost tensor products of two independent sums in i and j, weakly tied by linear functions of i and j in denominators. We shall investigate, in this paper, another large class of double series representations for π ± , consisting of two independent single sums in i and j, strongly tied by the binomial coefficient i + j i in denominators. Two typical examples are as follows:
i , j = 0 2 i i 2 2 j j 2 4 2 i + 2 j i + j i ( 1 + i + j ) = π 2 . i , j = 0 2 i i 2 2 j j 2 4 2 i + 2 j 1 + i + j i ( 2 + i + j ) ( 1 + j ) = 2 π .
They are two representatives of a totally new class of numerous double series identities (counting 360 exactly). In addition, it is worth highlighting that the former series possesses a perfect symmetry with respect to summation indices i and j, while the latter one is quasi symmetric. Numerous identities in the next section (see Section 2.1, Section 2.6, Section 2.10 and Section 2.13) have similar properties.
Suppose that F ( y ) and G ( y ) are two analytic functions in [ 0 , 1 ] with power series expressions:
F ( y ) = k = 0 a k y k and G ( y ) = k = 0 b k y k .
Then, it is not hard to check that F 1 + x 2 and G 1 + x 2 are also analytic in [ 1 , 1 ] . Hence, we can expand these two composite functions in terms of Legendre polynomials (cf. [8,9] and Rainville [10], Chapter 10):
F 1 + x 2 = n = 0 A n P n ( x ) , A n = n + 1 2 1 1 F 1 + x 2 P n ( x ) d x ,
G 1 + x 2 = n = 0 B n P n ( x ) , B n = n + 1 2 1 1 G 1 + x 2 P n ( x ) d x .
Recently, Campbell and the second author discovered the following remarkable formula [5] (Theorem 11). Letting the sequences { a i , b i : i N 0 } and { A n , B n : N 0 } be as in (1), (2) and (3) under the given conditions of F and G , we have “the universal identity” of infinite series:
i , j = 0 a i b j i + j + 1 = n = 0 A n B n 2 n + 1 .
By combining this theorem with the forty Legendre–Fourier series shown in [5] (Corollaries 6–10), numerous double infinite series were evaluated in closed form in the just-cited paper.
Now, taking into account Equation (3), there is a companion Fourier–Legendre series
G 1 x 2 = n = 0 ( 1 ) n B n P n ( x ) over 1 < x < 1 .
We can similarly examine the integral
1 1 F 1 + x 2 G 1 x 2 = i , j = 0 a i b j 1 1 1 + x 2 i 1 x 2 j d x x = 1 2 y = 2 i , j = 0 a i b j 0 1 y j ( 1 + y ) i d y = 2 i , j = 0 a i b j i + j i ( 1 + i + j ) .
On the other hand, consider the integral of the corresponding Fourier–Legendre series
1 1 F 1 + x 2 G 1 x 2 = 1 1 d x m = 0 A m P m ( x ) n = 0 ( 1 ) n B n P n ( x ) = m , n = 0 ( 1 ) n A m B n 1 1 P m ( x ) P n ( x ) d x = m , n = 0 ( 1 ) n A m B n 2 χ ( m = n ) 2 n + 1 ,
where χ stands for the logical function with χ ( true ) = 1 and χ ( false ) = 0 . Therefore, we have established another general double series identity which serves as a counterpart of (4):
i , j = 0 a i b j i + j i ( 1 + i + j ) = n = 0 ( 1 ) n A n B n 2 n + 1 .
As the reader will observe in the sequel, this “universal formula” serves as a framework for a very large class of new double series, as illustrated by the preceding representatives. In particular, when F ( y ) = G ( y ) , the above series becomes symmetric in i and j.
Analogous to what has been done in [5], by appropriately examining the Fourier–Legendre series pairs F ( y ) and G ( y ) (recorded in the Appendix A), numerous double series formulae will be established in Section 2 by employing (5). Finally, this paper will conclude with Section 3, where we shall present exceptional double series whose values involve the golden ratio.

2. Fifteen Classes of Double Series

By combining appropriately the “A, B, C, D and E” series displayed in Appendix A, we are going to derive 360 double infinite series identities in accordance with relation (5). They will be divided into fifteen classes according to the Fourier–Legendre series pairs.

2.1. Combined Products from Series in Class A

( A 1 ) × ( A 1 ) i , j = 0 2 i i 2 2 j j 2 4 2 i + 2 j i + j i ( 1 + i + j ) = π 2 ,
( A 1 ) × ( A 2 ) i , j = 0 2 i i 2 2 j j 2 4 2 i + 2 j i + j i ( 1 + i + j ) ( 1 2 j ) = π 4 + 1 π ,
( A 1 ) × ( A 3 ) i , j = 0 2 i i 2 2 j j 2 4 2 i + 2 j i + j i ( 1 + i + j ) ( 1 2 j ) 2 = π 4 + 2 π ,
( A 1 ) × ( A 4 ) i , j = 0 2 i i 2 2 j j 2 4 2 i + 2 j 1 + i + j i ( 2 + i + j ) ( 1 + j ) = 2 π ,
( A 1 ) × ( A 5 ) i , j = 0 2 i i 2 2 j j 1 + 2 j j 4 2 i + 2 j 1 + i + j i ( 2 + i + j ) ( 1 2 j ) = π 8 ,
( A 1 ) × ( A 6 ) i , j = 0 2 i i 2 2 j j 1 + 2 j j ( 3 + 2 j ) 4 2 i + 2 j 1 + i + j i ( 2 + i + j ) ( 1 2 j ) ( 3 2 j ) = 2 9 π ,
( A 1 ) × ( A 7 ) i , j = 0 2 i i 2 2 j j 2 4 2 i + 2 j 2 + i + j i ( 3 + i + j ) ( 1 + j ) ( 2 + j ) = π 16 ,
( A 2 ) × ( A 2 ) i , j = 0 2 i i 2 2 j j 2 4 2 i + 2 j i + j i ( 1 + i + j ) ( 1 2 i ) ( 1 2 j ) = π 8 + 1 π ,
( A 2 ) × ( A 3 ) i , j = 0 2 i i 2 2 j j 2 4 2 i + 2 j i + j i ( 1 + i + j ) ( 1 2 i ) ( 1 2 j ) 2 = 5 π 32 + 3 2 π ,
( A 2 ) × ( A 4 ) i , j = 0 2 i i 2 2 j j 2 4 2 i + 2 j 1 + i + j i ( 2 + i + j ) ( 1 2 i ) ( 1 + j ) = π 16 + 1 π ,
( A 2 ) × ( A 5 ) i , j = 0 2 i i 2 2 j j 1 + 2 j j 4 2 i + 2 j 1 + i + j i ( 2 + i + j ) ( 1 2 i ) ( 1 2 j ) = π 16 + 1 3 π ,
( A 2 ) × ( A 6 ) i , j = 0 2 i i 2 2 j j 1 + 2 j j ( 3 + 2 j ) 4 2 i + 2 j 1 + i + j i ( 2 + i + j ) ( 1 2 i ) ( 1 2 j ) ( 3 2 j ) = 1 9 π ,
( A 2 ) × ( A 7 ) i , j = 0 2 i i 2 2 j j 2 4 2 i + 2 j 2 + i + j i ( 3 + i + j ) ( 1 2 i ) ( 1 + j ) ( 2 + j ) = π 32 + 2 9 π ,
( A 3 ) × ( A 3 ) i , j = 0 2 i i 2 2 j j 2 4 2 i + 2 j i + j i ( 1 + i + j ) ( 1 2 i ) 2 ( 1 2 j ) 2 = 13 π 64 + 2 π ,
( A 3 ) × ( A 4 ) i , j = 0 2 i i 2 2 j j 2 4 2 i + 2 j 1 + i + j i ( 2 + i + j ) ( 1 2 i ) 2 ( 1 + j ) = 3 π 32 + 1 π ,
( A 4 ) × ( A 4 ) i , j = 0 2 i i 2 2 j j 2 4 2 i + 2 j 2 + i + j 1 + i ( 3 + i + j ) ( 1 + i ) ( 1 + j ) = π 16 ,
( A 4 ) × ( A 5 ) i , j = 0 2 i i 2 2 j j 1 + 2 j j 4 2 i + 2 j 2 + i + j 1 + i ( 3 + i + j ) ( 1 + i ) ( 1 2 j ) = 4 9 π ,
( A 4 ) × ( A 7 ) i , j = 0 2 i i 2 2 j j 2 4 2 i + 2 j 3 + i + j 1 + i ( 4 + i + j ) ( 1 + i ) ( 1 + j ) ( 2 + j ) = 4 27 π ,
( A 5 ) × ( A 5 ) i , j = 0 2 i i 1 + 2 i i 2 j j 1 + 2 j j 4 2 i + 2 j 2 + i + j 1 + i ( 3 + i + j ) ( 1 2 i ) ( 1 2 j ) = π 32 ,
( A 5 ) × ( A 6 ) i , j = 0 ( 3 + 2 i ) 2 i i 1 + 2 i i 2 j j 1 + 2 j j 4 2 i + 2 j 2 + i + j 1 + i ( 3 + i + j ) ( 1 2 i ) ( 1 2 j ) ( 3 2 j ) = 4 45 π ,
( A 5 ) × ( A 7 ) i , j = 0 2 i i 1 + 2 i i 2 j j 2 4 2 i + 2 j 3 + i + j 1 + i ( 4 + i + j ) ( 1 2 i ) ( 1 + j ) ( 2 + j ) = 3 π 256 ,
( A 6 ) × ( A 6 ) i , j = 0 ( 3 + 2 i ) 2 i i 1 + 2 i i 2 j j 1 + 2 j j ( 3 + 2 j ) 4 2 i + 2 j 2 + i + j 1 + i ( 3 + i + j ) ( 1 2 i ) ( 3 2 i ) ( 1 2 j ) ( 3 2 j ) = 0 ,
( A 6 ) × ( A 7 ) i , j = 0 ( 3 + 2 i ) 2 i i 1 + 2 i i 2 j j 2 4 2 i + 2 j 3 + i + j 1 + i ( 4 + i + j ) ( 1 2 i ) ( 3 2 i ) ( 1 + j ) ( 2 + j ) = 4 75 π ,
( A 7 ) × ( A 7 ) i , j = 0 2 i i 2 2 j j 2 4 2 i + 2 j 4 + i + j 2 + i ( 5 + i + j ) ( 1 + i ) ( 2 + i ) ( 1 + j ) ( 2 + j ) = 3 π 1024 .

2.2. Crossing Products from Series in Classes A and B

( A 1 ) × ( B 1 ) i , j = 0 2 i i 2 3 j j , j , j 3 3 j 4 2 i i + j i ( 1 + i + j ) = 18 ( 2 3 ) π ,
( A 1 ) × ( B 2 ) i , j = 0 2 i i 2 3 j j , j , j 3 3 j 4 2 i i + j i ( 1 + i + j ) ( 1 3 j ) = 36 ( 13 6 3 ) 25 π ,
( A 1 ) × ( B 3 ) i , j = 0 2 i i 2 3 j j , j , j 3 3 j 4 2 i i + j i ( 1 + i + j ) ( 2 3 j ) = 18 ( 25 12 3 ) 49 π ,
( A 1 ) × ( B 4 ) i , j = 0 2 i i 2 3 j j , j , j 3 3 j 4 2 i 1 + i + j i ( 2 + i + j ) ( 1 + j ) = 648 ( 2 + 3 ) 1225 π ,
( A 1 ) × ( B 5 ) i , j = 0 2 i i 2 1 + 3 j 1 + j , j , j 3 3 j 4 2 i 1 + i + j i ( 2 + i + j ) ( 1 3 j ) = 648 ( 2 3 ) 121 π ,
( A 1 ) × ( B 6 ) i , j = 0 2 i i 2 3 j j , j , j ( 2 + 3 j ) 3 3 j 4 2 i 1 + i + j i ( 2 + i + j ) ( 1 + j ) ( 2 3 j ) = 648 ( 2 3 ) 169 π ,
( A 1 ) × ( B 7 ) i , j = 0 2 i i 2 3 j j , j , j 3 3 j 4 2 i 2 + i + j i ( 3 + i + j ) ( 1 + j ) ( 2 + j ) = 46656 ( 2 3 ) 20449 π ,
( A 2 ) × ( B 1 ) i , j = 0 2 i i 2 3 j j , j , j 3 3 j 4 2 i i + j i ( 1 + i + j ) ( 1 2 i ) = 18 ( 36 17 3 ) 35 π ,
( A 2 ) × ( B 2 ) i , j = 0 2 i i 2 3 j j , j , j 3 3 j 4 2 i i + j i ( 1 + i + j ) ( 1 2 i ) ( 1 3 j ) = 216 ( 93 41 3 ) 1925 π ,
( A 2 ) × ( B 3 ) i , j = 0 2 i i 2 3 j j , j , j 3 3 j 4 2 i i + j i ( 1 + i + j ) ( 1 2 i ) ( 2 3 j ) = 108 ( 129 58 3 ) 3185 π ,
( A 3 ) × ( B 1 ) i , j = 0 2 i i 2 3 j j , j , j 3 3 j 4 2 i i + j i ( 1 2 i ) 2 ( 1 + i + j ) = 18 ( 1296 577 3 ) 1225 π ,
( A 4 ) × ( B 1 ) i , j = 0 2 i i 2 3 j j , j , j 3 3 j 4 2 i 1 + i + j i ( 2 + i + j ) ( 1 + i ) = 648 ( 2 + 3 ) 1225 π ,
( A 4 ) × ( B 4 ) i , j = 0 2 i i 2 3 j j , j , j 3 3 j 4 2 i 2 + i + j 1 + i ( 3 + i + j ) ( 1 + i ) ( 1 + j ) = 46656 ( 2 3 ) 20449 π ,
( A 4 ) × ( B 5 ) i , j = 0 2 i i 2 1 + 3 j 1 + j , j , j 3 3 j 4 2 i 2 + i + j 1 + i ( 3 + i + j ) ( 1 + i ) ( 1 3 j ) = 46656 ( 2 + 3 ) 354025 π ,
( A 4 ) × ( B 6 ) i , j = 0 2 i i 2 3 j j , j , j ( 2 + 3 j ) 3 3 j 4 2 i 2 + i + j 1 + i ( 3 + i + j ) ( 1 + i ) ( 1 + j ) ( 2 3 j ) = 46656 ( 2 + 3 ) 442225 π ,
( A 5 ) × ( B 1 ) i , j = 0 2 i i 1 + 2 i i 3 j j , j , j 3 3 j 4 2 i 1 + i + j i ( 2 + i + j ) ( 1 2 i ) = 648 ( 2 3 ) 143 π ,
( A 5 ) × ( B 4 ) i , j = 0 2 i i 1 + 2 i i 3 j j , j , j 3 3 j 4 2 i 2 + i + j 1 + i ( 3 + i + j ) ( 1 2 i ) ( 1 + j ) = 46656 ( 2 + 3 ) 395675 π ,
( A 5 ) × ( B 5 ) i , j = 0 2 i i 1 + 2 i i 1 + 3 j 1 + j , j , j 3 3 j 4 2 i 2 + i + j 1 + i ( 3 + i + j ) ( 1 2 i ) ( 1 3 j ) = 46656 ( 2 3 ) 36179 π ,
( A 5 ) × ( B 6 ) i , j = 0 2 i i 1 + 2 i i 3 j j , j , j ( 2 + 3 j ) 3 3 j 4 2 i 2 + i + j 1 + i ( 3 + i + j ) ( 1 2 i ) ( 1 + j ) ( 2 3 j ) = 46656 ( 2 3 ) 46475 π ,
( A 6 ) × ( B 1 ) i , j = 0 2 i i 1 + 2 i i 3 j j , j , j ( 3 + 2 i ) 3 3 j 4 2 i 1 + i + j i ( 2 + i + j ) ( 1 2 i ) ( 3 2 i ) = 648 ( 2 + 3 ) 11305 π ,
( A 6 ) × ( B 4 ) i , j = 0 2 i i 1 + 2 i i 3 j j , j , j ( 3 + 2 i ) 3 3 j 4 2 i 2 + i + j 1 + i ( 3 + i + j ) ( 1 2 i ) ( 3 2 i ) ( 1 + j ) = 46656 ( 2 3 ) 82225 π ,
( A 6 ) × ( B 5 ) i , j = 0 2 i i 1 + 2 i i 1 + 3 j 1 + j , j , j ( 3 + 2 i ) 3 3 j 4 2 i 2 + i + j 1 + i ( 3 + i + j ) ( 1 2 i ) ( 3 2 i ) ( 1 3 j ) = 46656 ( 2 + 3 ) 1639225 π ,
( A 6 ) × ( B 6 ) i , j = 0 2 i i 1 + 2 i i 3 j j , j , j ( 3 + 2 i ) ( 2 + 3 j ) 3 3 j 4 2 i 2 + i + j 1 + i ( 3 + i + j ) ( 1 2 i ) ( 3 2 i ) ( 1 + j ) ( 2 3 j ) = 46656 ( 2 + 3 ) 2453185 π ,
( A 7 ) × ( B 1 ) i , j = 0 2 i i 2 3 j j , j , j 3 3 j 4 2 i 2 + i + j 2 + i ( 2 + i + j ) ( 1 + i ) ( 2 + i ) = 46656 ( 2 3 ) 20449 π ,
( A 7 ) × ( B 4 ) i , j = 0 2 i i 2 3 j j , j , j 3 3 j 4 2 i 3 + i + j 2 + i ( 4 + i + j ) ( 1 + i ) ( 2 + i ) ( 1 + j ) = 5038848 ( 2 + 3 ) 127803025 π ,
( A 7 ) × ( B 5 ) i , j = 0 2 i i 2 1 + 3 j 1 + j , j , j 3 3 j 4 2 i 3 + i + j 2 + i ( 4 + i + j ) ( 1 + i ) ( 2 + i ) ( 1 3 j ) = 5038848 ( 2 3 ) 10817521 π ,
( A 7 ) × ( B 6 ) i , j = 0 2 i i 2 3 j j , j , j ( 2 + 3 j ) 3 3 j 4 2 i 3 + i + j 2 + i ( 4 + i + j ) ( 1 + i ) ( 2 + i ) ( 1 + j ) ( 2 3 j ) = 5038848 ( 2 3 ) 12780625 π ,
( A 7 ) × ( B 7 ) i , j = 0 2 i i 2 3 j j , j , j 3 3 j 4 2 i 4 + i + j 2 + i ( 5 + i + j ) ( 1 + i ) ( 2 + i ) ( 1 + j ) ( 2 + j ) = 725594112 ( 2 3 ) 6760950625 π .

2.3. Crossing Products from Series in Classes A and C

( A 1 ) × ( C 1 ) i , j = 0 2 i i 2 4 j j , j , 2 j 4 2 i + 3 j i + j i ( 1 + i + j ) = 8 ( 2 2 ) π ,
( A 1 ) × ( C 2 ) i , j = 0 2 i i 2 4 j j , j , 2 j 4 2 i + 3 j i + j i ( 1 + i + j ) ( 1 4 j ) = 16 ( 5 2 2 ) 9 π ,
( A 1 ) × ( C 3 ) i , j = 0 2 i i 2 4 j j , j , 2 j 4 2 i + 3 j i + j i ( 1 + i + j ) ( 3 4 j ) = 16 ( 13 6 2 ) 75 π ,
( A 1 ) × ( C 4 ) i , j = 0 2 i i 2 4 j j , j , 2 j 4 2 i + 3 j 1 + i + j i ( 2 + i + j ) ( 1 + j ) = 128 ( 2 + 2 ) 225 π ,
( A 1 ) × ( C 5 ) i , j = 0 2 i i 2 1 + 4 j 1 + j , j , 2 j 4 2 i + 3 j 1 + i + j i ( 2 + i + j ) ( 1 4 j ) = 128 ( 2 2 ) 49 π ,
( A 1 ) × ( C 6 ) i , j = 0 2 i i 2 4 j j , j , 2 j ( 3 + 4 j ) 4 2 i + 3 j 1 + i + j i ( 2 + i + j ) ( 1 + j ) ( 3 4 j ) = 128 ( 2 2 ) 81 π ,
( A 1 ) × ( C 7 ) i , j = 0 2 i i 2 4 j j , j , 2 j 4 2 i + 3 j 2 + i + j i ( 3 + i + j ) ( 1 + j ) ( 2 + j ) = 4096 ( 2 2 ) 3969 π ,
( A 2 ) × ( C 1 ) i , j = 0 2 i i 2 4 j j , j , 2 j 4 2 i + 3 j i + j i ( 1 + i + j ) ( 1 2 i ) = 8 ( 16 7 2 ) 15 π ,
( A 2 ) × ( C 2 ) i , j = 0 2 i i 2 4 j j , j , 2 j 4 2 i + 3 j i + j i ( 1 + i + j ) ( 1 2 i ) ( 1 4 j ) = 32 ( 52 19 2 ) 315 π ,
( A 2 ) × ( C 3 ) i , j = 0 2 i i 2 4 j j , j , 2 j 4 2 i + 3 j i + j i ( 1 + i + j ) ( 1 2 i ) ( 3 4 j ) = 32 ( 28 11 2 ) 675 π ,
( A 2 ) × ( C 4 ) i , j = 0 2 i i 2 4 j j , j , 2 j 4 2 i + 3 j 1 + i + j i ( 2 + i + j ) ( 1 2 i ) ( 1 + j ) = 128 ( 32 9 2 ) 1575 π ,
( A 3 ) × ( C 3 ) i , j = 0 2 i i 2 4 j j , j , 2 j 4 2 i + 3 j i + j i ( 1 + i + j ) ( 1 2 i ) 2 ( 3 4 j ) = 32 ( 64 23 2 ) 1215 π ,
( A 4 ) × ( C 1 ) i , j = 0 2 i i 2 4 j j , j , 2 j 4 2 i + 3 j 1 + i + j 1 + i ( 2 + i + j ) ( 1 + i ) = 128 ( 2 + 2 ) 225 π ,
( A 4 ) × ( C 2 ) i , j = 0 2 i i 2 4 j j , j , 2 j 4 2 i + 3 j 1 + i + j 1 + i ( 2 + i + j ) ( 1 + i ) ( 1 4 j ) = 256 ( 137 44 2 ) 11025 π ,
( A 4 ) × ( C 3 ) i , j = 0 2 i i 2 4 j j , j , 2 j 4 2 i + 3 j 1 + i + j 1 + i ( 2 + i + j ) ( 1 + i ) ( 3 4 j ) = 256 ( 17 4 2 ) 6075 π ,
( A 4 ) × ( C 4 ) i , j = 0 2 i i 2 4 j j , j , 2 j 4 2 i + 3 j 2 + i + j 1 + i ( 3 + i + j ) ( 1 + i ) ( 1 + j ) = 4096 ( 2 2 ) 3969 π ,
( A 5 ) × ( C 1 ) i , j = 0 2 i i 1 + 2 i i 4 j j , j , 2 j 4 2 i + 3 j 1 + i + j 1 + i ( 2 + i + j ) ( 1 2 i ) = 128 ( 2 2 ) 63 π ,
( A 5 ) × ( C 2 ) i , j = 0 2 i i 1 + 2 i i 4 j j , j , 2 j 4 2 i + 3 j 1 + i + j 1 + i ( 2 + i + j ) ( 1 2 i ) ( 1 4 j ) = 256 ( 31 12 2 ) 3465 π ,
( A 5 ) × ( C 3 ) i , j = 0 2 i i 1 + 2 i i 4 j j , j , 2 j 4 2 i + 3 j 1 + i + j 1 + i ( 2 + i + j ) ( 1 2 i ) ( 3 4 j ) = 256 ( 173 76 2 ) 61425 π ,
( A 5 ) × ( C 4 ) i , j = 0 2 i i 1 + 2 i i 4 j j , j , 2 j 4 2 i + 3 j 2 + i + j 1 + i ( 3 + i + j ) ( 1 2 i ) ( 1 + j ) = 4096 ( 2 + 2 ) 32175 π ,
( A 6 ) × ( C 1 ) i , j = 0 2 i i 1 + 2 i i 4 j j , j , 2 j ( 3 + 2 i ) 4 2 i + 3 j 1 + i + j 1 + i ( 2 + i + j ) ( 1 2 i ) ( 3 2 i ) = 128 ( 2 + 2 ) 2145 π ,
( A 6 ) × ( C 4 ) i , j = 0 2 i i 1 + 2 i i 4 j j , j , 2 j ( 3 + 2 i ) 4 2 i + 3 j 2 + i + j 1 + i ( 3 + i + j ) ( 1 2 i ) ( 3 2 i ) ( 1 + j ) = 4096 ( 2 2 ) 16065 π ,
( A 6 ) × ( C 5 ) i , j = 0 2 i i 1 + 2 i i 1 + 4 j 1 + j , j , 2 j ( 3 + 2 i ) 4 2 i + 3 j 2 + i + j 1 + i ( 3 + i + j ) ( 1 2 i ) ( 3 2 i ) ( 1 4 j ) = 4096 ( 2 + 2 ) 122265 π ,
( A 6 ) × ( C 6 ) i , j = 0 2 i i 1 + 2 i i 4 j j , j , 2 j ( 3 + 2 i ) ( 3 + 4 j ) 4 2 i + 3 j 2 + i + j 1 + i ( 3 + i + j ) ( 1 2 i ) ( 3 2 i ) ( 1 + j ) ( 3 4 j ) = 4096 ( 2 + 2 ) 225225 π ,
( A 6 ) × ( C 7 ) i , j = 0 2 i i 1 + 2 i i 4 j j , j , 2 j ( 3 + 2 i ) 4 2 i + 3 j 3 + i + j 1 + i ( 4 + i + j ) ( 1 2 i ) ( 3 2 i ) ( 1 + j ) ( 2 + j ) = 65536 ( 2 + 2 ) 4279275 π ,
( A 7 ) × ( C 1 ) i , j = 0 2 i i 2 4 j j , j , 2 j 4 2 i + 3 j 2 + i + j 2 + i ( 3 + i + j ) ( 1 + i ) ( 2 + i ) = 4096 ( 2 2 ) 3969 π ,
( A 7 ) × ( C 4 ) i , j = 0 2 i i 2 4 j j , j , 2 j 4 2 i + 3 j 3 + i + j 2 + i ( 4 + i + j ) ( 1 + i ) ( 2 + i ) ( 1 + j ) = 65536 ( 2 + 2 ) 1533675 π ,
( A 7 ) × ( C 5 ) i , j = 0 2 i i 2 1 + 4 j 1 + j , j , 2 j 4 2 i + 3 j 3 + i + j 2 + i ( 4 + i + j ) ( 1 + i ) ( 2 + i ) ( 1 4 j ) = 65536 ( 2 2 ) 297675 π ,
( A 7 ) × ( C 6 ) i , j = 0 2 i i 2 4 j j , j , 2 j ( 3 + 4 j ) 4 2 i + 3 j 3 + i + j 2 + i ( 4 + i + j ) ( 1 + i ) ( 2 + i ) ( 1 + j ) ( 3 4 j ) = 65536 ( 2 2 ) 382347 π ,
( A 7 ) × ( C 7 ) i , j = 0 2 i i 2 4 j j , j , 2 j 4 2 i + 3 j 4 + i + j 2 + i ( 5 + i + j ) ( 1 + i ) ( 2 + i ) ( 1 + j ) ( 2 + j ) = 4194304 ( 2 2 ) 86028075 π .

2.4. Crossing Products from Series in Classes A and D

( A 1 ) × ( D 1 ) i , j = 0 2 i i 2 6 j j , 2 j , 3 j 3 3 j 4 2 i + 2 j i + j i ( 1 + i + j ) = 9 2 π ,
( A 1 ) × ( D 2 ) i , j = 0 2 i i 2 6 j j , 2 j , 3 j 3 3 j 4 2 i + 2 j i + j i ( 1 + i + j ) ( 1 6 j ) = 63 16 π ,
( A 1 ) × ( D 3 ) i , j = 0 2 i i 2 6 j j , 2 j , 3 j 3 3 j 4 2 i + 2 j i + j i ( 1 + i + j ) ( 5 6 j ) = 171 320 π ,
( A 1 ) × ( D 4 ) i , j = 0 2 i i 2 6 j j , 2 j , 3 j 3 3 j 4 2 i + 2 j 1 + i + j i ( 2 + i + j ) ( 1 + j ) = 243 128 π ,
( A 1 ) × ( D 5 ) i , j = 0 2 i i 2 1 + 6 j 1 + j , 2 j , 3 j 3 3 j 4 2 i + 2 j 1 + i + j i ( 2 + i + j ) ( 1 6 j ) = 81 50 π ,
( A 1 ) × ( D 6 ) i , j = 0 2 i i 2 6 j j , 2 j , 3 j ( 5 + 6 j ) 3 3 j 4 2 i + 2 j 1 + i + j i ( 2 + i + j ) ( 1 + j ) ( 5 6 j ) = 81 98 π ,
( A 1 ) × ( D 7 ) i , j = 0 2 i i 2 6 j j , 2 j , 3 j 3 3 j 4 2 i + 2 j 2 + i + j i ( 3 + i + j ) ( 1 + j ) ( 2 + j ) = 729 1225 π ,
( A 2 ) × ( D 1 ) i , j = 0 2 i i 2 6 j j , 2 j , 3 j 3 3 j 4 2 i + 2 j i + j i ( 1 + i + j ) ( 1 2 i ) = 99 32 π ,
( A 2 ) × ( D 2 ) i , j = 0 2 i i 2 6 j j , 2 j , 3 j 3 3 j 4 2 i + 2 j i + j i ( 1 + i + j ) ( 1 2 i ) ( 1 6 j ) = 837 320 π ,
( A 2 ) × ( D 3 ) i , j = 0 2 i i 2 6 j j , 2 j , 3 j 3 3 j 4 2 i + 2 j i + j i ( 1 + i + j ) ( 1 2 i ) ( 5 6 j ) = 1431 4480 π ,
( A 2 ) × ( D 4 ) i , j = 0 2 i i 2 6 j j , 2 j , 3 j 3 3 j 4 2 i + 2 j 1 + i + j i ( 2 + i + j ) ( 1 2 i ) ( 1 + j ) = 13689 8960 π ,
( A 2 ) × ( D 5 ) i , j = 0 2 i i 2 1 + 6 j 1 + j , 2 j , 3 j 3 3 j 4 2 i + 2 j 1 + i + j i ( 2 + i + j ) ( 1 2 i ) ( 1 6 j ) = 16443 12800 π ,
( A 2 ) × ( D 6 ) i , j = 0 2 i i 2 6 j j , 2 j , 3 j ( 5 + 6 j ) 3 3 j 4 2 i + 2 j 1 + i + j i ( 2 + i + j ) ( 1 + j ) ( 1 2 i ) ( 5 6 j ) = 37827 62720 π ,
( A 2 ) × ( D 7 ) i , j = 0 2 i i 2 6 j j , 2 j , 3 j 3 3 j 4 2 i + 2 j 2 + i + j i ( 3 + i + j ) ( 1 2 i ) ( 1 + j ) ( 2 + j ) = 1282311 2508800 π ,
( A 3 ) × ( D 1 ) i , j = 0 2 i i 2 6 j j , 2 j , 3 j 3 3 j 4 2 i + 2 j i + j i ( 1 + i + j ) ( 1 2 i ) 2 = 1035 256 π ,
( A 3 ) × ( D 2 ) i , j = 0 2 i i 2 6 j j , 2 j , 3 j 3 3 j 4 2 i + 2 j i + j i ( 1 + i + j ) ( 1 2 i ) 2 ( 1 6 j ) = 44739 12800 π ,
( A 3 ) × ( D 3 ) i , j = 0 2 i i 2 6 j j , 2 j , 3 j 3 3 j 4 2 i + 2 j i + j i ( 1 + i + j ) ( 1 2 i ) 2 ( 5 6 j ) = 57159 125440 π ,
( A 3 ) × ( D 4 ) i , j = 0 2 i i 2 6 j j , 2 j , 3 j 3 3 j 4 2 i + 2 j 1 + i + j i ( 2 + i + j ) ( 1 2 i ) 2 ( 1 + j ) = 572427 313600 π ,
( A 3 ) × ( D 5 ) i , j = 0 2 i i 2 1 + 6 j 1 + j , 2 j , 3 j 3 3 j 4 2 i + 2 j 1 + i + j i ( 2 + i + j ) ( 1 2 i ) 2 ( 1 6 j ) = 317763 204800 π ,
( A 3 ) × ( D 6 ) i , j = 0 2 i i 2 6 j j , 2 j , 3 j ( 5 + 6 j ) 3 3 j 4 2 i + 2 j 1 + i + j i ( 2 + i + j ) ( 1 2 i ) 2 ( 1 + j ) ( 5 6 j ) = 485433 627200 π ,
( A 3 ) × ( D 7 ) i , j = 0 2 i i 2 6 j j , 2 j , 3 j 3 3 j 4 2 i + 2 j 2 + i + j i ( 3 + i + j ) ( 1 2 i ) 2 ( 1 + j ) ( 2 + j ) = 23410377 40140800 π ,
( A 4 ) × ( D 1 ) i , j = 0 2 i i 2 6 j j , 2 j , 3 j 3 3 j 4 2 i + 2 j 1 + i + j 1 + i ( 2 + i + j ) ( 1 + i ) = 243 128 π ,
( A 4 ) × ( D 2 ) i , j = 0 2 i i 2 6 j j , 2 j , 3 j 3 3 j 4 2 i + 2 j 1 + i + j 1 + i ( 2 + i + j ) ( 1 + i ) ( 1 6 j ) = 11259 6400 π ,
( A 4 ) × ( D 3 ) i , j = 0 2 i i 2 6 j j , 2 j , 3 j 3 3 j 4 2 i + 2 j 1 + i + j 1 + i ( 2 + i + j ) ( 1 + i ) ( 5 6 j ) = 17091 62720 π ,
( A 4 ) × ( D 4 ) i , j = 0 2 i i 2 6 j j , 2 j , 3 j 3 3 j 4 2 i + 2 j 2 + i + j 1 + i ( 3 + i + j ) ( 1 + i ) ( 1 + j ) = 729 1225 π ,
( A 4 ) × ( D 5 ) i , j = 0 2 i i 2 1 + 6 j 1 + j , 2 j , 3 j 3 3 j 4 2 i + 2 j 2 + i + j 1 + i ( 3 + i + j ) ( 1 + i ) ( 1 6 j ) = 2187 4096 π ,
( A 4 ) × ( D 6 ) i , j = 0 2 i i 2 6 j j , 2 j , 3 j ( 5 + 6 j ) 3 3 j 4 2 i + 2 j 2 + i + j 1 + i ( 3 + i + j ) ( 1 + i ) ( 1 + j ) ( 5 6 j ) = 2187 6400 π ,
( A 4 ) × ( D 7 ) i , j = 0 2 i i 2 6 j j , 2 j , 3 j 3 3 j 4 2 i + 2 j 3 + i + j 1 + i ( 4 + i + j ) ( 1 + i ) ( 1 + j ) ( 2 + j ) = 59049 409600 π ,
( A 5 ) × ( D 1 ) i , j = 0 2 i i 1 + 2 i i 6 j j , 2 j , 3 j 3 3 j 4 2 i + 2 j 1 + i + j 1 + i ( 2 + i + j ) ( 1 2 i ) = 81 70 π ,
( A 5 ) × ( D 2 ) i , j = 0 2 i i 1 + 2 i i 6 j j , 2 j , 3 j 3 3 j 4 2 i + 2 j 1 + i + j 1 + i ( 2 + i + j ) ( 1 2 i ) ( 1 6 j ) = 18873 17920 π ,
( A 5 ) × ( D 3 ) i , j = 0 2 i i 1 + 2 i i 6 j j , 2 j , 3 j 3 3 j 4 2 i + 2 j 1 + i + j 1 + i ( 2 + i + j ) ( 1 2 i ) ( 5 6 j ) = 1377 8960 π ,
( A 5 ) × ( D 4 ) i , j = 0 2 i i 1 + 2 i i 6 j j , 2 j , 3 j 3 3 j 4 2 i + 2 j 2 + i + j 1 + i ( 3 + i + j ) ( 1 2 i ) ( 1 + j ) = 2187 5120 π ,
( A 5 ) × ( D 5 ) i , j = 0 2 i i 1 + 2 i i 1 + 6 j 1 + j , 2 j , 3 j 3 3 j 4 2 i + 2 j 2 + i + j 1 + i ( 3 + i + j ) ( 1 2 i ) ( 1 6 j ) = 729 1925 π ,
( A 5 ) × ( D 6 ) i , j = 0 2 i i 1 + 2 i i 6 j j , 2 j , 3 j ( 5 + 6 j ) 3 3 j 4 2 i + 2 j 2 + i + j 1 + i ( 3 + i + j ) ( 1 2 i ) ( 1 + j ) ( 5 6 j ) = 729 3185 π ,
( A 5 ) × ( D 7 ) i , j = 0 2 i i 1 + 2 i i 6 j j , 2 j , 3 j 3 3 j 4 2 i + 2 j 3 + i + j 1 + i ( 4 + i + j ) ( 1 2 i ) ( 1 + j ) ( 2 + j ) = 19683 175175 π ,
( A 6 ) × ( D 1 ) i , j = 0 2 i i 1 + 2 i i 6 j j , 2 j , 3 j ( 3 + 2 i ) 3 3 j 4 2 i + 2 j 1 + i + j 1 + i ( 2 + i + j ) ( 1 2 i ) ( 3 2 i ) = 243 1280 π ,
( A 6 ) × ( D 2 ) i , j = 0 2 i i 1 + 2 i i 6 j j , 2 j , 3 j ( 3 + 2 i ) 3 3 j 4 2 i + 2 j 1 + i + j 1 + i ( 2 + i + j ) ( 1 2 i ) ( 3 2 i ) ( 1 6 j ) = 29079 197120 π ,
( A 6 ) × ( D 3 ) i , j = 0 2 i i 1 + 2 i i 6 j j , 2 j , 3 j ( 3 + 2 i ) 3 3 j 4 2 i + 2 j 1 + i + j 1 + i ( 2 + i + j ) ( 1 2 i ) ( 3 2 i ) ( 5 6 j ) = 2349 232960 π ,
( A 6 ) × ( D 4 ) i , j = 0 2 i i 1 + 2 i i 6 j j , 2 j , 3 j ( 3 + 2 i ) 3 3 j 4 2 i + 2 j 2 + i + j 1 + i ( 3 + i + j ) ( 1 2 i ) ( 3 2 i ) ( 1 + j ) = 729 5005 π ,
( A 6 ) × ( D 5 ) i , j = 0 2 i i 1 + 2 i i 1 + 6 j 1 + j , 2 j , 3 j ( 3 + 2 i ) 3 3 j 4 2 i + 2 j 2 + i + j 1 + i ( 3 + i + j ) ( 1 2 i ) ( 3 2 i ) ( 1 6 j ) = 2187 17920 π ,
( A 6 ) × ( D 6 ) i , j = 0 2 i i 1 + 2 i i 6 j j , 2 j , 3 j ( 3 + 2 i ) ( 5 + 6 j ) 3 3 j 4 2 i + 2 j 2 + i + j 1 + i ( 3 + i + j ) ( 1 2 i ) ( 3 2 i ) ( 1 + j ) ( 5 6 j ) = 2187 40960 π ,
( A 6 ) × ( D 7 ) i , j = 0 2 i i 1 + 2 i i 6 j j , 2 j , 3 j ( 3 + 2 i ) 3 3 j 4 2 i + 2 j 3 + i + j 1 + i ( 4 + i + j ) ( 1 2 i ) ( 3 2 i ) ( 1 + j ) ( 2 + j ) = 59049 1146880 π ,
( A 7 ) × ( D 1 ) i , j = 0 2 i i 2 6 j j , 2 j , 3 j 3 3 j 4 2 i + 2 j 2 + i + j 2 + i ( 3 + i + j ) ( 1 + i ) ( 2 + i ) = 729 1225 π ,
( A 7 ) × ( D 2 ) i , j = 0 2 i i 2 6 j j , 2 j , 3 j 3 3 j 4 2 i + 2 j 2 + i + j 2 + i ( 3 + i + j ) ( 1 + i ) ( 2 + i ) ( 1 6 j ) = 5665059 10035200 π ,
( A 7 ) × ( D 3 ) i , j = 0 2 i i 2 6 j j , 2 j , 3 j 3 3 j 4 2 i + 2 j 2 + i + j 2 + i ( 3 + i + j ) ( 1 + i ) ( 2 + i ) ( 5 6 j ) = 293787 3136000 π ,
( A 7 ) × ( D 4 ) i , j = 0 2 i i 2 6 j j , 2 j , 3 j 3 3 j 4 2 i + 2 j 3 + i + j 2 + i ( 4 + i + j ) ( 1 + i ) ( 2 + i ) ( 1 + j ) = 59049 409600 π ,
( A 7 ) × ( D 5 ) i , j = 0 2 i i 2 1 + 6 j 1 + j , 2 j , 3 j 3 3 j 4 2 i + 2 j 3 + i + j 2 + i ( 4 + i + j ) ( 1 + i ) ( 2 + i ) ( 1 6 j ) = 19683 148225 π ,
( A 7 ) × ( D 6 ) i , j = 0 2 i i 2 6 j j , 2 j , 3 j ( 5 + 6 j ) 3 3 j 4 2 i + 2 j 3 + i + j 2 + i ( 4 + i + j ) ( 1 + i ) ( 2 + i ) ( 1 + j ) ( 5 6 j ) = 19683 207025 π ,
( A 7 ) × ( D 7 ) i , j = 0 2 i i 2 6 j j , 2 j , 3 j 3 3 j 4 2 i + 2 j 4 + i + j 2 + i ( 5 + i + j ) ( 1 + i ) ( 2 + i ) ( 1 + j ) ( 2 + j ) = 708588 25050025 π .

2.5. Crossing Products from Series in Classes A and E

( A 1 ) × ( E 5 ) i , j = 0 2 i i 2 ( 1 10 ) j ( 9 10 ) j 4 2 i ( j ! ) 2 ( 1 + i + j ) i + j i = 25 ( 5 5 ) 16 π ,
( A 1 ) × ( E 6 ) i , j = 0 2 i i 2 ( 3 10 ) j ( 7 10 ) j 4 2 i ( j ! ) 2 ( 1 + i + j ) i + j i = 25 ( 3 5 ) 4 π ,
( A 4 ) × ( E 5 ) i , j = 0 2 i i 2 ( 1 10 ) j ( 9 10 ) j 4 2 i ( j ! ) 2 ( 1 + i ) ( 2 + i + j ) 1 + i + j j = 625 ( 3 + 5 ) 1764 π ,
( A 4 ) × ( E 6 ) i , j = 0 2 i i 2 ( 3 10 ) j ( 7 10 ) j 4 2 i ( j ! ) 2 ( 1 + i ) ( 2 + i + j ) 1 + i + j j = 625 ( 5 + 5 ) 2304 π ,
( A 5 ) × ( E 5 ) i , j = 0 2 i i 1 + 2 i i ( 1 10 ) j ( 9 10 ) j 4 2 i ( j ! ) 2 ( 1 2 i ) ( 2 + i + j ) 1 + i + j j = 625 ( 5 5 ) 1526 π ,
( A 5 ) × ( E 6 ) i , j = 0 2 i i 1 + 2 i i ( 3 10 ) j ( 7 10 ) j 4 2 i ( j ! ) 2 ( 1 2 i ) ( 2 + i + j ) 1 + i + j j = 625 ( 3 5 ) 396 π ,
( A 6 ) × ( E 5 ) i , j = 0 2 i i 1 + 2 i i ( 3 + 2 i ) ( 1 10 ) j ( 9 10 ) j 4 2 i ( j ! ) 2 ( 1 2 i ) ( 3 2 i ) ( 2 + i + j ) 1 + i + j j = 625 ( 3 + 5 ) 18564 π ,
( A 6 ) × ( E 6 ) i , j = 0 2 i i 1 + 2 i i ( 3 + 2 i ) ( 3 10 ) j ( 7 10 ) j 4 2 i ( j ! ) 2 ( 1 2 i ) ( 3 2 i ) ( 2 + i + j ) 1 + i + j j = 625 ( 5 + 5 ) 21504 π ,
( A 7 ) × ( E 5 ) i , j = 0 2 i i 2 ( 1 10 ) j ( 9 10 ) j 4 2 i ( j ! ) 2 ( 1 + i ) ( 2 + i ) ( 3 + i + j ) 2 + i + j j = 15625 ( 5 5 ) 73728 π ,
( A 7 ) × ( E 6 ) i , j = 0 2 i i 2 ( 3 10 ) j ( 7 10 ) j 4 2 i ( j ! ) 2 ( 1 + i ) ( 2 + i ) ( 3 + i + j ) 2 + i + j j = 15625 ( 3 5 ) 19602 π .

2.6. Combined Products from Series in Class B

( B 1 ) × ( B 1 ) i , j = 0 3 i i , i , i 3 j j , j , j 3 3 i + 3 j i + j i ( 1 + i + j ) = 3 2 ,
( B 1 ) × ( B 2 ) i , j = 0 3 i i , i , i 3 j j , j , j 3 3 i + 3 j i + j i ( 1 + i + j ) ( 1 3 j ) = 3 4 + 3 3 4 π ,
( B 1 ) × ( B 3 ) i , j = 0 3 i i , i , i 3 j j , j , j 3 3 i + 3 j i + j i ( 1 + i + j ) ( 2 3 j ) = 3 8 + 3 3 16 π ,
( B 1 ) × ( B 4 ) i , j = 0 3 i i , i , i 3 j j , j , j 3 3 i + 3 j 1 + i + j i ( 2 + i + j ) ( 1 + j ) = 9 3 8 π ,
( B 1 ) × ( B 7 ) i , j = 0 3 i i , i , i 3 j j , j , j 3 3 i + 3 j 2 + i + j i ( 3 + i + j ) ( 1 + j ) ( 2 + j ) = 27 140 ,
( B 2 ) × ( B 2 ) i , j = 0 3 i i , i , i 3 j j , j , j 3 3 i + 3 j i + j i ( 1 + i + j ) ( 1 3 i ) ( 1 3 j ) = 9 20 + 3 3 4 π ,
( B 2 ) × ( B 3 ) i , j = 0 3 i i , i , i 3 j j , j , j 3 3 i + 3 j i + j i ( 1 + i + j ) ( 1 3 i ) ( 2 3 j ) = 3 16 + 9 3 32 π ,
( B 2 ) × ( B 4 ) i , j = 0 3 i i , i , i 3 j j , j , j 3 3 i + 3 j 1 + i + j i ( 2 + i + j ) ( 1 3 i ) ( 1 + j ) = 9 40 + 9 3 16 π ,
( B 2 ) × ( B 5 ) i , j = 0 3 i i , i , i 1 + 3 j 1 + j , j , j 3 3 i + 3 j 1 + i + j i ( 2 + i + j ) ( 1 3 i ) ( 1 3 j ) = 9 40 + 9 3 32 π ,
( B 2 ) × ( B 7 ) i , j = 0 3 i i , i , i 3 j j , j , j 3 3 i + 3 j 2 + i + j i ( 3 + i + j ) ( 1 3 i ) ( 1 + j ) ( 2 + j ) = 27 280 + 9 3 64 π ,
( B 3 ) × ( B 3 ) i , j = 0 3 i i , i , i 3 j j , j , j 3 3 i + 3 j i + j i ( 1 + i + j ) ( 2 3 i ) ( 2 3 j ) = 9 112 + 3 3 32 π ,
( B 3 ) × ( B 4 ) i , j = 0 3 i i , i , i 3 j j , j , j 3 3 i + 3 j 1 + i + j i ( 2 + i + j ) ( 2 3 i ) ( 1 + j ) = 9 112 + 9 3 32 π ,
( B 3 ) × ( B 5 ) i , j = 0 3 i i , i , i 1 + 3 j 1 + j , j , j 3 3 i + 3 j 1 + i + j i ( 2 + i + j ) ( 2 3 i ) ( 1 3 j ) = 9 80 + 3 3 32 π ,
( B 3 ) × ( B 7 ) i , j = 0 3 i i , i , i 3 j j , j , j 3 3 i + 3 j 2 + i + j i ( 3 + i + j ) ( 2 3 i ) ( 1 + j ) ( 2 + j ) = 27 560 + 9 3 160 π ,
( B 4 ) × ( B 5 ) i , j = 0 3 i i , i , i 1 + 3 j 1 + j , j , j 3 3 i + 3 j 2 + i + j 1 + i ( 3 + i + j ) ( 1 + i ) ( 1 3 j ) = 9 3 32 π ,
( B 4 ) × ( B 6 ) i , j = 0 3 i i , i , i 3 j j , j , j ( 2 + 3 j ) 3 3 i + 3 j 2 + i + j 1 + i ( 3 + i + j ) ( 1 + i ) ( 1 + j ) ( 2 3 j ) = 9 3 40 π ,
( B 4 ) × ( B 7 ) i , j = 0 3 i i , i , i 3 j j , j , j 3 3 i + 3 j 3 + i + j 1 + i ( 4 + i + j ) ( 1 + i ) ( 1 + j ) ( 2 + j ) = 27 3 320 π ,
( B 5 ) × ( B 5 ) i , j = 0 1 + 3 i 1 + i , i , i 1 + 3 j 1 + j , j , j 3 3 i + 3 j 2 + i + j 1 + i ( 3 + i + j ) ( 1 3 i ) ( 1 3 j ) = 27 220 ,
( B 5 ) × ( B 7 ) i , j = 0 1 + 3 i 1 + i , i , i 3 j j , j , j 3 3 i + 3 j 3 + i + j 1 + i ( 4 + i + j ) ( 1 3 i ) ( 1 + j ) ( 2 + j ) = 243 6160 ,
( B 7 ) × ( B 7 ) i , j = 0 3 i i , i , i 3 j j , j , j 3 3 i + 3 j 4 + i + j 2 + i ( 5 + i + j ) ( 1 + i ) ( 2 + i ) ( 1 + j ) ( 2 + j ) = 739 80080 .

2.7. Crossing Products from Series in Classes B and C

( B 1 ) × ( C 1 ) i , j = 0 3 i i , i , i 4 j j , j , 2 j 3 3 i 4 3 j i + j i ( 1 + i + j ) = 72 ( 3 2 ) 5 π ,
( B 1 ) × ( C 2 ) i , j = 0 3 i i , i , i 4 j j , j , 2 j 3 3 i 4 3 j i + j i ( 1 + i + j ) ( 1 4 j ) = 72 ( 41 3 36 2 ) 385 π ,
( B 1 ) × ( C 3 ) i , j = 0 3 i i , i , i 4 j j , j , 2 j 3 3 i 4 3 j i + j i ( 1 + i + j ) ( 3 4 j ) = 24 ( 113 3 108 2 ) 1105 π ,
( B 1 ) × ( C 4 ) i , j = 0 3 i i , i , i 4 j j , j , 2 j 3 3 i 4 3 j 1 + i + j i ( 2 + i + j ) ( 1 + j ) = 10368 ( 2 + 3 ) 17017 π ,
( B 1 ) × ( C 5 ) i , j = 0 3 i i , i , i 1 + 4 j 1 + j , j , 2 j 3 3 i 4 3 j 1 + i + j i ( 2 + i + j ) ( 1 4 j ) = 10368 ( 3 2 ) 2185 π ,
( B 1 ) × ( C 6 ) i , j = 0 3 i i , i , i 4 j j , j , 2 j ( 3 + 4 j ) 3 3 i 4 3 j 1 + i + j i ( 2 + i + j ) ( 1 + j ) ( 3 4 j ) = 10368 ( 3 2 ) 3625 π ,
( B 1 ) × ( C 7 ) i , j = 0 3 i i , i , i 4 j j , j , 2 j 3 3 i 4 3 j 2 + i + j i ( 3 + i + j ) ( 1 + j ) ( 2 + j ) = 2985984 ( 3 2 ) 1584125 π ,
( B 2 ) × ( C 1 ) i , j = 0 3 i i , i , i 4 j j , j , 2 j 3 3 i 4 3 j i + j i ( 1 + i + j ) ( 1 3 i ) = 72 ( 48 3 43 2 ) 455 π ,
( B 3 ) × ( C 1 ) i , j = 0 3 i i , i , i 4 j j , j , 2 j 3 3 i 4 3 j i + j i ( 1 + i + j ) ( 2 3 i ) = 36 ( 96 3 91 2 ) 935 π ,
( B 3 ) × ( C 2 ) i , j = 0 3 i i , i , i 4 j j , j , 2 j 3 3 i 4 3 j i + j i ( 1 + i + j ) ( 2 3 i ) ( 1 4 j ) = 432 ( 712 3 597 2 ) 150535 π ,
( B 4 ) × ( C 1 ) i , j = 0 3 i i , i , i 4 j j , j , 2 j 3 3 i 4 3 j 1 + i + j 1 + i ( 2 + i + j ) ( 1 + i ) = 10368 ( 2 + 3 ) 17017 π ,
( B 4 ) × ( C 4 ) i , j = 0 3 i i , i , i 4 j j , j , 2 j 3 3 i 4 3 j 2 + i + j 1 + i ( 3 + i + j ) ( 1 + i ) ( 1 + j ) = 2985984 ( 3 2 ) 1584125 π ,
( B 4 ) × ( C 5 ) i , j = 0 3 i i , i , i 1 + 4 j 1 + j , j , 2 j 3 3 i 4 3 j 2 + i + j 1 + i ( 3 + i + j ) ( 1 + i ) ( 1 4 j ) = 2985984 ( 2 + 3 ) 18463445 π ,
( B 4 ) × ( C 6 ) i , j = 0 3 i i , i , i 4 j j , j , 2 j ( 3 + 4 j ) 3 3 i 4 3 j 2 + i + j 1 + i ( 3 + i + j ) ( 1 + i ) ( 1 + j ) ( 3 4 j ) = 2985984 ( 2 + 3 ) 25814789 π ,
( B 4 ) × ( C 7 ) i , j = 0 3 i i , i , i 4 j j , j , 2 j 3 3 i 4 3 j 3 + i + j 1 + i ( 4 + i + j ) ( 1 + i ) ( 1 + j ) ( 2 + j ) = 1289945088 ( 2 + 3 ) 28009046065 π ,
( B 5 ) × ( C 1 ) i , j = 0 1 + 3 i 1 + i , i , i 4 j j , j , 2 j 3 3 i 4 3 j 1 + i + j 1 + i ( 2 + i + j ) ( 1 3 i ) = 10368 ( 3 2 ) 2375 π ,
( B 5 ) × ( C 4 ) i , j = 0 1 + 3 i 1 + i , i , i 4 j j , j , 2 j 3 3 i 4 3 j 2 + i + j 1 + i ( 3 + i + j ) ( 1 3 i ) ( 1 + j ) = 2985984 ( 2 + 3 ) 19518499 π ,
( B 5 ) × ( C 5 ) i , j = 0 1 + 3 i 1 + i , i , i 1 + 4 j 1 + j , j , 2 j 3 3 i 4 3 j 2 + i + j 1 + i ( 3 + i + j ) ( 1 3 i ) ( 1 4 j ) = 2985984 ( 3 2 ) 2348875 π ,
( B 5 ) × ( C 6 ) i , j = 0 1 + 3 i 1 + i , i , i 4 j j , j , 2 j ( 3 + 4 j ) 3 3 i 4 3 j 2 + i + j 1 + i ( 3 + i + j ) ( 1 3 i ) ( 1 + j ) ( 3 4 j ) = 2985984 ( 3 2 ) 3374875 π ,
( B 5 ) × ( C 7 ) i , j = 0 1 + 3 i 1 + i , i , i 4 j j , j , 2 j 3 3 i 4 3 j 3 + i + j 1 + i ( 4 + i + j ) ( 1 3 i ) ( 1 + j ) ( 2 + j ) = 1289945088 ( 3 2 ) 3337751375 π ,
( B 6 ) × ( C 1 ) i , j = 0 3 i i , i , i 4 j j , j , 2 j ( 2 + 3 i ) 3 3 i 4 3 j 1 + i + j 1 + i ( 2 + i + j ) ( 1 + i ) ( 2 3 i ) = 10368 ( 3 2 ) 3335 π ,
( B 6 ) × ( C 4 ) i , j = 0 3 i i , i , i 4 j j , j , 2 j ( 2 + 3 i ) 3 3 i 4 3 j 2 + i + j 1 + i ( 3 + i + j ) ( 1 + i ) ( 2 3 i ) ( 1 + j ) = 2985984 ( 2 + 3 ) 24419395 π ,
( B 6 ) × ( C 5 ) i , j = 0 3 i i , i , i 1 + 4 j 1 + j , j , 2 j ( 2 + 3 i ) 3 3 i 4 3 j 2 + i + j 1 + i ( 3 + i + j ) ( 1 + i ) ( 2 3 i ) ( 1 4 j ) = 2985984 ( 3 2 ) 2978155 π ,
( B 6 ) × ( C 6 ) i , j = 0 3 i i , i , i 4 j j , j , 2 j ( 2 + 3 i ) ( 3 + 4 j ) 3 3 i 4 3 j 2 + i + j 1 + i ( 3 + i + j ) ( 1 + i ) ( 2 3 i ) ( 1 + j ) ( 3 4 j ) = 2985984 ( 3 2 ) 4418875 π ,
( B 6 ) × ( C 7 ) i , j = 0 3 i i , i , i 4 j j , j , 2 j ( 2 + 3 i ) 3 3 i 4 3 j 3 + i + j 1 + i ( 4 + i + j ) ( 1 + i ) ( 2 3 i ) ( 1 + j ) ( 2 + j ) = 1289945088 ( 3 2 ) 3946055375 π ,
( B 7 ) × ( C 1 ) i , j = 0 3 i i , i , i 4 j j , j , 2 j 3 3 i 4 3 j 2 + i + j 2 + i ( 3 + i + j ) ( 1 + i ) ( 2 + i ) = 2985984 ( 3 2 ) 1584125 π ,
( B 7 ) × ( C 4 ) i , j = 0 3 i i , i , i 4 j j , j , 2 j 3 3 i 4 3 j 3 + i + j 2 + i ( 4 + i + j ) ( 1 + i ) ( 2 + i ) ( 1 + j ) = 1289945088 ( 2 + 3 ) 28009046065 π ,
( B 7 ) × ( C 5 ) i , j = 0 3 i i , i , i 1 + 4 j 1 + j , j , 2 j 3 3 i 4 3 j 3 + i + j 2 + i ( 4 + i + j ) ( 1 + i ) ( 2 + i ) ( 1 4 j ) = 1289945088 ( 3 2 ) 3201516625 π ,
( B 7 ) × ( C 6 ) i , j = 0 3 i i , i , i 4 j j , j , 2 j ( 3 + 4 j ) 3 3 i 4 3 j 3 + i + j 2 + i ( 4 + i + j ) ( 1 + i ) ( 2 + i ) ( 1 + j ) ( 3 4 j ) = 1289945088 ( 3 2 ) 4113972625 π ,
( B 7 ) × ( C 7 ) i , j = 0 3 i i , i , i 4 j j , j , 2 j 3 3 i 4 3 j 4 + i + j 2 + i ( 5 + i + j ) ( 1 + i ) 2 ( 1 + j ) 2 = 743008370688 ( 3 2 ) 8314338675125 π .

2.8. Crossing Products from Series in Classes B and D

( B 1 ) × ( D 1 ) i , j = 0 3 i i , i , i 6 j j , 2 j , 3 j 3 3 i + 3 j 4 2 j i + j i ( 1 + i + j ) = 6 ( 3 1 ) π ,
( B 1 ) × ( D 2 ) i , j = 0 3 i i , i , i 6 j j , 2 j , 3 j 3 3 i + 3 j 4 2 j i + j i ( 1 + i + j ) ( 1 6 j ) = 6 ( 3 3 2 ) 5 π ,
( B 1 ) × ( D 3 ) i , j = 0 3 i i , i , i 6 j j , 2 j , 3 j 3 3 i + 3 j 4 2 j i + j i ( 1 + i + j ) ( 5 6 j ) = 2 ( 11 3 10 ) 35 π ,
( B 1 ) × ( D 4 ) i , j = 0 3 i i , i , i 6 j j , 2 j , 3 j 3 3 i + 3 j 4 2 j 1 + i + j i ( 2 + i + j ) ( 1 + j ) = 24 ( 1 + 3 ) 35 π ,
( B 1 ) × ( D 5 ) i , j = 0 3 i i , i , i 1 + 6 j 1 + j , 2 j , 3 j 3 3 i + 3 j 4 2 j 1 + i + j i ( 2 + i + j ) ( 1 6 j ) = 24 ( 3 1 ) 11 π ,
( B 1 ) × ( D 6 ) i , j = 0 3 i i , i , i 6 j j , 2 j , 3 j ( 5 + 6 j ) 3 3 i + 3 j 4 2 j 1 + i + j i ( 2 + i + j ) ( 1 + j ) ( 5 6 j ) = 72 ( 3 1 ) 65 π ,
( B 1 ) × ( D 7 ) i , j = 0 3 i i , i , i 6 j j , 2 j , 3 j 3 3 i + 3 j 4 2 j 2 + i + j i ( 3 + i + j ) ( 1 + j ) ( 2 + j ) = 576 ( 3 1 ) 715 π ,
( B 2 ) × ( D 1 ) i , j = 0 3 i i , i , i 6 j j , 2 j , 3 j 3 3 i + 3 j 4 2 j i + j i ( 1 + i + j ) ( 1 3 i ) = 6 ( 4 3 3 ) 7 π ,
( B 2 ) × ( D 2 ) i , j = 0 3 i i , i , i 6 j j , 2 j , 3 j 3 3 i + 3 j 4 2 j i + j i ( 1 + i + j ) ( 1 3 i ) ( 1 6 j ) = 4 ( 22 3 13 ) 35 π ,
( B 2 ) × ( D 3 ) i , j = 0 3 i i , i , i 6 j j , 2 j , 3 j 3 3 i + 3 j 4 2 j i + j i ( 1 + i + j ) ( 1 3 i ) ( 5 6 j ) = 4 ( 38 3 25 ) 455 π ,
( B 2 ) × ( D 4 ) i , j = 0 3 i i , i , i 6 j j , 2 j , 3 j 3 3 i + 3 j 4 2 j 1 + i + j i ( 2 + i + j ) ( 1 3 i ) ( 1 + j ) = 24 ( 24 3 11 ) 455 π ,
( B 2 ) × ( D 5 ) i , j = 0 3 i i , i , i 1 + 6 j 1 + j , 2 j , 3 j 3 3 i + 3 j 4 2 j 1 + i + j i ( 2 + i + j ) ( 1 3 i ) ( 1 6 j ) = 24 ( 104 3 71 ) 1925 π ,
( B 2 ) × ( D 6 ) i , j = 0 3 i i , i , i 6 j j , 2 j , 3 j ( 5 + 6 j ) 3 3 i + 3 j 4 2 j 1 + i + j i ( 2 + i + j ) ( 1 3 i ) ( 1 + j ) ( 5 6 j ) = 24 ( 232 3 167 ) 8645 π ,
( B 2 ) × ( D 7 ) i , j = 0 3 i i , i , i 6 j j , 2 j , 3 j 3 3 i + 3 j 4 2 j 2 + i + j i ( 3 + i + j ) ( 1 3 i ) ( 1 + j ) ( 2 + j ) = 576 ( 404 3 261 ) 475475 π ,
( B 3 ) × ( D 1 ) i , j = 0 3 i i , i , i 6 j j , 2 j , 3 j 3 3 i + 3 j 4 2 j i + j i ( 1 + i + j ) ( 2 3 i ) = 8 3 7 5 π ,
( B 3 ) × ( D 2 ) i , j = 0 3 i i , i , i 6 j j , 2 j , 3 j 3 3 i + 3 j 4 2 j i + j i ( 1 + i + j ) ( 2 3 i ) ( 1 6 j ) = 2 ( 28 3 17 ) 55 π ,
( B 3 ) × ( D 3 ) i , j = 0 3 i i , i , i 6 j j , 2 j , 3 j 3 3 i + 3 j 4 2 j i + j i ( 1 + i + j ) ( 2 3 i ) ( 5 6 j ) = 6 ( 4 3 3 ) 175 π ,
( B 3 ) × ( D 4 ) i , j = 0 3 i i , i , i 6 j j , 2 j , 3 j 3 3 i + 3 j 4 2 j 1 + i + j i ( 2 + i + j ) ( 2 3 i ) ( 1 + j ) = 12 ( 16 3 5 ) 385 π ,
( B 3 ) × ( D 5 ) i , j = 0 3 i i , i , i 1 + 6 j 1 + j , 2 j , 3 j 3 3 i + 3 j 4 2 j 1 + i + j i ( 2 + i + j ) ( 2 3 i ) ( 1 6 j ) = 12 ( 48 3 37 ) 935 π ,
( B 3 ) × ( D 6 ) i , j = 0 3 i i , i , i 6 j j , 2 j , 3 j ( 5 + 6 j ) 3 3 i + 3 j 4 2 j 1 + i + j i ( 2 + i + j ) ( 2 3 i ) ( 1 + j ) ( 5 6 j ) = 12 ( 80 3 67 ) 3185 π ,
( B 3 ) × ( D 7 ) i , j = 0 3 i i , i , i 6 j j , 2 j , 3 j 3 3 i + 3 j 4 2 j 2 + i + j i ( 3 + i + j ) ( 2 3 i ) ( 1 + j ) ( 2 + j ) = 288 ( 488 3 345 ) 595595 π ,
( B 4 ) × ( D 1 ) i , j = 0 3 i i , i , i 6 j j , 2 j , 3 j 3 3 i + 3 j 4 2 j 1 + i + j 1 + i ( 2 + i + j ) ( 1 + i ) = 24 ( 1 + 3 ) 35 π ,
( B 4 ) × ( D 2 ) i , j = 0 3 i i , i , i 6 j j , 2 j , 3 j 3 3 i + 3 j 4 2 j 1 + i + j 1 + i ( 2 + i + j ) ( 1 + i ) ( 1 6 j ) = 24 ( 23 3 12 ) 385 π ,
( B 4 ) × ( D 3 ) i , j = 0 3 i i , i , i 6 j j , 2 j , 3 j 3 3 i + 3 j 4 2 j 1 + i + j 1 + i ( 2 + i + j ) ( 1 + i ) ( 5 6 j ) = 24 ( 17 3 4 ) 2275 π ,
( B 4 ) × ( D 4 ) i , j = 0 3 i i , i , i 6 j j , 2 j , 3 j 3 3 i + 3 j 4 2 j 2 + i + j 1 + i ( 3 + i + j ) ( 1 + i ) ( 1 + j ) = 576 ( 3 1 ) 715 π ,
( B 4 ) × ( D 5 ) i , j = 0 3 i i , i , i 1 + 6 j 1 + j , 2 j , 3 j 3 3 i + 3 j 4 2 j 2 + i + j 1 + i ( 3 + i + j ) ( 1 + i ) ( 1 6 j ) = 576 ( 1 + 3 ) 2975 π ,
( B 4 ) × ( D 6 ) i , j = 0 3 i i , i , i 6 j j , 2 j , 3 j ( 5 + 6 j ) 3 3 i + 3 j 4 2 j 2 + i + j 1 + i ( 3 + i + j ) ( 1 + i ) ( 1 + j ) ( 5 6 j ) = 576 ( 1 + 3 ) 4655 π ,
( B 4 ) × ( D 7 ) i , j = 0 3 i i , i , i 6 j j , 2 j , 3 j 3 3 i + 3 j 4 2 j 3 + i + j 1 + i ( 4 + i + j ) ( 1 + i ) ( 1 + j ) ( 2 + j ) = 20736 ( 1 + 3 ) 395675 π ,
( B 5 ) × ( D 1 ) i , j = 0 1 + 3 i 1 + i , i , i 6 j j , 2 j , 3 j 3 3 i + 3 j 4 2 j 1 + i + j 1 + i ( 2 + i + j ) ( 1 3 i ) = 24 ( 3 1 ) 13 π ,
( B 5 ) × ( D 2 ) i , j = 0 1 + 3 i 1 + i , i , i 6 j j , 2 j , 3 j 3 3 i + 3 j 4 2 j 1 + i + j 1 + i ( 2 + i + j ) ( 1 3 i ) ( 1 6 j ) = 24 ( 107 3 68 ) 2275 π ,
( B 5 ) × ( D 3 ) i , j = 0 1 + 3 i 1 + i , i , i 6 j j , 2 j , 3 j 3 3 i + 3 j 4 2 j 1 + i + j 1 + i ( 2 + i + j ) ( 1 3 i ) ( 5 6 j ) = 24 ( 73 3 60 ) 8645 π ,
( B 5 ) × ( D 4 ) i , j = 0 1 + 3 i 1 + i , i , i 6 j j , 2 j , 3 j 3 3 i + 3 j 4 2 j 2 + i + j 1 + i ( 3 + i + j ) ( 1 3 i ) ( 1 + j ) = 576 ( 1 + 3 ) 3325 π ,
( B 5 ) × ( D 5 ) i , j = 0 1 + 3 i 1 + i , i , i 1 + 6 j 1 + j , 2 j , 3 j 3 3 i + 3 j 4 2 j 2 + i + j 1 + i ( 3 + i + j ) ( 1 3 i ) ( 1 6 j ) = 576 ( 3 1 ) 1001 π ,
( B 5 ) × ( D 6 ) i , j = 0 1 + 3 i 1 + i , i , i 6 j j , 2 j , 3 j ( 5 + 6 j ) 3 3 i + 3 j 4 2 j 2 + i + j 1 + i ( 3 + i + j ) ( 1 3 i ) ( 1 + j ) ( 5 6 j ) = 576 ( 3 1 ) 1625 π ,
( B 5 ) × ( D 7 ) i , j = 0 1 + 3 i 1 + i , i , i 6 j j , 2 j , 3 j 3 3 i + 3 j 4 2 j 3 + i + j 1 + i ( 4 + i + j ) ( 1 3 i ) ( 1 + j ) ( 2 + j ) = 20736 ( 3 1 ) 125125 π ,
( B 6 ) × ( D 1 ) i , j = 0 3 i i , i , i 6 j j , 2 j , 3 j ( 2 + 3 i ) 3 3 i + 3 j 4 2 j 1 + i + j 1 + i ( 2 + i + j ) ( 1 + i ) ( 2 3 i ) = 72 ( 3 1 ) 55 π ,
( B 6 ) × ( D 2 ) i , j = 0 3 i i , i , i 6 j j , 2 j , 3 j ( 2 + 3 i ) 3 3 i + 3 j 4 2 j 1 + i + j 1 + i ( 2 + i + j ) ( 1 + i ) ( 2 3 i ) ( 1 6 j ) = 24 ( 31 3 20 ) 935 π ,
( B 6 ) × ( D 3 ) i , j = 0 3 i i , i , i 6 j j , 2 j , 3 j ( 2 + 3 i ) 3 3 i + 3 j 4 2 j 1 + i + j 1 + i ( 2 + i + j ) ( 1 + i ) ( 2 3 i ) ( 5 6 j ) = 24 ( 79 3 68 ) 13475 π ,
( B 6 ) × ( D 4 ) i , j = 0 3 i i , i , i 6 j j , 2 j , 3 j ( 2 + 3 i ) 3 3 i + 3 j 4 2 j 2 + i + j 1 + i ( 3 + i + j ) ( 1 + i ) ( 2 3 i ) ( 1 + j ) = 576 ( 1 + 3 ) 4165 π ,
( B 6 ) × ( D 5 ) i , j = 0 3 i i , i , i 1 + 6 j 1 + j , 2 j , 3 j ( 2 + 3 i ) 3 3 i + 3 j 4 2 j 2 + i + j 1 + i ( 3 + i + j ) ( 1 + i ) ( 2 3 i ) ( 1 6 j ) = 576 ( 3 1 ) 1265 π ,
( B 6 ) × ( D 6 ) i , j = 0 3 i i , i , i 6 j j , 2 j , 3 j ( 2 + 3 i ) ( 5 + 6 j ) 3 3 i + 3 j 4 2 j 2 + i + j 1 + i ( 3 + i + j ) ( 1 + i ) ( 2 3 i ) ( 1 + j ) ( 5 6 j ) = 192 ( 3 1 ) 715 π ,
( B 6 ) × ( D 7 ) i , j = 0 3 i i , i , i 6 j j , 2 j , 3 j ( 2 + 3 i ) 3 3 i + 3 j 4 2 j 3 + i + j 1 + i ( 4 + i + j ) ( 1 + i ) ( 2 3 i ) ( 1 + j ) ( 2 + j ) = 2304 ( 3 1 ) 16445 π ,
( B 7 ) × ( D 1 ) i , j = 0 3 i i , i , i 6 j j , 2 j , 3 j 3 3 i + 3 j 4 2 j 2 + i + j 2 + i ( 3 + i + j ) ( 1 + i ) ( 2 + i ) = 576 ( 3 1 ) 715 π ,
( B 7 ) × ( D 2 ) i , j = 0 3 i i , i , i 6 j j , 2 j , 3 j 3 3 i + 3 j 4 2 j 2 + i + j 2 + i ( 3 + i + j ) ( 1 + i ) ( 2 + i ) ( 1 6 j ) = 576 ( 369 3 226 ) 425425 π ,
( B 7 ) × ( D 3 ) i , j = 0 3 i i , i , i 6 j j , 2 j , 3 j 3 3 i + 3 j 4 2 j 2 + i + j 2 + i ( 3 + i + j ) ( 1 + i ) ( 2 + i ) ( 5 6 j ) = 576 ( 537 3 394 ) 3328325 π ,
( B 7 ) × ( D 4 ) i , j = 0 3 i i , i , i 6 j j , 2 j , 3 j 3 3 i + 3 j 4 2 j 3 + i + j 2 + i ( 4 + i + j ) ( 1 + i ) ( 2 + i ) ( 1 + j ) = 20736 ( 1 + 3 ) 395675 π ,
( B 7 ) × ( D 5 ) i , j = 0 3 i i , i , i 1 + 6 j 1 + j , 2 j , 3 j 3 3 i + 3 j 4 2 j 3 + i + j 2 + i ( 4 + i + j ) ( 1 + i ) ( 2 + i ) ( 1 6 j ) = 20736 ( 3 1 ) 115115 π ,
( B 7 ) × ( D 6 ) i , j = 0 3 i i , i , i 6 j j , 2 j , 3 j ( 5 + 6 j ) 3 3 i + 3 j 4 2 j 3 + i + j 2 + i ( 4 + i + j ) ( 1 + i ) ( 2 + i ) ( 1 + j ) ( 5 6 j ) = 2304 ( 3 1 ) 17875 π ,
( B 7 ) × ( D 7 ) i , j = 0 3 i i , i , i 6 j j , 2 j , 3 j 3 3 i + 3 j 4 2 j 4 + i + j 2 + i ( 7 + i + j ) ( 1 + i ) 2 ( 1 + j ) 2 = 110592 ( 3 1 ) 2877875 π .

2.9. Crossing Products from Series in Classes B and E

( B 1 ) × ( E 5 ) i , j = 0 3 i i , i , i ( 1 10 ) j ( 9 10 ) j 3 3 i ( j ! ) 2 ( 1 + i + j ) i + j i = 225 ( 1 + 2 3 5 ) 119 π ,
( B 1 ) × ( E 6 ) i , j = 0 3 i i , i , i ( 3 10 ) j ( 7 10 ) j 3 3 i ( j ! ) 2 ( 1 + i + j ) i + j i = 225 ( 2 3 1 5 ) 11 π ,
( B 1 ) × ( E 7 ) i , j = 0 3 i i , i , i ( 1 12 ) j ( 11 12 ) j 3 3 i ( j ! ) 2 ( 1 + i + j ) i + j i = 4 6 ( 3 2 + 3 3 ) 7 π ,
( B 1 ) × ( E 8 ) i , j = 0 3 i i , i , i ( 5 12 ) j ( 7 12 ) j 3 3 i ( j ! ) 2 ( 1 + i + j ) i + j i = 4 6 ( 3 3 2 + 3 ) π ,
( B 4 ) × ( E 7 ) i , j = 0 3 i i , i , i ( 1 12 ) j ( 11 12 ) j 3 3 i ( j ! ) 2 ( 1 + i ) ( 2 + i + j ) 1 + i + j j = 384 ( 3 + 2 3 ) 475 π ,
( B 4 ) × ( E 8 ) i , j = 0 3 i i , i , i ( 5 12 ) j ( 7 12 ) j 3 3 i ( j ! ) 2 ( 1 + i ) ( 2 + i + j ) 1 + i + j j = 384 ( 3 + 2 + 3 ) 715 π ,
( B 5 ) × ( E 7 ) i , j = 0 1 + 3 i 1 + i , i , i ( 1 12 ) j ( 11 12 ) j 3 3 i ( j ! ) 2 ( 1 3 i ) ( 2 + i + j ) 1 + i + j j = 64 ( 6 + 6 3 2 ) 119 3 π ,
( B 5 ) × ( E 8 ) i , j = 0 1 + 3 i 1 + i , i , i ( 5 12 ) j ( 7 12 ) j 3 3 i ( j ! ) 2 ( 1 3 i ) ( 2 + i + j ) 1 + i + j j = 576 ( 6 6 + 3 2 ) 161 3 π ,
( B 6 ) × ( E 7 ) i , j = 0 3 i i , i , i ( 3 i + 2 ) ( 1 12 ) j ( 11 12 ) j 3 3 i ( j ! ) 2 ( 1 + i ) ( 2 3 i ) ( 2 + i + j ) 1 + i + j j = 576 ( 2 6 + 2 3 ) 1519 3 π ,
( B 6 ) × ( E 8 ) i , j = 0 3 i i , i , i ( 3 i + 2 ) ( 5 12 ) j ( 7 12 ) j 3 3 i ( j ! ) 2 ( 1 + i ) ( 2 3 i ) ( 2 + i + j ) 1 + i + j j = 64 ( 2 + 6 2 3 ) 25 π .

2.10. Combined Products from Series in Class C

( C 1 ) × ( C 1 ) i , j = 0 4 i i , i , 2 i 4 j j , j , 2 j 4 3 i + 3 j i + j i ( 1 + i + j ) = 2 ,
( C 1 ) × ( C 2 ) i , j = 0 4 i i , i , 2 i 4 j j , j , 2 j 4 3 i + 3 j i + j i ( 1 + i + j ) ( 1 4 j ) = 2 + π 2 π ,
( C 1 ) × ( C 3 ) i , j = 0 4 i i , i , 2 i 4 j j , j , 2 j 4 3 i + 3 j i + j i ( 1 + i + j ) ( 3 4 j ) = 2 + 3 π 9 2 π ,
( C 1 ) × ( C 4 ) i , j = 0 4 i i , i , 2 i 4 j j , j , 2 j 4 3 i + 3 j 1 + i + j i ( 2 + i + j ) ( 1 + j ) = 4 2 3 π ,
( C 1 ) × ( C 5 ) i , j = 0 4 i i , i , 2 i 1 + 4 j 1 + j , j , 2 j 4 3 i + 3 j i + j + 1 i ( 2 + i + j ) ( 1 4 j ) = 2 3 ,
( C 1 ) × ( C 6 ) i , j = 0 4 i i , i , 2 i 4 j j , j , 2 j ( 3 + 4 j ) 4 3 i + 3 j i + j + 1 i ( 2 + i + j ) ( 1 + j ) ( 3 4 j ) = 2 5 ,
( C 1 ) × ( C 7 ) i , j = 0 4 i i , i , 2 i 4 j j , j , 2 j 4 3 i + 3 j i + j + 2 i ( 3 + i + j ) ( 1 + j ) ( 2 + j ) = 2 2 15 ,
( C 2 ) × ( C 2 ) i , j = 0 4 i i , i , 2 i 4 j j , j , 2 j 4 3 i + 3 j i + j i ( 1 + i + j ) ( 1 4 i ) ( 1 4 j ) = 2 ( 3 + π ) 3 π ,
( C 2 ) × ( C 3 ) i , j = 0 4 i i , i , 2 i 4 j j , j , 2 j 4 3 i + 3 j i + j i ( 1 + i + j ) ( 1 4 i ) ( 3 4 j ) = 8 + 3 π 18 2 π ,
( C 2 ) × ( C 4 ) i , j = 0 4 i i , i , 2 i 4 j j , j , 2 j 4 3 i + 3 j 1 + i + j i ( 2 + i + j ) ( 1 4 i ) ( 1 + j ) = 4 + π 3 2 π ,
( C 2 ) × ( C 5 ) i , j = 0 4 i i , i , 2 i 1 + 4 j 1 + j , j , 2 j 4 3 i + 3 j 1 + i + j i ( 2 + i + j ) ( 1 4 i ) ( 1 4 j ) = 12 + 5 π 15 2 π ,
( C 2 ) × ( C 6 ) i , j = 0 4 i i , i , 2 i 4 j j , j , 2 j ( 3 + 4 j ) 4 3 i + 3 j 1 + i + j i ( 2 + i + j ) ( 1 4 i ) ( 1 + j ) ( 3 4 j ) = 20 + 9 π 45 2 π ,
( C 2 ) × ( C 7 ) i , j = 0 4 i i , i , 2 i 4 j j , j , 2 j 4 3 i + 3 j 2 + i + j i ( 3 + i + j ) ( 1 4 i ) ( 1 + j ) ( 2 + j ) = 2 ( 8 + 3 π ) 45 π ,
( C 3 ) × ( C 3 ) i , j = 0 4 i i , i , 2 i 4 j j , j , 2 j 4 3 i + 3 j i + j i ( 1 + i + j ) ( 3 4 i ) ( 3 4 j ) = 2 ( 5 + 3 π ) 135 π ,
( C 3 ) × ( C 4 ) i , j = 0 4 i i , i , 2 i 4 j j , j , 2 j 4 3 i + 3 j 1 + i + j i ( 2 + i + j ) ( 3 4 i ) ( 1 + j ) = 20 + 3 π 45 2 π ,
( C 3 ) × ( C 5 ) i , j = 0 4 i i , i , 2 i 1 + 4 j 1 + j , j , 2 j 4 3 i + 3 j 1 + i + j i ( 2 + i + j ) ( 3 4 i ) ( 1 4 j ) = 4 + 3 π 27 2 π ,
( C 3 ) × ( C 6 ) i , j = 0 4 i i , i , 2 i 4 j j , j , 2 j ( 3 + 4 j ) 4 3 i + 3 j 1 + i + j i ( 2 + i + j ) ( 3 4 i ) ( 3 4 j ) ( 1 + j ) = 20 + 21 π 315 2 π ,
( C 3 ) × ( C 7 ) i , j = 0 4 i i , i , 2 i 4 j j , j , 2 j 4 3 i + 3 j 2 + i + j i ( 3 + i + j ) ( 3 4 i ) ( 1 + j ) ( 2 + j ) = 2 ( 40 + 21 π ) 945 π ,
( C 4 ) × ( C 5 ) i , j = 0 4 i i , i , 2 i 1 + 4 j 1 + j , j , 2 j 4 3 i + 3 j 2 + i + j 1 + i ( 3 + i + j ) ( 1 + i ) ( 1 4 j ) = 16 2 45 π ,
( C 4 ) × ( C 6 ) i , j = 0 4 i i , i , 2 i 4 j j , j , 2 j ( 3 + 4 j ) 4 3 i + 3 j 2 + i + j 1 + i ( 3 + i + j ) ( 1 + i ) ( 3 4 j ) ( 1 + j ) = 16 2 63 π ,
( C 4 ) × ( C 7 ) i , j = 0 4 i i , i , 2 i 4 j j , j , 2 j 4 3 i + 3 j 3 + i + j 1 + i ( 4 + i + j ) ( 1 + i ) ( 1 + j ) ( 2 + j ) = 32 2 315 π ,
( C 5 ) × ( C 5 ) i , j = 0 1 + 4 i 1 + i , i , 2 i 1 + 4 j 1 + j , j , 2 j 4 3 i + 3 j 2 + i + j 1 + i ( 3 + i + j ) ( 1 4 i ) ( 1 4 j ) = 2 2 21 ,
( C 5 ) × ( C 6 ) i , j = 0 1 + 4 i 1 + i , i , 2 i 4 j j , j , 2 j ( 3 + 4 j ) 4 3 i + 3 j 2 + i + j 1 + i ( 3 + i + j ) ( 1 4 i ) ( 3 4 j ) ( 1 + j ) = 2 15 ,
( C 5 ) × ( C 7 ) i , j = 0 1 + 4 i 1 + i , i , 2 i 4 j j , j , 2 j 4 3 i + 3 j 3 + i + j 1 + i ( 4 + i + j ) ( 1 4 i ) ( 1 + j ) ( 2 + j ) = 2 35 ,
( C 6 ) × ( C 6 ) i , j = 0 4 i i , i , 2 i 4 j j , j , 2 j ( 3 + 4 i ) ( 3 + 4 j ) 4 3 i + 3 j 2 + i + j 1 + i ( 3 + i + j ) ( 3 4 i ) ( 3 4 j ) ( 1 + i ) ( 1 + j ) = 2 2 45 ,
( C 6 ) × ( C 7 ) i , j = 0 4 i i , i , 2 i 4 j j , j , 2 j ( 3 + 4 i ) 4 3 i + 3 j 3 + i + j 1 + i ( 4 + i + j ) ( 1 + i ) ( 3 4 i ) ( 1 + j ) ( 2 + j ) = 2 45 ,
( C 7 ) × ( C 7 ) i , j = 0 4 i i , i , 2 i 4 j j , j , 2 j 4 3 i + 3 j 4 + i + j 2 + i ( 5 + i + j ) ( 1 + i ) ( 2 + i ) ( 1 + j ) ( 2 + j ) = 2 2 315 .

2.11. Crossing Products from Series in Classes C and D

( C 1 ) × ( D 1 ) i , j = 0 4 i i , i , 2 i 6 j j , 2 j , 3 j 3 3 j 4 3 i + 2 j i + j i ( 1 + i + j ) = 72 ( 2 1 ) 7 π ,
( C 1 ) × ( D 2 ) i , j = 0 4 i i , i , 2 i 6 j j , 2 j , 3 j 3 3 j 4 3 i + 2 j i + j i ( 1 + i + j ) ( 1 6 j ) = 72 ( 31 2 24 ) 385 π ,
( C 1 ) × ( D 3 ) i , j = 0 4 i i , i , 2 i 6 j j , 2 j , 3 j 3 3 j 4 3 i + 2 j i + j i ( 1 + i + j ) ( 5 6 j ) = 72 ( 127 2 120 ) 8645 π ,
( C 1 ) × ( D 4 ) i , j = 0 4 i i , i , 2 i 6 j j , 2 j , 3 j 3 3 j 4 3 i + 2 j 1 + i + j i ( 2 + i + j ) ( 1 + j ) = 10368 ( 1 + 2 ) 13585 π ,
( C 1 ) × ( D 5 ) i , j = 0 4 i i , i , 2 i 1 + 6 j 1 + j , 2 j , 3 j 3 3 j 4 3 i + 2 j 1 + i + j i ( 2 + i + j ) ( 1 6 j ) = 10368 ( 2 1 ) 2737 π ,
( C 1 ) × ( D 6 ) i , j = 0 4 i i , i , 2 i 6 j j , 2 j , 3 j ( 5 + 6 j ) 3 3 j 4 3 i + 2 j 1 + i + j i ( 2 + i + j ) ( 1 + j ) ( 5 6 j ) = 10368 ( 2 1 ) 5425 π ,
( C 1 ) × ( D 7 ) i , j = 0 4 i i , i , 2 i 6 j j , 2 j , 3 j 3 3 j 4 3 i + 2 j 2 + i + j i ( 3 + i + j ) ( 1 + j ) ( 2 + j ) = 2985984 ( 2 1 ) 2121175 π ,
( C 2 ) × ( D 1 ) i , j = 0 4 i i , i , 2 i 6 j j , 2 j , 3 j 3 3 j 4 3 i + 2 j i + j i ( 1 + i + j ) ( 1 4 i ) = 72 ( 36 2 29 ) 455 π ,
( C 2 ) × ( D 2 ) i , j = 0 4 i i , i , 2 i 6 j j , 2 j , 3 j 3 3 j 4 3 i + 2 j i + j i ( 1 + i + j ) ( 1 4 i ) ( 1 6 j ) = 864 ( 417 2 298 ) 85085 π ,
( C 3 ) × ( D 1 ) i , j = 0 4 i i , i , 2 i 6 j j , 2 j , 3 j 3 3 j 4 3 i + 2 j i + j i ( 1 + i + j ) ( 3 4 i ) = 24 ( 108 2 101 ) 1463 π ,
( C 3 ) × ( D 2 ) i , j = 0 4 i i , i , 2 i 6 j j , 2 j , 3 j 3 3 j 4 3 i + 2 j i + j i ( 1 + i + j ) ( 3 4 i ) ( 1 6 j ) = 288 ( 603 2 442 ) 168245 π ,
( C 3 ) × ( D 3 ) i , j = 0 4 i i , i , 2 i 6 j j , 2 j , 3 j 3 3 j 4 3 i + 2 j i + j i ( 1 + i + j ) ( 3 4 i ) ( 5 6 j ) = 288 ( 1467 2 1250 ) 2947945 π ,
( C 4 ) × ( D 1 ) i , j = 0 4 i i , i , 2 i 6 j j , 2 j , 3 j 3 3 j 4 3 i + 2 j 1 + i + j 1 + i ( 2 + i + j ) ( 1 + i ) = 10368 ( 1 + 2 ) 13585 π ,
( C 4 ) × ( D 4 ) i , j = 0 4 i i , i , 2 i 6 j j , 2 j , 3 j 3 3 j 4 3 i + 2 j 2 + i + j 1 + i ( 3 + i + j ) ( 1 + i ) ( 1 + j ) = 2985984 ( 2 1 ) 2121175 π ,
( C 5 ) × ( D 1 ) i , j = 0 1 + 4 i 1 + i , i , 2 i 6 j j , 2 j , 3 j 3 3 j 4 3 i + 2 j 1 + i + j 1 + i ( 2 + i + j ) ( 1 4 i ) = 10368 ( 2 1 ) 2975 π ,
( C 5 ) × ( D 4 ) i , j = 0 1 + 4 i 1 + i , i , 2 i 6 j j , 2 j , 3 j 3 3 j 4 3 i + 2 j 2 + i + j 1 + i ( 3 + i + j ) ( 1 4 i ) ( 1 + j ) = 2985984 ( 1 + 2 ) 14576705 π ,
( C 5 ) × ( D 5 ) i , j = 0 1 + 4 i 1 + i , i , 2 i 1 + 6 j 1 + j , 2 j , 3 j 3 3 j 4 3 i + 2 j 2 + i + j 1 + i ( 3 + i + j ) ( 1 4 i ) ( 1 6 j ) = 2985984 ( 2 1 ) 2805425 π ,
( C 6 ) × ( D 1 ) i , j = 0 4 i i , i , 2 i 6 j j , 2 j , 3 j ( 3 + 4 i ) 3 3 j 4 3 i + 2 j 1 + i + j 1 + i ( 2 + i + j ) ( 1 + i ) ( 3 4 i ) = 10368 ( 2 1 ) 4991 π ,
( C 6 ) × ( D 6 ) i , j = 0 4 i i , i , 2 i 6 j j , 2 j , 3 j ( 3 + 4 i ) ( 5 + 6 j ) 3 3 j 4 3 i + 2 j 2 + i + j 1 + i ( 3 + i + j ) ( 1 + i ) ( 1 + j ) ( 3 4 i ) ( 5 6 j ) = 2985984 ( 2 1 ) 6862625 π ,
( C 6 ) × ( D 7 ) i , j = 0 4 i i , i , 2 i 6 j j , 2 j , 3 j ( 3 + 4 i ) 3 3 j 4 3 i + 2 j 3 + i + j 1 + i ( 4 + i + j ) ( 1 + i ) ( 3 4 i ) ( 1 + j ) ( 2 + j ) = 1289945088 ( 2 1 ) 5483237375 π ,
( C 7 ) × ( D 7 ) i , j = 0 4 i i , i , 2 i 6 j j , 2 j , 3 j 3 3 j 4 3 i + 2 j 4 + i + j 2 + i ( 5 + i + j ) ( 1 + i ) ( 2 + i ) ( 1 + j ) ( 2 + j ) = 743008370688 ( 2 1 ) 11015823886375 π .

2.12. Crossing Products from Series in Classes C and E

( C 1 ) × ( E 7 ) i , j = 0 4 i i , i , 2 i ( 1 12 ) j ( 11 12 ) j 4 3 i ( j ! ) 2 ( 1 + i + j ) i + j i = 9 6 3 3 2 π ,
( C 1 ) × ( E 8 ) i , j = 0 4 i i , i , 2 i ( 5 12 ) j ( 7 12 ) j 4 3 i ( j ! ) 2 ( 1 + i + j ) i + j i = 9 2 3 π ,
( C 2 ) × ( E 7 ) i , j = 0 4 i i , i , 2 i ( 1 12 ) j ( 11 12 ) j 4 3 i ( j ! ) 2 ( 1 4 i ) ( 1 + i + j ) i + j i = 9 ( 23 5 3 ) 28 2 π ,
( C 2 ) × ( E 8 ) i , j = 0 4 i i , i , 2 i ( 5 12 ) j ( 7 12 ) j 4 3 i ( j ! ) 2 ( 1 4 i ) ( 1 + i + j ) i + j i = 9 ( 11 3 7 ) 20 2 π ,
( C 4 ) × ( E 3 ) i , j = 0 4 i i , i , 2 i ( 1 8 ) j ( 7 8 ) j 4 3 i ( j ! ) 2 ( 1 + i ) ( 2 + i + j ) 1 + i + j j = 2048 ( 2 + 2 2 ) 2457 π ,
( C 4 ) × ( E 4 ) i , j = 0 4 i i , i , 2 i ( 3 8 ) j ( 5 8 ) j 4 3 i ( j ! ) 2 ( 1 + i ) ( 2 + i + j ) 1 + i + j j = 2048 ( 2 + 2 + 2 ) 3465 π ,
( C 4 ) × ( E 7 ) i , j = 0 4 i i , i , 2 i ( 1 12 ) j ( 11 12 ) j 4 3 i ( j ! ) 2 ( 1 + i ) ( 2 + i + j ) 1 + i + j j = 162 2 + 3 175 π ,
( C 4 ) × ( E 8 ) i , j = 0 4 i i , i , 2 i ( 5 12 ) j ( 7 12 ) j 4 3 i ( j ! ) 2 ( 1 + i ) ( 2 + i + j ) 1 + i + j j = 81 6 + 3 3 140 π ,
( C 5 ) × ( E 7 ) i , j = 0 1 + 4 i 1 + i , i , 2 i ( 1 12 ) j ( 11 12 ) j 4 3 i ( j ! ) 2 ( 1 4 i ) ( 2 + i + j ) 1 + i + j j = 81 ( 3 3 ) 52 2 π ,
( C 5 ) × ( E 8 ) i , j = 0 1 + 4 i 1 + i , i , 2 i ( 5 12 ) j ( 7 12 ) j 4 3 i ( j ! ) 2 ( 1 4 i ) ( 2 + i + j ) 1 + i + j j = 162 ( 3 1 ) 55 2 π ,
( C 6 ) × ( E 7 ) i , j = 0 4 i i , i , 2 i ( 4 i + 3 ) ( 1 12 ) j ( 11 12 ) j 4 3 i ( j ! ) 2 ( 1 + i ) ( 3 4 i ) ( 2 + i + j ) 1 + i + j j = 81 ( 3 3 ) 88 2 π ,
( C 6 ) × ( E 8 ) i , j = 0 4 i i , i , 2 i ( 4 i + 3 ) ( 5 12 ) j ( 7 12 ) j 4 3 i ( j ! ) 2 ( 1 + i ) ( 3 4 i ) ( 2 + i + j ) 1 + i + j j = 162 ( 3 1 ) 91 2 π ,
( C 7 ) × ( E 7 ) i , j = 0 4 i i , i , 2 i ( 1 12 ) j ( 11 12 ) j 4 3 i ( j ! ) 2 ( 1 + i ) ( 2 + i ) ( 3 + i + j ) 2 + i + j j = 729 6 3 3 1144 π ,
( C 7 ) × ( E 8 ) i , j = 0 4 i i , i , 2 i ( 5 12 ) j ( 7 12 ) j 4 3 i ( j ! ) 2 ( 1 + i ) ( 2 + i ) ( 3 + i + j ) 2 + i + j j = 5832 ( 3 1 ) 5005 2 π .

2.13. Combined Products from Series in Class D

( D 1 ) × ( D 1 ) i , j = 0 6 i i , 2 i , 3 i 6 j j , 2 j , 3 j 3 3 i + 3 j 4 2 i + 2 j i + j i ( 1 + i + j ) = 3 3 4 ,
( D 1 ) × ( D 2 ) i , j = 0 6 i i , 2 i , 3 i 6 j j , 2 j , 3 j 3 3 i + 3 j 4 2 i + 2 j i + j i ( 1 + i + j ) ( 1 6 j ) = 3 ( 4 + 3 π ) 8 π ,
( D 1 ) × ( D 3 ) i , j = 0 6 i i , 2 i , 3 i 6 j j , 2 j , 3 j 3 3 i + 3 j 4 2 i + 2 j i + j i ( 1 + i + j ) ( 5 6 j ) = 3 ( 4 + 5 3 π ) 200 π ,
( D 1 ) × ( D 4 ) i , j = 0 6 i i , 2 i , 3 i 6 j j , 2 j , 3 j 3 3 i + 3 j 4 2 i + 2 j 1 + i + j i ( 2 + i + j ) ( 1 + j ) = 9 5 π ,
( D 1 ) × ( D 5 ) i , j = 0 6 i i , 2 i , 3 i 1 + 6 j 1 + j , 2 j , 3 j 3 3 i + 3 j 4 2 i + 2 j 1 + i + j i ( 2 + i + j ) ( 1 6 j ) = 9 3 32 ,
( D 1 ) × ( D 6 ) i , j = 0 6 i i , 2 i , 3 i 6 j j , 2 j , 3 j ( 5 + 6 j ) 3 3 i + 3 j 4 2 i + 2 j 1 + i + j i ( 2 + i + j ) ( 1 + j ) ( 5 6 j ) = 9 3 64 ,
( D 1 ) × ( D 7 ) i , j = 0 6 i i , 2 i , 3 i 6 j j , 2 j , 3 j 3 3 i + 3 j 4 2 i + 2 j 2 + i + j i ( 3 + i + j ) ( 1 + j ) ( 2 + j ) = 27 3 256 ,
( D 2 ) × ( D 2 ) i , j = 0 6 i i , 2 i , 3 i 6 j j , 2 j , 3 j 3 3 i + 3 j 4 2 i + 2 j i + j i ( 1 + i + j ) ( 1 6 i ) ( 1 6 j ) = 3 2 π + 9 3 32 ,
( D 2 ) × ( D 3 ) i , j = 0 6 i i , 2 i , 3 i 6 j j , 2 j , 3 j 3 3 i + 3 j 4 2 i + 2 j i + j i ( 1 + i + j ) ( 1 6 i ) ( 5 6 j ) = 9 50 π + 3 3 80 ,
( D 2 ) × ( D 4 ) i , j = 0 6 i i , 2 i , 3 i 6 j j , 2 j , 3 j 3 3 i + 3 j 4 2 i + 2 j 1 + i + j i ( 2 + i + j ) ( 1 6 i ) ( 1 + j ) = 9 10 π + 9 3 64 ,
( D 2 ) × ( D 5 ) i , j = 0 6 i i , 2 i , 3 i 1 + 6 j 1 + j , 2 j , 3 j 3 3 i + 3 j 4 2 i + 2 j 1 + i + j i ( 2 + i + j ) ( 1 6 i ) ( 1 6 j ) = 9 14 π + 9 3 64 ,
( D 2 ) × ( D 6 ) i , j = 0 6 i i , 2 i , 3 i 6 j j , 2 j , 3 j ( 5 + 6 j ) 3 3 i + 3 j 4 2 i + 2 j 1 + i + j i ( 2 + i + j ) ( 1 6 i ) ( 5 6 j ) ( 1 + j ) = 3 10 π + 9 3 128 ,
( D 2 ) × ( D 7 ) i , j = 0 6 i i , 2 i , 3 i 6 j j , 2 j , 3 j 3 3 i + 3 j 4 2 i + 2 j 2 + i + j i ( 3 + i + j ) ( 1 6 i ) ( 1 + j ) ( 2 + j ) = 9 35 π + 27 3 512 ,
( D 3 ) × ( D 3 ) i , j = 0 6 i i , 2 i , 3 i 6 j j , 2 j , 3 j 3 3 i + 3 j 4 2 i + 2 j i + j i ( 1 + i + j ) ( 5 6 i ) ( 5 6 j ) = 3 250 π + 9 3 1600 ,
( D 3 ) × ( D 4 ) i , j = 0 6 i i , 2 i , 3 i 6 j j , 2 j , 3 j 3 3 i + 3 j 4 2 i + 2 j 1 + i + j i ( 2 + i + j ) ( 5 6 i ) ( 1 + j ) = 9 50 π + 9 3 640 ,
( D 3 ) × ( D 5 ) i , j = 0 6 i i , 2 i , 3 i 1 + 6 j 1 + j , 2 j , 3 j 3 3 i + 3 j 4 2 i + 2 j 1 + i + j i ( 2 + i + j ) ( 5 6 i ) ( 1 6 j ) = 3 50 π + 9 3 320 ,
( D 3 ) × ( D 6 ) i , j = 0 6 i i , 2 i , 3 i 6 j j , 2 j , 3 j ( 5 + 6 j ) 3 3 i + 3 j 4 2 i + 2 j 1 + i + j i ( 2 + i + j ) ( 5 6 i ) ( 5 6 j ) ( 1 + j ) = 9 550 π + 9 3 640 ,
( D 3 ) × ( D 7 ) i , j = 0 6 i i , 2 i , 3 i 6 j j , 2 j , 3 j 3 3 i + 3 j 4 2 i + 2 j 2 + i + j i ( 3 + i + j ) ( 5 6 i ) ( 1 + j ) ( 2 + j ) = 9 275 π + 27 3 2560 ,
( D 4 ) × ( D 4 ) i , j = 0 6 i i , 2 i , 3 i 6 j j , 2 j , 3 j 3 3 i + 3 j 4 2 i + 2 j 2 + i + j 1 + i ( 3 + i + j ) ( 1 + i ) ( 1 + j ) = 27 3 256 ,
( D 4 ) × ( D 5 ) i , j = 0 6 i i , 2 i , 3 i 1 + 6 j 1 + j , 2 j , 3 j 3 3 i + 3 j 4 2 i + 2 j 2 + i + j 1 + i ( 3 + i + j ) ( 1 + i ) ( 1 6 j ) = 18 35 π ,
( D 4 ) × ( D 6 ) i , j = 0 6 i i , 2 i , 3 i 6 j j , 2 j , 3 j ( 5 + 6 j ) 3 3 i + 3 j 4 2 i + 2 j 2 + i + j 1 + i ( 3 + i + j ) ( 1 + i ) ( 1 + j ) ( 5 6 j ) = 18 55 π ,
( D 4 ) × ( D 7 ) i , j = 0 6 i i , 2 i , 3 i 6 j j , 2 j , 3 j 3 3 i + 3 j 4 2 i + 2 j 3 + i + j 1 + i ( 4 + i + j ) ( 1 + i ) ( 1 + j ) ( 2 + j ) = 54 385 π ,
( D 5 ) × ( D 5 ) i , j = 0 1 + 6 i 1 + i , 2 i , 3 i 1 + 6 j 1 + j , 2 j , 3 j 3 3 i + 3 j 4 2 i + 2 j 2 + i + j 1 + i ( 3 + i + j ) ( 1 6 i ) ( 1 6 j ) = 27 3 320 ,
( D 5 ) × ( D 6 ) i , j = 0 1 + 6 i 1 + i , 2 i , 3 i 6 j j , 2 j , 3 j ( 5 + 6 j ) 3 3 i + 3 j 4 2 i + 2 j 2 + i + j 1 + i ( 3 + i + j ) ( 1 6 i ) ( 5 6 j ) ( 1 + j ) = 27 3 512 ,
( D 5 ) × ( D 7 ) i , j = 0 1 + 6 i 1 + i , 2 i , 3 i 6 j j , 2 j , 3 j 3 3 i + 3 j 4 2 i + 2 j 3 + i + j 1 + i ( 4 + i + j ) ( 1 6 i ) ( 1 + j ) ( 2 + j ) = 243 3 10240 ,
( D 6 ) × ( D 6 ) i , j = 0 6 i i , 2 i , 3 i 6 j j , 2 j , 3 j ( 5 + 6 i ) ( 5 + 6 j ) 3 3 i + 3 j 4 2 i + 2 j 2 + i + j 1 + i ( 3 + i + j ) ( 5 6 i ) ( 5 6 j ) ( 1 + i ) ( 1 + j ) = 27 3 896 ,
( D 6 ) × ( D 7 ) i , j = 0 6 i i , 2 i , 3 i 6 j j , 2 j , 3 j ( 5 + 6 i ) 3 3 i + 3 j 4 2 i + 2 j 3 + i + j 1 + i ( 4 + i + j ) ( 5 6 i ) ( 1 + i ) ( 1 + j ) ( 2 + j ) = 243 3 14336 ,
( D 7 ) × ( D 7 ) i , j = 0 6 i i , 2 i , 3 i 6 j j , 2 j , 3 j 3 3 i + 3 j 4 2 i + 2 j 4 + i + j 2 + i ( 5 + i + j ) ( 1 + i ) 2 ( 1 + j ) 2 = 729 3 143360 .

2.14. Crossing Products from Series in Classes D and E

( D 1 ) × ( E 5 ) i , j = 0 ( 1 6 ) i ( 5 6 ) i ( 1 10 ) j ( 9 10 ) j ( i ! ) 2 ( j ! ) 2 ( 1 + i + j ) i + j i = 225 ( 3 5 ) 44 π ,
( D 1 ) × ( E 6 ) i , j = 0 ( 1 6 ) i ( 5 6 ) i ( 3 10 ) j ( 7 10 ) j ( i ! ) 2 ( j ! ) 2 ( 1 + i + j ) i + j i = 225 ( 5 1 ) 64 π ,
( D 4 ) × ( E 5 ) i , j = 0 ( 1 6 ) i ( 5 6 ) i ( 1 10 ) j ( 9 10 ) j ( i ! ) 2 ( j ! ) 2 ( 1 + i ) ( 2 + i + j ) 1 + i + j j = 50625 ( 1 + 5 ) 93184 π ,
( D 4 ) × ( E 6 ) i , j = 0 ( 1 6 ) i ( 5 6 ) i ( 3 10 ) j ( 7 10 ) j ( i ! ) 2 ( j ! ) 2 ( 1 + i ) ( 2 + i + j ) 1 + i + j j = 50625 ( 3 + 5 ) 142324 π ,
( D 4 ) × ( E 7 ) i , j = 0 ( 1 6 ) i ( 5 6 ) i ( 1 12 ) j ( 11 12 ) j ( i ! ) 2 ( j ! ) 2 ( 1 + i ) ( 2 + i + j ) 1 + i + j j = 576 ( 2 2 + 6 ) 1001 π ,
( D 4 ) × ( E 8 ) i , j = 0 ( 1 6 ) i ( 5 6 ) i ( 5 12 ) j ( 7 12 ) j ( i ! ) 2 ( j ! ) 2 ( 1 + i ) ( 2 + i + j ) 1 + i + j j = 192 ( 2 + 2 + 6 ) 595 π ,
( D 5 ) × ( E 5 ) i , j = 0 ( 1 6 ) i ( 7 6 ) i ( 1 10 ) j ( 9 10 ) j ( i ! ) 2 ( j ! ) 2 ( 1 + i ) ( 2 + i + j ) 1 + i + j j = 50625 ( 3 5 ) 25916 π ,
( D 5 ) × ( E 6 ) i , j = 0 ( 1 6 ) i ( 7 6 ) i ( 3 10 ) j ( 7 10 ) j ( i ! ) 2 ( j ! ) 2 ( 1 + i ) ( 2 + i + j ) 1 + i + j j = 50625 ( 5 1 ) 39424 π ,
( D 6 ) × ( E 5 ) i , j = 0 ( 5 6 ) i ( 11 6 ) i ( 1 10 ) j ( 9 10 ) j ( i ! ) 2 ( j ! ) 2 ( 1 + i ) ( 2 + i + j ) 1 + i + j j = 50625 ( 3 5 ) 52316 π ,
( D 6 ) × ( E 6 ) i , j = 0 ( 5 6 ) i ( 11 6 ) i ( 3 10 ) j ( 7 10 ) j ( i ! ) 2 ( j ! ) 2 ( 1 + i ) ( 2 + i + j ) 1 + i + j j = 50625 ( 5 1 ) 77824 π .

2.15. Combined Products from Series in Class E

( E 1 ) × ( E 2 ) i , j = 0 ( 1 5 ) i ( 4 5 ) i 2 5 ) j ( 3 5 ) j ( i ! ) 2 ( j ! ) 2 ( 1 + i + j ) i + j i = 25 5 2 5 4 π ,
( E 1 ) × ( E 5 ) i , j = 0 ( 1 5 ) i ( 4 5 ) i 1 10 ) j ( 9 10 ) j ( i ! ) 2 ( j ! ) 2 ( 1 + i + j ) i + j i = 25 ( 1 5 + 10 2 5 ) 7 π ,
( E 2 ) × ( E 6 ) i , j = 0 ( 2 5 ) i ( 3 5 ) i 3 10 ) j ( 7 10 ) j ( i ! ) 2 ( j ! ) 2 ( 1 + i + j ) i + j i = 25 ( 10 + 2 5 1 5 ) 3 π ,
( E 3 ) × ( E 4 ) i , j = 0 ( 1 8 ) i ( 7 8 ) i ( 3 8 ) j ( 5 8 ) j ( i ! ) 2 ( j ! ) 2 ( 1 + i + j ) i + j i = 4 4 2 2 π ,
( E 5 ) × ( E 6 ) i , j = 0 ( 1 10 ) i ( 9 10 ) i ( 3 10 ) j ( 7 10 ) j ( i ! ) 2 ( j ! ) 2 ( 1 + i + j ) i + j i = 25 6 π ,
( E 5 ) × ( E 7 ) i , j = 0 ( 1 10 ) i ( 9 10 ) i ( 1 12 ) j ( 11 12 ) j ( i ! ) 2 ( j ! ) 2 ( 1 + i + j ) i + j i = 900 ( 2 1 + 5 6 ) 49 π ,
( E 5 ) × ( E 8 ) i , j = 0 ( 1 10 ) i ( 9 10 ) i ( 5 12 ) j ( 7 12 ) j ( i ! ) 2 ( j ! ) 2 ( 1 + i + j ) i + j i = 900 ( 1 + 2 5 + 6 ) 551 π ,
( E 6 ) × ( E 7 ) i , j = 0 ( 3 10 ) i ( 7 10 ) i ( 1 12 ) j ( 11 12 ) j ( i ! ) 2 ( j ! ) 2 ( 1 + i + j ) i + j i = 900 ( 1 + 2 + 5 6 ) 481 π ,
( E 6 ) × ( E 8 ) i , j = 0 ( 3 10 ) i ( 5 10 ) i ( 5 12 ) j ( 7 12 ) j ( i ! ) 2 ( j ! ) 2 ( 1 + i + j ) i + j i = 900 ( 2 1 5 + 6 ) 119 π ,
( E 7 ) × ( E 8 ) i , j = 0 ( 1 12 ) i ( 11 12 ) i ( 5 12 ) j ( 7 12 ) j ( i ! ) 2 ( j ! ) 2 ( 1 + i + j ) i + j i = 3 2 π .

3. Concluding Comments

Besides squares of central binomial coefficients as appearing in the double series recorded in the last section, it is possible to examine other binomial expressions, as long as their generating functions can explicitly be expressed in terms of Legendre polynomials. The reader is encouraged to make further exploration.
As an example, we are going to examine some asymmetric series with their values involving golden ratio. For | x | < 1 and 0 < y < 1 , consider the binomial series
1 1 x ( 1 y 2 ) = j = 0 x j 2 j j ( 1 y 2 ) j 4 j .
This function also admits the expansion in terms of Legendre polynomials
1 1 1 + x 2 ( 1 y 2 ) = 2 1 + y n = 0 1 y 1 + y n P n ( x ) .
By multiplying the above series with (A1) displayed in Appendix A and then applying equality (4), we find two interesting double series. The first one reads as
i , j = 0 2 i i 2 2 j j ( 1 y 2 ) j 4 2 i + j ( i + j + 1 ) = 8 π ( 1 + y ) n = 0 1 y 1 + y n ( 2 n + 1 ) 2 = 4 π 1 y 2 Li 2 1 y 1 + y Li 2 1 y 1 + y .
Here and forth, Li 2 ( x ) stands for the dilogarithm function (cf. [11]) explicitly given by
Li 2 ( x ) : = n = 1 x n n 2 , where | x | 1 .
When y = 0 and y = 1 / 5 , we obtain two infinite series identities:
i , j = 0 2 i i 2 2 j j 4 2 i + j ( i + j + 1 ) = 4 π Li 2 1 Li 2 1 = 4 π π 2 6 + π 2 12 = π , i , j = 0 2 i i 2 2 j j 4 2 i 5 j ( i + j + 1 ) = 2 5 π Li 2 5 1 2 Li 2 1 5 2 = 2 5 π π 2 6 3 2 ln 2 1 + 5 2 = 5 3 π π 2 9 ln 2 1 + 5 2 ;
where for the last one we have invoked two known values (cf. [11])
Li 2 5 1 2 = π 2 10 ln 2 1 + 5 2 , Li 2 1 5 2 = 1 2 ln 2 1 + 5 2 π 2 15 .
Alternatively, we have another double series
i , j = 0 2 i i 2 2 j j ( 1 y 2 ) j 4 2 i + j i + j j ( i + j + 1 ) = 8 π ( 1 + y ) n = 0 ( 1 ) n 1 y 1 + y n ( 2 n + 1 ) 2 = 4 π i 1 y 2 Li 2 y 1 1 + y Li 2 y 1 1 + y .
When y = 0 , it reduces to the identity below
i , j = 0 2 i i 2 2 j j 4 2 i + j i + j i ( i + j + 1 ) = 4 π i Li 2 i Li 2 i = 4 π i i G π 2 48 i G π 2 48 = 8 G π .

Author Contributions

Writing, editing and computations, M.B.; Original draft, review and supervision, W.C. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Data Availability Statement

Data are contained within the article.

Acknowledgments

The authors express their sincere gratitude to reviewers for the careful reading, critical comments, and valuable suggestions, in particular, accurately correcting several computation errors, that were not only precious to the authors, but also significant contributions to improving the manuscript during the revision.

Conflicts of Interest

The authors declare no conflicts of interest.

Appendix A. Forty Legendre–Fourier Series

In order to facilitate the reader’s understanding, we reproduce the five classes of forty Legendre–Fourier series shown in [5] (Corollaries 6–10), where all the series are convergent for 1 x < 1 .
  • Legendre–Fourier Series: Class A (see Corollary 6 in [5])
    ( A 1 ) F 1 2 1 2 , 1 2 1 | 1 + x 2 = 4 π n = 0 P n ( x ) 1 + 2 n , ( A 2 ) F 1 2 1 2 , 1 2 1 | 1 + x 2 = 8 π n = 0 P n ( x ) ( 1 + 2 n ) ( 1 2 n ) ( 3 + 2 n ) , ( A 3 ) F 1 2 1 2 , 1 2 1 | 1 + x 2 = 32 π n = 0 P n ( x ) ( 1 + 2 n ) ( 1 2 n ) 2 ( 3 + 2 n ) 2 , ( A 4 ) 1 + x 2 × F 1 2 1 2 , 1 2 2 | 1 + x 2 = 16 π n = 0 ( 1 + 2 n ) P n ( x ) ( 1 2 n ) 2 ( 3 + 2 n ) 2 , ( A 5 ) 1 + x 2 × F 1 2 3 2 , 1 2 2 | 1 + x 2 = 16 π n = 0 P n ( x ) ( 1 + 2 n ) ( 3 2 n ) ( 5 + 2 n ) , ( A 6 ) 1 + x 2 × F 1 2 5 2 , 3 2 2 | 1 + x 2 = 16 π n = 0 ( 2 n + 1 ) P n ( x ) ( 1 2 n ) ( 3 + 2 n ) ( 5 2 n ) ( 7 + 2 n ) , ( A 7 ) 1 + x 2 2 F 1 2 1 2 , 1 2 3 | 1 + x 2 = 256 π n = 0 P n ( x ) ( 1 + 2 n ) ( 3 2 n ) 2 ( 5 + 2 n ) 2 .
  • Legendre–Fourier Series: Class B (see Corollary 7 in [5])
    ( B 1 ) F 1 2 1 3 , 2 3 1 | 1 + x 2 = 9 3 2 π n = 0 ( 1 + 2 n ) P n ( x ) ( 1 + 3 n ) ( 2 + 3 n ) , ( B 2 ) F 1 2 1 3 , 1 3 1 | 1 + x 2 = 27 3 2 π n = 0 ( 1 + 2 n ) P n ( x ) ( 1 + 3 n ) ( 1 3 n ) ( 2 + 3 n ) ( 4 + 3 n ) , ( B 3 ) F 1 2 2 3 , 2 3 1 | 1 + x 2 = 54 3 2 π n = 0 ( 1 + 2 n ) P n ( x ) ( 1 + 3 n ) ( 2 + 3 n ) ( 2 3 n ) ( 5 + 3 n ) , ( B 4 ) 1 + x 2 × F 1 2 1 3 , 2 3 2 | 1 + x 2 = 81 3 2 π n = 0 ( 1 + 2 n ) P n ( x ) ( 1 3 n ) ( 2 3 n ) ( 4 + 3 n ) ( 5 + 3 n ) , ( B 5 ) 1 + x 2 × F 1 2 4 3 , 1 3 2 | 1 + x 2 = 81 3 2 π n = 0 ( 1 + 2 n ) P n ( x ) ( 1 + 3 n ) ( 2 + 3 n ) ( 4 3 n ) ( 7 + 3 n ) , ( B 6 ) 1 + x 2 × F 1 2 5 3 , 2 3 2 | 1 + x 2 = 81 3 2 π n = 0 ( 1 + 2 n ) P n ( x ) ( 1 + 3 n ) ( 2 + 3 n ) ( 5 3 n ) ( 8 + 3 n ) , ( B 7 ) 1 + x 2 2 F 1 2 1 3 , 2 3 3 | 1 + x 2 = 1458 3 π n = 0 ( 1 + 2 n ) P n ( x ) ( 4 3 n ) 2 ( 1 + 3 n ) 2 ( 7 + 3 n ) 2 .
  • Legendre–Fourier Series: Class C (see Corollary 8 in [5])
    ( C 1 ) F 1 2 1 4 , 3 4 1 | 1 + x 2 = 8 2 π n = 0 ( 1 + 2 n ) P n ( x ) ( 1 + 4 n ) ( 3 + 4 n ) , ( C 2 ) F 1 2 1 4 , 1 4 1 | 1 + x 2 = 64 π 2 n = 0 ( 1 + 2 n ) P n ( x ) ( 1 + 4 n ) ( 1 4 n ) ( 3 + 4 n ) ( 5 + 4 n ) , ( C 3 ) F 1 2 3 4 , 3 4 1 | 1 + x 2 = 192 π 2 n = 0 ( 1 + 2 n ) P n ( x ) ( 1 + 4 n ) ( 3 + 4 n ) ( 3 4 n ) ( 7 + 4 n ) , ( C 4 ) 1 + x 2 × F 1 2 1 4 , 3 4 2 | 1 + x 2 = 256 π 2 n = 0 ( 1 + 2 n ) P n ( x ) ( 1 4 n ) ( 3 4 n ) ( 5 + 4 n ) ( 7 + 4 n ) , ( C 5 ) 1 + x 2 × F 1 2 5 4 , 1 4 2 | 1 + x 2 = 256 π 2 n = 0 ( 1 + 2 n ) P n ( x ) ( 1 + 4 n ) ( 3 + 4 n ) ( 5 4 n ) ( 9 + 4 n ) , ( C 6 ) 1 + x 2 × F 1 2 7 4 , 3 4 2 | 1 + x 2 = 256 π 2 n = 0 ( 1 + 2 n ) P n ( x ) ( 1 + 4 n ) ( 3 + 4 n ) ( 7 4 n ) ( 11 + 4 n ) , ( C 7 ) 1 + x 2 2 F 1 2 1 4 , 3 4 3 | 1 + x 2 = 256 π 2 n = 0 ( 1 + 2 n ) P n ( x ) ( 1 2 + 2 n ) 2 ( 5 2 2 n ) 2 ( 9 2 + 2 n ) 2 .
  • Legendre–Fourier Series: Class D (see Corollary 9 in [5])
    ( D 1 ) F 1 2 1 6 , 5 6 1 | 1 + x 2 = 18 π n = 0 ( 1 + 2 n ) P n ( x ) ( 1 + 6 n ) ( 5 + 6 n ) ( D 2 ) F 1 2 1 6 , 1 6 1 | 1 + x 2 = 108 π n = 0 ( 1 + 2 n ) P n ( x ) ( 1 + 6 n ) ( 1 6 n ) ( 5 + 6 n ) ( 7 + 6 n ) , ( D 3 ) F 1 2 5 6 , 5 6 1 | 1 + x 2 = 540 π n = 0 ( 1 + 2 n ) P n ( x ) ( 1 + 6 n ) ( 5 + 6 n ) ( 5 6 n ) ( 11 + 6 n ) , ( D 4 ) 1 + x 2 × F 1 2 1 6 , 5 6 2 | 1 + x 2 = 648 π n = 0 ( 1 + 2 n ) P n ( x ) ( 1 6 n ) ( 5 6 n ) ( 7 + 6 n ) ( 11 + 6 n ) , ( D 5 ) 1 + x 2 × F 1 2 7 6 , 1 6 2 | 1 + x 2 = 648 π n = 0 ( 1 + 2 n ) P n ( x ) ( 1 + 6 n ) ( 5 + 6 n ) ( 7 6 n ) ( 13 + 6 n ) , ( D 6 ) 1 + x 2 × F 1 2 11 6 , 5 6 2 | 1 + x 2 = 648 π n = 0 ( 1 + 2 n ) P n ( x ) ( 1 + 6 n ) ( 5 + 6 n ) ( 11 6 n ) ( 17 + 6 n ) , ( D 7 ) 1 + x 2 2 F 1 2 1 6 , 5 6 3 | 1 + x 2 = 729 32 π n = 0 ( 1 + 2 n ) P n ( x ) ( 1 + 6 n 4 ) 2 ( 7 6 n 4 ) 2 ( 13 + 6 n 4 ) 2 .
  • Legendre–Fourier Series: Class E (see Corollary 10 in [5])
    ( E 1 ) F 1 2 1 5 , 4 5 1 | 1 + x 2 = 25 5 5 2 π 2 n = 0 ( 1 + 2 n ) P n ( x ) ( 1 + 5 n ) ( 4 + 5 n ) ( E 2 ) F 1 2 2 5 , 3 5 1 | 1 + x 2 = 25 5 + 5 2 π 2 n = 0 ( 1 + 2 n ) P n ( x ) ( 2 + 5 n ) ( 3 + 5 n ) ( E 3 ) F 1 2 1 8 , 7 8 1 | 1 + x 2 = 32 2 2 π n = 0 ( 1 + 2 n ) P n ( x ) ( 1 + 8 n ) ( 7 + 8 n ) ( E 4 ) F 1 2 3 8 , 5 8 1 | 1 + x 2 = 32 2 + 2 π n = 0 ( 1 + 2 n ) P n ( x ) ( 3 + 8 n ) ( 5 + 8 n ) ( E 5 ) F 1 2 1 10 , 9 10 1 | 1 + x 2 = 25 ( 5 1 ) π n = 0 ( 1 + 2 n ) P n ( x ) ( 1 + 10 n ) ( 9 + 10 n ) ( E 6 ) F 1 2 3 10 , 7 10 1 | 1 + x 2 = 25 ( 5 + 1 ) π n = 0 ( 1 + 2 n ) P n ( x ) ( 3 + 10 n ) ( 7 + 10 n ) , ( E 7 ) F 1 2 1 12 , 11 12 1 | 1 + x 2 = 72 ( 3 1 ) π 2 n = 0 ( 1 + 2 n ) P n ( x ) ( 1 + 12 n ) ( 11 + 12 n ) , ( E 8 ) F 1 2 5 12 , 7 12 1 | 1 + x 2 = 72 ( 3 + 1 ) π 2 n = 0 ( 1 + 2 n ) P n ( x ) ( 5 + 12 n ) ( 7 + 12 n ) ; ( E 9 ) F 1 2 1 16 , 15 16 1 | 1 + x 2 = 128 2 2 + 2 π n = 0 ( 1 + 2 n ) P n ( x ) ( 1 + 16 n ) ( 15 + 16 n ) , ( E 10 ) F 1 2 3 16 , 13 16 1 | 1 + x 2 = 128 2 2 2 π n = 0 ( 1 + 2 n ) P n ( x ) ( 3 + 16 n ) ( 13 + 16 n ) , ( E 11 ) F 1 2 5 16 , 11 16 1 | 1 + x 2 = 128 2 + 2 2 π n = 0 ( 1 + 2 n ) P n ( x ) ( 5 + 16 n ) ( 11 + 16 n ) , ( E 12 ) F 1 2 7 16 , 9 16 1 | 1 + x 2 = 128 2 + 2 + 2 π n = 0 ( 1 + 2 n ) P n ( x ) ( 7 + 16 n ) ( 9 + 16 n ) .

References

  1. Bailey, W.N. Generalized Hypergeometric Series; Cambridge University Press: Cambridge, UK, 1935. [Google Scholar]
  2. Cantarini, M.; D’Aurizio, J. On the interplay between hypergeometric series, Fourier–Legendre expansions and Euler sums. Boll. Unione Mat. Ital. 2019, 12, 623–656. [Google Scholar] [CrossRef]
  3. Djellouli, R.; Klein, D.; Levy, M. Legendre expansions of products of functions with applications to nonlinear partial differential equations. Appl. Numer. Math. 2024, 201, 301–321. [Google Scholar] [CrossRef]
  4. Campbell, J.M. New families of double hypergeometric series for constants involving 1/π2. Ann. Polon. Math. 2021, 126, 1–20. [Google Scholar] [CrossRef]
  5. Chu, W.; Campbell, J.M. Expansinos over Legendre polynomials and infinite double series identitie. Ramanujan J. 2023, 60, 317–353. [Google Scholar] [CrossRef]
  6. Adamchik, V.S. A certain series associated with Catalan’s constant. Z. Anal. Anwendungen 2002, 21, 817–826. [Google Scholar] [CrossRef]
  7. Marichev, O.; Sondow, J.; Weisstein, E.M. Catalan’s Constant: From MathWorld—A Wolfram Web Resource. Available online: https://mathworld.wolfram.com/CatalansConstant.html (accessed on 25 February 2025).
  8. González, M.O. Elliptic integrals in terms of Legendre polynomials. Proc. Glasgow Math. Assoc. 1954, 2, 97–99. [Google Scholar] [CrossRef]
  9. Holdeman, J.T., Jr. Legendre polynomial expansions of hypergeometric functions with applications. J. Math. Phys. 1970, 11, 114–117. [Google Scholar] [CrossRef]
  10. Rainville, E.D. Special Functions; The Macmillan Company: New York, NY, USA, 1960. [Google Scholar]
  11. Weisstein, E.W. Dilogarithm: From MathWorld—A Wolfram Web Resource. Available online: https://mathworld.wolfram.com/Dilogarithm.html (accessed on 25 February 2025).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Bai, M.; Chu, W. Symmetric and Asymmetric Double Series via Expansions over Legendre Polynomials. Axioms 2025, 14, 287. https://doi.org/10.3390/axioms14040287

AMA Style

Bai M, Chu W. Symmetric and Asymmetric Double Series via Expansions over Legendre Polynomials. Axioms. 2025; 14(4):287. https://doi.org/10.3390/axioms14040287

Chicago/Turabian Style

Bai, Mei, and Wenchang Chu. 2025. "Symmetric and Asymmetric Double Series via Expansions over Legendre Polynomials" Axioms 14, no. 4: 287. https://doi.org/10.3390/axioms14040287

APA Style

Bai, M., & Chu, W. (2025). Symmetric and Asymmetric Double Series via Expansions over Legendre Polynomials. Axioms, 14(4), 287. https://doi.org/10.3390/axioms14040287

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop