New μ-Synchronization Criteria for Nonlinear Drive–Response Complex Networks with Uncertain Inner Couplings and Variable Delays of Unknown Bounds
Abstract
:1. Introduction
1.1. The Background and Related Works
1.2. The Research Aim and Highlights
2. Model and Background Description
3. Synchronization Analysis Results
- (i)
- (ii)
- (iii)
- (iv)
- (v)
- (vi)
4. Numerical Simulations
- (1)
- Histogram analysis.
- (2)
- Correlation of pixel values between adjacent positions.
- (3)
- Information entropy analysis.
- (4)
- Analysis of key capacity.
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Zhu, S.; Zhou, J.; Chen, G.; Lu, J.A. A new method for topology identification of complex dynamical networks. IEEE Trans. Cybern. 2021, 51, 2224–2231. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Shi, K.; Wang, J.; Yu, Y.; Wen, S.; Yang, J.; Han, S. Synchronization sampled-data control of uncertain neural networks under an asymmetric Lyapunov-Krasovskii functional method. Expert Syst. Appl. 2024, 239, 122475. [Google Scholar] [CrossRef]
- Dorfler, F.; Bullo, F. Synchronization in complex networks of phase oscillators: A survey. Automatica 2014, 50, 1539–1564. [Google Scholar] [CrossRef]
- Sultornsanee, S.; Radhakrishnan, S.; Falco, D.; Zeid, A.; Kamarthi, S. Phase synchronization approach to construction and analysis of stock correlation network. Procedia Comput. Sci. 2011, 6, 52–56. [Google Scholar] [CrossRef]
- Chen, W.W.; Li, H.L. Complete synchronization of delayed discrete-time fractional-order competitive neural networks. Appl. Math. Comput. 2024, 479, 128872. [Google Scholar] [CrossRef]
- Shen, Y.; Liu, X.Z. Generalized synchronization of delayed complex-valued dynamical networks via hybrid control. Commun. Nonlinear Sci. Numer. Simul. 2023, 118, 107057. [Google Scholar] [CrossRef]
- Gao, L.; Cai, Y. Finite-time stability of time-delay switched systems with delayed impulse effects. Circuits Syst. Signal Process. 2016, 35, 3135–3151. [Google Scholar] [CrossRef]
- Liu, X.; Chen, T. Finite-time and fixed-time cluster synchronization with or without pinning control. IEEE Trans. Cybern. 2018, 48, 240–252. [Google Scholar] [CrossRef] [PubMed]
- Fan, H.G.; Chen, X.J.; Shi, K.B.; Liang, Y.H.; Wang, Y.; Wen, H. Mittag-Leffler synchronization in finite time for uncertain fractional-order multi-delayed memristive neural networks with time-varying perturbations via information feedback. Fractal Fract. 2024, 8, 422. [Google Scholar] [CrossRef]
- Fan, H.G.; Rao, Y.; Shi, K.B.; Wen, H. Time-varying function matrix projection synchronization of Caputo fractional-order uncertain memristive neural networks with multiple delays via mixed open loop feedback control and impulsive control. Fractal Fract. 2024, 8, 301. [Google Scholar] [CrossRef]
- Fan, H.G.; Chen, X.J.; Shi, K.B.; Wen, H. Distributed delayed impulsive control for μ-synchronization of multi-link structure networks with bounded uncertainties and time-varying delays of unmeasured bounds: A novel Halanay impulsive inequality approach. Chaos Solitons Fractals 2024, 186, 115226. [Google Scholar] [CrossRef]
- Zhang, W.; Xiao, J.; Gong, B.Y. Global μ-synchronization for coupling delayed complex dynamical networks via event-triggered delayed impulsive control. ISA Trans. 2024, 145, 124–131. [Google Scholar] [CrossRef] [PubMed]
- Fan, H.G.; Xiao, Y.; Shi, K.B.; Wen, H.; Zhao, Y. μ-synchronization of coupled neural networks with hybrid delayed and non-delayed impulsive effects. Chaos Solitons Fractals 2023, 173, 113620. [Google Scholar] [CrossRef]
- Guan, K.Z.; Cai, Z.W. Impulsive μ-stabilization and μ-synchronization for delayed network systems with any time-varying delays. Neurocomputing 2020, 411, 498–509. [Google Scholar] [CrossRef]
- Chen, H.B.; Shi, P.; Lim, C.C. Pinning impulsive synchronization for stochastic reaction-diffusion dynamical networks with delay. Neural Netw. 2018, 106, 281–293. [Google Scholar] [CrossRef]
- Liang, J.C.; Liu, J.; Tse, C.K.; Liu, M.X. Observer-based aperiodically intermittent pinning synchronization of complex-valued dynamical networks with time-varying delay. Phys. A 2024, 635, 129516. [Google Scholar] [CrossRef]
- Fan, H.G.; Shi, K.B.; Guo, Z.Z.; Zhou, A.R. Finite-time synchronization criteria for Caputo fractional-order uncertain memristive neural networks with fuzzy operators and transmission delay under communication feedback. Fractal Fract. 2024, 8, 619. [Google Scholar] [CrossRef]
- Jiang, G.H.; Wang, L.M.; Hu, X.F.; Li, H.Y.; Zong, X.F. Semiglobal fixed/preassigned-time synchronization of stochastic neural networks with random delay via adaptive control. Neurocomputing 2024, 593, 127832. [Google Scholar] [CrossRef]
- Zhang, S.; Xu, J.J.; Zhang, H.S. Decentralized control of forward and backward stochastic difference system with nested asymmetric information. Appl. Math. Comput. 2024, 478, 128834. [Google Scholar] [CrossRef]
- Wang, S.; Shi, K.; Cao, J.; Wen, S. Fuzzy adaptive event-triggered synchronization control mechanism for T-S fuzzy RDNNs under deception attacks. Commun. Nonlinear Sci. Numer. Simul. 2024, 134, 107985. [Google Scholar] [CrossRef]
- Ruan, Z.Y.; Li, Y.Y.; Hu, J.H.; Mei, J.; Xia, D. Finite-time synchronization of the drive-response networks by event-triggered aperiodic intermittent control. Neurocomputing 2022, 485, 89–102. [Google Scholar] [CrossRef]
- Zhang, L.Z.; Lu, J.Q.; Jiang, B.X.; Zhong, J. Impulsive synchronization control for dynamic networks subject to double deception attacks. Expert Syst. Appl. 2024, 251, 124000. [Google Scholar] [CrossRef]
- Liu, X.W.; Li, Z.H. Finite time anti-synchronization of complex-valued neural networks with bounded asynchronous time-varying delays. Neurocomputing 2020, 387, 129–138. [Google Scholar] [CrossRef]
- Luo, Y.P.; Yao, Y.J. Finite-time synchronization of uncertain complex dynamic networks with time-varying delays. Adv. Differ. Equ. 2020, 32, 32. [Google Scholar] [CrossRef]
- Tan, Y.X.; Huang, Z.K. Synchronization of drive-response networks with delays on time scales. IEEE/CAA J. Autom. Sin. 2024, 11, 1063–1065. [Google Scholar] [CrossRef]
- Han, M.; Zhang, Y.M. Complex function projective synchronization in drive-response complex-variable dynamical networks with coupling time delays. J. Frankl. Inst. 2016, 353, 1742–1758. [Google Scholar] [CrossRef]
- Wang, L.M.; Hu, Y.Q.; Hu, C.; Zhou, Y.J.; Wen, S.P. Finite-time synchronization of delayed fuzzy inertial neural networks via intermittent control. Neurocomputing 2024, 574, 127288. [Google Scholar] [CrossRef]
- Wang, L.M.; Li, H.Y.; Hu, C.; Hu, J.H.; Wang, Q.Y. Synchronization and settling-time estimation of fuzzy memristive neural networks with time-varying delays: Fixed-time and preassigned-time control. Fuzzy Sets Syst. 2023, 470, 108654. [Google Scholar] [CrossRef]
- Rakkiyappan, R.; Chandrasekar, A.; Petchiammal, G. Non-fragile robust synchronization for Markovian jumping chaotic neural networks of neutral-type with randomly occurring uncertainties and mode-dependent time-varying delays. ISA Trans. 2014, 53, 1760–1770. [Google Scholar] [CrossRef] [PubMed]
- Xing, R.T.; Xiao, M.; Zhang, Y.Z.; Qiu, J.L. Stability and Hopf bifurcation analysis of an (n plus m)-neuron double-ring neural network model with multiple time delays. J. Syst. Sci. Complex. 2022, 35, 159–178. [Google Scholar] [CrossRef]
- He, J.M.; Pei, L.J. Function matrix projection synchronization for the multi-time delayed fractional order memristor-based neural networks with parameter uncertainty. Appl. Math. Comput. 2023, 454, 128110. [Google Scholar] [CrossRef]
- Gu, Y.J.; Yu, Y.G.; Wang, H. Synchronization for fractional-order time-delayed memristor-based neural networks with parameter uncertainty. J. Frankl. Inst. 2016, 353, 3657–3684. [Google Scholar] [CrossRef]
- Fan, H.G.; Shi, K.B.; Wen, H.; Zhao, Y. Synchronization of multi-weighted complex networks with mixed variable delays and uncertainties via impulsive pinning control. Phys. D 2023, 456, 133935. [Google Scholar] [CrossRef]
- Selvaraj, P.; Kwon, O.M.; Sakthivel, R. Disturbance and uncertainty rejection performance for fractional-order complex dynamical networks. Neural Netw. 2019, 112, 73–84. [Google Scholar] [CrossRef] [PubMed]
- Mirshamsi, A.; Nobakhti, A. Uncertainty disturbance estimator control for delayed linear systems with input constraint. Automatica 2024, 167, 111763. [Google Scholar] [CrossRef]
- Wen, G.; Yu, X.; Yu, W.; Lu, J. Coordination and control of complex network systems with switching topologies: A survey. IEEE Trans. Syst. Man Cybern. Syst. 2020, 51, 6342–6357. [Google Scholar] [CrossRef]
- Wu, Y.; Wang, Y.; Gunasekaran, N.; Vadivel, R. Almost sure consensus of multi-agent systems: An intermittent noise. IEEE Trans. Circuits Syst. II 2022, 69, 2897–2901. [Google Scholar] [CrossRef]
- Tirandaz, H. Adaptive modified projective synchronization of gyroscopes with unknown parameters and external disturbances. ICIC Express Lett. 2018, 12, 287–294. [Google Scholar]
- Du, H.Y. Function projective synchronization in complex dynamical networks with or without external disturbances via error feedback control. Neurocomputing 2016, 173, 1443–1449. [Google Scholar] [CrossRef]
- Du, H.Y. Modified function projective synchronization between two fractional-order complex dynamical networks with unknown parameters and unknown bounded external disturbances. Phys. A 2019, 526, 120997. [Google Scholar] [CrossRef]
- Ze, T.; Park, J.H.; Lee, T.H.; Feng, J.W. Mean square exponential synchronization for impulsive coupled neural networks with time-varying delays and stochastic disturbances. Complexity 2016, 21, 190–202. [Google Scholar]
- Zhao, Y.S.; Li, X.D.; Rao, R.F. Synchronization of nonidentical complex dynamical networks with unknown disturbances via observer-based sliding mode control. Neurocomputing 2021, 454, 441–447. [Google Scholar] [CrossRef]
- Liang, T.; Zhang, W.L.; Yang, D.G. Fixed-time synchronization of switched duplex networks with stochastic disturbances and limited communication. Commun. Nonlinear Sci. Numer. Simul. 2023, 121, 107227. [Google Scholar] [CrossRef]
- Ren, H.W.; Shi, P.; Deng, F.Q.; Peng, Y.J. Fixed-time synchronization of delayed complex dynamical systems with stochastic perturbation via impulsive pinning control. J. Frankl. Inst. 2020, 357, 12308–12325. [Google Scholar] [CrossRef]
- Shukla, V.K.; Joshi, M.C.; Mishra, P.K.; Xu, C.J. Mechanical analysis and function matrix projective synchronization of El-Nino chaotic system. Phys. Scr. 2025, 100, 015255. [Google Scholar] [CrossRef]
- Liu, X.Z.; Zhang, K.X. Synchronization of linear dynamical networks on time scales: Pinning control via delayed impulses. Automatica 2016, 72, 147–152. [Google Scholar] [CrossRef]
- Li, X.D.; Song, S.J.; Wu, J.H. Exponential stability of nonlinear systems with delayed impulses and applications. IEEE Trans. Autom. Control 2019, 64, 4024–4034. [Google Scholar] [CrossRef]
- Zhang, L.; Yang, X.S.; Xu, C.; Feng, J.W. Exponential synchronization of complex-valued complex networks with time-varying delays and stochastic perturbations via time-delayed impulsive control. Appl. Math. Comput. 2017, 306, 22–30. [Google Scholar] [CrossRef]
- Fan, H.G.; Shi, K.B.; Zhao, Y. Global μ-synchronization for nonlinear complex networks with unbounded multiple time delays and uncertainties via impulsive control. Phys. A 2022, 599, 127484. [Google Scholar] [CrossRef]
- Liu, L.F.; Liu, K.; Xiang, H.Y.; Liu, Q. Pinning impulsive cluster synchronization of complex dynamical networks. Phys. A 2020, 545, 123580. [Google Scholar] [CrossRef]
- Peng, D.X.; Li, X.D. Leader-following synchronization of complex dynamic networks via event-triggered impulsive control. Neurocomputing 2020, 412, 1–10. [Google Scholar] [CrossRef]
- Karthick, S.A.; Sakthivel, R.; Alzahrani, F.; Leelamani, A. Synchronization of semi-Markov coupled neural networks with impulse effects and leakage delay. Neurocomputing 2020, 386, 221–231. [Google Scholar] [CrossRef]
- Furtat, I.B. Robust synchronization of the structural uncertainty nonlinear network with delay and disturbances. IFAC Proc. Vol. 2013, 46, 227–232. [Google Scholar] [CrossRef]
- Jia, T.Y.; Chen, X.Y.; He, L.P.; Zhao, F.; Qiu, J.L. Finite-time synchronization of uncertain fractional-order delayed memristive neural networks via adaptive sliding mode control and its application. Fractal Fract. 2022, 6, 502. [Google Scholar] [CrossRef]
- Chandrasekar, A.; Rakkiyappan, R.; Cao, J.D. Impulsive synchronization of Markovian jumping randomly coupled neural networks with partly unknown transition probabilities via multiple integral approach. Neural Netw. 2015, 70, 27–38. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, A.; Yang, C.; Yi, C.; Fan, H. New μ-Synchronization Criteria for Nonlinear Drive–Response Complex Networks with Uncertain Inner Couplings and Variable Delays of Unknown Bounds. Axioms 2025, 14, 161. https://doi.org/10.3390/axioms14030161
Zhou A, Yang C, Yi C, Fan H. New μ-Synchronization Criteria for Nonlinear Drive–Response Complex Networks with Uncertain Inner Couplings and Variable Delays of Unknown Bounds. Axioms. 2025; 14(3):161. https://doi.org/10.3390/axioms14030161
Chicago/Turabian StyleZhou, Anran, Chongming Yang, Chengbo Yi, and Hongguang Fan. 2025. "New μ-Synchronization Criteria for Nonlinear Drive–Response Complex Networks with Uncertain Inner Couplings and Variable Delays of Unknown Bounds" Axioms 14, no. 3: 161. https://doi.org/10.3390/axioms14030161
APA StyleZhou, A., Yang, C., Yi, C., & Fan, H. (2025). New μ-Synchronization Criteria for Nonlinear Drive–Response Complex Networks with Uncertain Inner Couplings and Variable Delays of Unknown Bounds. Axioms, 14(3), 161. https://doi.org/10.3390/axioms14030161