On Equivalents of the Riemann Hypothesis Connected to the Approximation Properties of the Zeta Function
Abstract
:1. Introduction
2. Limit Lemmas
- (i)
- P;
- (ii)
- For all open sets ,
- (iii)
- For all continuity sets A of P,
3. Proofs of Theorems 4 and 5
4. Conclusions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Riemann, B. Über die Anzahl der Primzahlen unterhalb einer gegebenen Grösse. Monatsber. Preuss. Akad. Wiss. 1859, 671–680. [Google Scholar]
- Hadamard, J. Sur les zéros de la fonction ζ(s) de Riemann. Comptes Rendus Acad. Sci. 1896, 122, 1470–1473. [Google Scholar]
- de la Vallée-Poussin, C.J. Recherches analytiques sur la théorie des nombres premiers, I. Ann. Soc. Sci. 1896, 20, 183–256. [Google Scholar]
- de la Vallée-Poussin, C.J. Recherches analytiques sur la théorie des nombres premiers, II. Ann. Soc. Sci. 1896, 20, 281–362. [Google Scholar]
- de la Vallée-Poussin, C.J. Recherches analytiques sur la théorie des nombres premiers, III. Ann. Soc. Sci. 1896, 20, 363–397. [Google Scholar]
- Selberg, A. On the zeros of Rieman’s zeta-function. Skr. Nor. Vid. Akad. Oslo I 1942, 10, 59. [Google Scholar]
- Levinson, N. More than one third of zeros of Riemann’s zeta-function are on σ=1/2. Adv. Math. 1974, 13, 383–436. [Google Scholar] [CrossRef]
- Bui, H.M.; Conrey, B.; Young, M.P. More than 41% of zeros of zeta-function are on the critical line. Acta Arithm. 2011, 150, 35–64. [Google Scholar] [CrossRef]
- Pratt, K.; Robles, N.; Zacharescu, A.; Zeindler, D. More than five-twelfths of the zeros of ζ are on the critical line. Res. Math. Sci. 2020, 7, 2. [Google Scholar] [CrossRef]
- Gourdon, X. The 1013 First Zeros of the Riemann Zeta-Function, and Zeros Computation at Very Large Height. 2004. Available online: http://numbers.computation.free.fr/Constants/Miscellaneous/zetazeros1e13-1e24.pdf (accessed on 27 December 2024).
- The Millennium Prize Problems. Available online: https://www.claymath.org/millennium-problems/ (accessed on 27 December 2024).
- von Koch, N.H. Sur la distribution des nombres premiers. Acta Math. 1901, 24, 159–182. [Google Scholar] [CrossRef]
- Davenport, H. Multiplicative Number Theory; Springer: New York, NY, USA, 1980. [Google Scholar]
- Littlewood, J.E. Quelques conséquences de l’hypothése que la fonction ζ(s) de Riemann n’a pas de zéros dans de demi-plan R(s)>1/2. Compt. Rend. Acad. Sci. 1912, 154, 263–266. [Google Scholar]
- Titchmarsh, E.C. The Theory of the Riemann Zeta-Function, 2nd ed.; Revised by D.R. Heath-Brown; Clarendon Press: Oxford, UK, 1986. [Google Scholar]
- Bombieri, E.; Lagarias, J.C. Complements to Li’s criterion for the Riemann hypothesis. J. Number Theory 1999, 77, 274–287. [Google Scholar] [CrossRef]
- Levinson, N.; Montgomery, H.L. Zeros of the derivative of the Riemann zetafunction. Acta Math. 1974, 133, 49–65. [Google Scholar] [CrossRef]
- Riesz, M. Sur l’hypothèse de Riemann. Acta Math. 1916, 40, 185–190. [Google Scholar] [CrossRef]
- Broughan, K. Equivalents of the Riemann Hypothesis, Volume 1; Encyclopedia Math. Appl., 164; Cambridge University Press: Cambridge, UK, 2017. [Google Scholar]
- Broughan, K. Equivalents of the Riemann Hypothesis, Volume 2; Encyclopedia Math. Appl., 165; Cambridge University Press: Cambridge, UK, 2017. [Google Scholar]
- Bagchi, B. The Statistical Behaviour and Universality Properties of the Riemann Zeta-Function and Other Allied Dirichlet Series. Ph.D. Thesis, Indian Statistical Institute, Calcutta, India, 1981. Available online: http://dspace.isical.ac.in:8080/jspui/bitstream/10263/4256/1/TH47.CV01.pdf (accessed on 27 December 2024).
- Gonek, S.M. Analytic Properties of Zeta and L-Functions. Ph.D. Thesis, University of Michigan, Ann Arbor, MI, USA, 1979. Available online: https://people.math.rochester.edu/faculty/gonek/papers/ (accessed on 27 December 2024).
- Laurinčikas, A. Limit Theorems for the Riemann Zeta-Function; Kluwer Academic Publishers: Dordrecht, The Netherlands; Boston, MA, USA; London, UK, 1996. [Google Scholar]
- Steuding, J. Value-Distribution of L-Functions; Lecture Notes in Mathematics; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 2007; Volume 1877. [Google Scholar]
- Kowalski, E. An Introduction to Probabilistic Number Theory; Cambridge University Press: Cambridge, UK, 2021. [Google Scholar]
- Voronin, S.M. Theorem on the “universality” of the Riemann zeta-function. Math. USSR Izv. 1975, 9, 443–453. [Google Scholar] [CrossRef]
- Mauclaire, J.-L. Universality of the Riemann zeta function: Two remarks. Ann. Univ. Sci. Budap. Rolando EÖtvÖs Sect. Comput. 2013, 39, 311–319. [Google Scholar]
- Laurinčikas, A.; Meška, L. Sharpening of the universality inequality. Math. Notes 2014, 96, 971–976. [Google Scholar] [CrossRef]
- Bagchi, B. Recurrence in topological dynamics and the Riemann hypothesis. Acta Math. Hungar. 1987, 50, 227–240. [Google Scholar] [CrossRef]
- Laurinčikas, A. Remarks on the connection of the Riemann hypothesis to self-approximation. Computation 2024, 12, 164. [Google Scholar] [CrossRef]
- Nakamura, T. The joint universality and the generalized strong recurrence for Dirichlet L-functions. Acta Arith. 2009, 138, 357–362. [Google Scholar] [CrossRef]
- Nakamura, T. The generalized strong recurrence for non-zero rational parameters. Arch. Math. 2010, 95, 549–555, Erratum in Arch. Math. 2012, 99, 43–47. [Google Scholar] [CrossRef]
- Pańkowski, Ł. Joint universality and generalized strong recurrence with rational parameter. J. Number Theory 2016, 163, 61–74. [Google Scholar] [CrossRef]
- Dubickas, A.; Garunkštis, R.; Laurinčikas, A. Approximation by shifts of compositions of Dirichlet L-Funct. Gram Function. Mathematics 2020, 8, 751. [Google Scholar] [CrossRef]
- Lavrik, A.A. Titchmarsh problem in the discrete theory of the Riemann zeta-function. Proc. Steklov Inst. Math. 1995, 207, 179–209. [Google Scholar]
- Korolev, M.A. Gram’s law in the theory of the Riemann zeta-function. Part 1. Proc. Steklov Inst. Math. 2016, 292, 1–146. [Google Scholar] [CrossRef]
- Gram, J.-P. Sur les zéros de la fonction ζ(s) de Riemann. Acta Math. 1903, 27, 289–304. [Google Scholar] [CrossRef]
- Billingsley, P. Convergence of Probability Measures, 2nd ed.; John Wiley & Sons: New York, NY, USA, 1999. [Google Scholar]
- Bohr, H.; Jessen, B. Über die Wertwerteiling der Riemmanshen Zetafunktion, erste Mitteilung. Acta Math. 1930, 54, 1–35. [Google Scholar] [CrossRef]
- Bohr, H.; Jessen, B. Über die Wertwerteiling der Riemmanshen Zetafunktion, zweite Mitteilung. Acta Math. 1932, 58, 1–55. [Google Scholar] [CrossRef]
- Conway, J.B. Functions of One Complex Variable; Springer: New York, NY, USA, 1973. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Laurinčikas, A. On Equivalents of the Riemann Hypothesis Connected to the Approximation Properties of the Zeta Function. Axioms 2025, 14, 169. https://doi.org/10.3390/axioms14030169
Laurinčikas A. On Equivalents of the Riemann Hypothesis Connected to the Approximation Properties of the Zeta Function. Axioms. 2025; 14(3):169. https://doi.org/10.3390/axioms14030169
Chicago/Turabian StyleLaurinčikas, Antanas. 2025. "On Equivalents of the Riemann Hypothesis Connected to the Approximation Properties of the Zeta Function" Axioms 14, no. 3: 169. https://doi.org/10.3390/axioms14030169
APA StyleLaurinčikas, A. (2025). On Equivalents of the Riemann Hypothesis Connected to the Approximation Properties of the Zeta Function. Axioms, 14(3), 169. https://doi.org/10.3390/axioms14030169