New μ-Synchronization Criteria for Nonlinear Drive–Response Complex Networks with Uncertain Inner Couplings and Variable Delays of Unknown Bounds
Abstract
1. Introduction
1.1. The Background and Related Works
1.2. The Research Aim and Highlights
2. Model and Background Description
3. Synchronization Analysis Results
- (i)
- (ii)
- (iii)
- (iv)
- (v)
- (vi)
4. Numerical Simulations
- (1)
- Histogram analysis.
- (2)
- Correlation of pixel values between adjacent positions.
- (3)
- Information entropy analysis.
- (4)
- Analysis of key capacity.
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Zhu, S.; Zhou, J.; Chen, G.; Lu, J.A. A new method for topology identification of complex dynamical networks. IEEE Trans. Cybern. 2021, 51, 2224–2231. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Shi, K.; Wang, J.; Yu, Y.; Wen, S.; Yang, J.; Han, S. Synchronization sampled-data control of uncertain neural networks under an asymmetric Lyapunov-Krasovskii functional method. Expert Syst. Appl. 2024, 239, 122475. [Google Scholar] [CrossRef]
- Dorfler, F.; Bullo, F. Synchronization in complex networks of phase oscillators: A survey. Automatica 2014, 50, 1539–1564. [Google Scholar] [CrossRef]
- Sultornsanee, S.; Radhakrishnan, S.; Falco, D.; Zeid, A.; Kamarthi, S. Phase synchronization approach to construction and analysis of stock correlation network. Procedia Comput. Sci. 2011, 6, 52–56. [Google Scholar] [CrossRef]
- Chen, W.W.; Li, H.L. Complete synchronization of delayed discrete-time fractional-order competitive neural networks. Appl. Math. Comput. 2024, 479, 128872. [Google Scholar] [CrossRef]
- Shen, Y.; Liu, X.Z. Generalized synchronization of delayed complex-valued dynamical networks via hybrid control. Commun. Nonlinear Sci. Numer. Simul. 2023, 118, 107057. [Google Scholar] [CrossRef]
- Gao, L.; Cai, Y. Finite-time stability of time-delay switched systems with delayed impulse effects. Circuits Syst. Signal Process. 2016, 35, 3135–3151. [Google Scholar] [CrossRef]
- Liu, X.; Chen, T. Finite-time and fixed-time cluster synchronization with or without pinning control. IEEE Trans. Cybern. 2018, 48, 240–252. [Google Scholar] [CrossRef] [PubMed]
- Fan, H.G.; Chen, X.J.; Shi, K.B.; Liang, Y.H.; Wang, Y.; Wen, H. Mittag-Leffler synchronization in finite time for uncertain fractional-order multi-delayed memristive neural networks with time-varying perturbations via information feedback. Fractal Fract. 2024, 8, 422. [Google Scholar] [CrossRef]
- Fan, H.G.; Rao, Y.; Shi, K.B.; Wen, H. Time-varying function matrix projection synchronization of Caputo fractional-order uncertain memristive neural networks with multiple delays via mixed open loop feedback control and impulsive control. Fractal Fract. 2024, 8, 301. [Google Scholar] [CrossRef]
- Fan, H.G.; Chen, X.J.; Shi, K.B.; Wen, H. Distributed delayed impulsive control for μ-synchronization of multi-link structure networks with bounded uncertainties and time-varying delays of unmeasured bounds: A novel Halanay impulsive inequality approach. Chaos Solitons Fractals 2024, 186, 115226. [Google Scholar] [CrossRef]
- Zhang, W.; Xiao, J.; Gong, B.Y. Global μ-synchronization for coupling delayed complex dynamical networks via event-triggered delayed impulsive control. ISA Trans. 2024, 145, 124–131. [Google Scholar] [CrossRef] [PubMed]
- Fan, H.G.; Xiao, Y.; Shi, K.B.; Wen, H.; Zhao, Y. μ-synchronization of coupled neural networks with hybrid delayed and non-delayed impulsive effects. Chaos Solitons Fractals 2023, 173, 113620. [Google Scholar] [CrossRef]
- Guan, K.Z.; Cai, Z.W. Impulsive μ-stabilization and μ-synchronization for delayed network systems with any time-varying delays. Neurocomputing 2020, 411, 498–509. [Google Scholar] [CrossRef]
- Chen, H.B.; Shi, P.; Lim, C.C. Pinning impulsive synchronization for stochastic reaction-diffusion dynamical networks with delay. Neural Netw. 2018, 106, 281–293. [Google Scholar] [CrossRef]
- Liang, J.C.; Liu, J.; Tse, C.K.; Liu, M.X. Observer-based aperiodically intermittent pinning synchronization of complex-valued dynamical networks with time-varying delay. Phys. A 2024, 635, 129516. [Google Scholar] [CrossRef]
- Fan, H.G.; Shi, K.B.; Guo, Z.Z.; Zhou, A.R. Finite-time synchronization criteria for Caputo fractional-order uncertain memristive neural networks with fuzzy operators and transmission delay under communication feedback. Fractal Fract. 2024, 8, 619. [Google Scholar] [CrossRef]
- Jiang, G.H.; Wang, L.M.; Hu, X.F.; Li, H.Y.; Zong, X.F. Semiglobal fixed/preassigned-time synchronization of stochastic neural networks with random delay via adaptive control. Neurocomputing 2024, 593, 127832. [Google Scholar] [CrossRef]
- Zhang, S.; Xu, J.J.; Zhang, H.S. Decentralized control of forward and backward stochastic difference system with nested asymmetric information. Appl. Math. Comput. 2024, 478, 128834. [Google Scholar] [CrossRef]
- Wang, S.; Shi, K.; Cao, J.; Wen, S. Fuzzy adaptive event-triggered synchronization control mechanism for T-S fuzzy RDNNs under deception attacks. Commun. Nonlinear Sci. Numer. Simul. 2024, 134, 107985. [Google Scholar] [CrossRef]
- Ruan, Z.Y.; Li, Y.Y.; Hu, J.H.; Mei, J.; Xia, D. Finite-time synchronization of the drive-response networks by event-triggered aperiodic intermittent control. Neurocomputing 2022, 485, 89–102. [Google Scholar] [CrossRef]
- Zhang, L.Z.; Lu, J.Q.; Jiang, B.X.; Zhong, J. Impulsive synchronization control for dynamic networks subject to double deception attacks. Expert Syst. Appl. 2024, 251, 124000. [Google Scholar] [CrossRef]
- Liu, X.W.; Li, Z.H. Finite time anti-synchronization of complex-valued neural networks with bounded asynchronous time-varying delays. Neurocomputing 2020, 387, 129–138. [Google Scholar] [CrossRef]
- Luo, Y.P.; Yao, Y.J. Finite-time synchronization of uncertain complex dynamic networks with time-varying delays. Adv. Differ. Equ. 2020, 32, 32. [Google Scholar] [CrossRef]
- Tan, Y.X.; Huang, Z.K. Synchronization of drive-response networks with delays on time scales. IEEE/CAA J. Autom. Sin. 2024, 11, 1063–1065. [Google Scholar] [CrossRef]
- Han, M.; Zhang, Y.M. Complex function projective synchronization in drive-response complex-variable dynamical networks with coupling time delays. J. Frankl. Inst. 2016, 353, 1742–1758. [Google Scholar] [CrossRef]
- Wang, L.M.; Hu, Y.Q.; Hu, C.; Zhou, Y.J.; Wen, S.P. Finite-time synchronization of delayed fuzzy inertial neural networks via intermittent control. Neurocomputing 2024, 574, 127288. [Google Scholar] [CrossRef]
- Wang, L.M.; Li, H.Y.; Hu, C.; Hu, J.H.; Wang, Q.Y. Synchronization and settling-time estimation of fuzzy memristive neural networks with time-varying delays: Fixed-time and preassigned-time control. Fuzzy Sets Syst. 2023, 470, 108654. [Google Scholar] [CrossRef]
- Rakkiyappan, R.; Chandrasekar, A.; Petchiammal, G. Non-fragile robust synchronization for Markovian jumping chaotic neural networks of neutral-type with randomly occurring uncertainties and mode-dependent time-varying delays. ISA Trans. 2014, 53, 1760–1770. [Google Scholar] [CrossRef] [PubMed]
- Xing, R.T.; Xiao, M.; Zhang, Y.Z.; Qiu, J.L. Stability and Hopf bifurcation analysis of an (n plus m)-neuron double-ring neural network model with multiple time delays. J. Syst. Sci. Complex. 2022, 35, 159–178. [Google Scholar] [CrossRef]
- He, J.M.; Pei, L.J. Function matrix projection synchronization for the multi-time delayed fractional order memristor-based neural networks with parameter uncertainty. Appl. Math. Comput. 2023, 454, 128110. [Google Scholar] [CrossRef]
- Gu, Y.J.; Yu, Y.G.; Wang, H. Synchronization for fractional-order time-delayed memristor-based neural networks with parameter uncertainty. J. Frankl. Inst. 2016, 353, 3657–3684. [Google Scholar] [CrossRef]
- Fan, H.G.; Shi, K.B.; Wen, H.; Zhao, Y. Synchronization of multi-weighted complex networks with mixed variable delays and uncertainties via impulsive pinning control. Phys. D 2023, 456, 133935. [Google Scholar] [CrossRef]
- Selvaraj, P.; Kwon, O.M.; Sakthivel, R. Disturbance and uncertainty rejection performance for fractional-order complex dynamical networks. Neural Netw. 2019, 112, 73–84. [Google Scholar] [CrossRef] [PubMed]
- Mirshamsi, A.; Nobakhti, A. Uncertainty disturbance estimator control for delayed linear systems with input constraint. Automatica 2024, 167, 111763. [Google Scholar] [CrossRef]
- Wen, G.; Yu, X.; Yu, W.; Lu, J. Coordination and control of complex network systems with switching topologies: A survey. IEEE Trans. Syst. Man Cybern. Syst. 2020, 51, 6342–6357. [Google Scholar] [CrossRef]
- Wu, Y.; Wang, Y.; Gunasekaran, N.; Vadivel, R. Almost sure consensus of multi-agent systems: An intermittent noise. IEEE Trans. Circuits Syst. II 2022, 69, 2897–2901. [Google Scholar] [CrossRef]
- Tirandaz, H. Adaptive modified projective synchronization of gyroscopes with unknown parameters and external disturbances. ICIC Express Lett. 2018, 12, 287–294. [Google Scholar]
- Du, H.Y. Function projective synchronization in complex dynamical networks with or without external disturbances via error feedback control. Neurocomputing 2016, 173, 1443–1449. [Google Scholar] [CrossRef]
- Du, H.Y. Modified function projective synchronization between two fractional-order complex dynamical networks with unknown parameters and unknown bounded external disturbances. Phys. A 2019, 526, 120997. [Google Scholar] [CrossRef]
- Ze, T.; Park, J.H.; Lee, T.H.; Feng, J.W. Mean square exponential synchronization for impulsive coupled neural networks with time-varying delays and stochastic disturbances. Complexity 2016, 21, 190–202. [Google Scholar]
- Zhao, Y.S.; Li, X.D.; Rao, R.F. Synchronization of nonidentical complex dynamical networks with unknown disturbances via observer-based sliding mode control. Neurocomputing 2021, 454, 441–447. [Google Scholar] [CrossRef]
- Liang, T.; Zhang, W.L.; Yang, D.G. Fixed-time synchronization of switched duplex networks with stochastic disturbances and limited communication. Commun. Nonlinear Sci. Numer. Simul. 2023, 121, 107227. [Google Scholar] [CrossRef]
- Ren, H.W.; Shi, P.; Deng, F.Q.; Peng, Y.J. Fixed-time synchronization of delayed complex dynamical systems with stochastic perturbation via impulsive pinning control. J. Frankl. Inst. 2020, 357, 12308–12325. [Google Scholar] [CrossRef]
- Shukla, V.K.; Joshi, M.C.; Mishra, P.K.; Xu, C.J. Mechanical analysis and function matrix projective synchronization of El-Nino chaotic system. Phys. Scr. 2025, 100, 015255. [Google Scholar] [CrossRef]
- Liu, X.Z.; Zhang, K.X. Synchronization of linear dynamical networks on time scales: Pinning control via delayed impulses. Automatica 2016, 72, 147–152. [Google Scholar] [CrossRef]
- Li, X.D.; Song, S.J.; Wu, J.H. Exponential stability of nonlinear systems with delayed impulses and applications. IEEE Trans. Autom. Control 2019, 64, 4024–4034. [Google Scholar] [CrossRef]
- Zhang, L.; Yang, X.S.; Xu, C.; Feng, J.W. Exponential synchronization of complex-valued complex networks with time-varying delays and stochastic perturbations via time-delayed impulsive control. Appl. Math. Comput. 2017, 306, 22–30. [Google Scholar] [CrossRef]
- Fan, H.G.; Shi, K.B.; Zhao, Y. Global μ-synchronization for nonlinear complex networks with unbounded multiple time delays and uncertainties via impulsive control. Phys. A 2022, 599, 127484. [Google Scholar] [CrossRef]
- Liu, L.F.; Liu, K.; Xiang, H.Y.; Liu, Q. Pinning impulsive cluster synchronization of complex dynamical networks. Phys. A 2020, 545, 123580. [Google Scholar] [CrossRef]
- Peng, D.X.; Li, X.D. Leader-following synchronization of complex dynamic networks via event-triggered impulsive control. Neurocomputing 2020, 412, 1–10. [Google Scholar] [CrossRef]
- Karthick, S.A.; Sakthivel, R.; Alzahrani, F.; Leelamani, A. Synchronization of semi-Markov coupled neural networks with impulse effects and leakage delay. Neurocomputing 2020, 386, 221–231. [Google Scholar] [CrossRef]
- Furtat, I.B. Robust synchronization of the structural uncertainty nonlinear network with delay and disturbances. IFAC Proc. Vol. 2013, 46, 227–232. [Google Scholar] [CrossRef]
- Jia, T.Y.; Chen, X.Y.; He, L.P.; Zhao, F.; Qiu, J.L. Finite-time synchronization of uncertain fractional-order delayed memristive neural networks via adaptive sliding mode control and its application. Fractal Fract. 2022, 6, 502. [Google Scholar] [CrossRef]
- Chandrasekar, A.; Rakkiyappan, R.; Cao, J.D. Impulsive synchronization of Markovian jumping randomly coupled neural networks with partly unknown transition probabilities via multiple integral approach. Neural Netw. 2015, 70, 27–38. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, A.; Yang, C.; Yi, C.; Fan, H. New μ-Synchronization Criteria for Nonlinear Drive–Response Complex Networks with Uncertain Inner Couplings and Variable Delays of Unknown Bounds. Axioms 2025, 14, 161. https://doi.org/10.3390/axioms14030161
Zhou A, Yang C, Yi C, Fan H. New μ-Synchronization Criteria for Nonlinear Drive–Response Complex Networks with Uncertain Inner Couplings and Variable Delays of Unknown Bounds. Axioms. 2025; 14(3):161. https://doi.org/10.3390/axioms14030161
Chicago/Turabian StyleZhou, Anran, Chongming Yang, Chengbo Yi, and Hongguang Fan. 2025. "New μ-Synchronization Criteria for Nonlinear Drive–Response Complex Networks with Uncertain Inner Couplings and Variable Delays of Unknown Bounds" Axioms 14, no. 3: 161. https://doi.org/10.3390/axioms14030161
APA StyleZhou, A., Yang, C., Yi, C., & Fan, H. (2025). New μ-Synchronization Criteria for Nonlinear Drive–Response Complex Networks with Uncertain Inner Couplings and Variable Delays of Unknown Bounds. Axioms, 14(3), 161. https://doi.org/10.3390/axioms14030161