The Orlicz Electrostatic q-Capacity Minkowski Problem
Abstract
:1. Introduction
2. Preliminaries
3. An Extremal Problem
4. Proof of the Main Results
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Minkowski, H. Allgemeine Lehrsätze über die konvexen Polyeder. Nachr. Ges. Wiss GÖTtingen 1897, 1897, 198–219. (In German) [Google Scholar]
- Minkowski, H. Volumen und Oberfläche. Math. Ann. 1903, 57, 447–495. [Google Scholar] [CrossRef]
- Aleksandrov, A. On the theory of mixed volumes of convex bodies. III. Extension of two theorems of Minkowski on convex polyhedra to arbitrary convex bodies. Math. Ussr Sb. 1938, 3, 27–46. [Google Scholar]
- Aleksandrov, A. On the surface area measure of convex body. Math. Ussr Sb. 1939, 6, 167–174. [Google Scholar]
- Lewy, H. On differential geometry in the large, I. Minkowski’s problem. Trans. Am. Math. Soc. 1938, 43, 258–270. [Google Scholar]
- Nirenberg, L. The Weyl and Minkowski problems in differential geometry in the large. Commun. Pure Appled Math. 1953, 6, 337–394. [Google Scholar] [CrossRef]
- Caffarelli, L.A. Interior a priori estimates for solutions of fully nonlinear equations. Ann. Math. 1989, 130, 189–213. [Google Scholar] [CrossRef]
- Caffarelli, L.A. A localization property of viscosity solutions to the Monge-Ampére equation and their strict convexity. Ann. Math. 1990, 131, 129–134. [Google Scholar] [CrossRef]
- Andrews, B. Gauss curvature flow: The fate of the rolling stones. Invent. Math. 1999, 138, 151–161. [Google Scholar] [CrossRef]
- Lutwak, E.; Yang, D.; Zhang, G. Sharp affine Lp sobolev inequalities. J. Differ. Geom. 2002, 62, 17–38. [Google Scholar] [CrossRef]
- Cianchi, A.; Lutwak, E.; Yang, D.; Zhang, G. Affine Moser–Trudinger and Morrey–Sobolev inequalities. Calc. Var. Partial. Differ. Equations 2009, 36, 419–436. [Google Scholar] [CrossRef]
- Colesanti, A. Brunn–Minkowski inequalities for variational functionals and related problems. Adv. Math. 2005, 194, 105–140. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Sahoo, S.K.; Mohammed, P.O.; Kashuri, A.; Chorfi, N. Results on Minkowski-type inequalities for weighted fractional integral operators. Symmetry 2023, 15, 1522. [Google Scholar] [CrossRef]
- Chen, W. Lp Minkowski problem with not necessarily positive data. Adv. Math. 2006, 201, 77–89. [Google Scholar] [CrossRef]
- Chou, K.S.; Wang, X.J. The Lp-Minkowski problem and the Minkowski problem in centroaffine geometry. Adv. Math. 2006, 205, 33–83. [Google Scholar] [CrossRef]
- Lutwak, E. The Brunn-Minkowski-Firey theory I: Mixed volumes and the Minkowski problem. J. Differ. Geom. 1993, 38, 131–150. [Google Scholar] [CrossRef]
- Lutwak, E. The Brunn-Minkowski-Firey theory II: Affine and geominimal surface areas. Adv. Math. 1996, 118, 244–294. [Google Scholar] [CrossRef]
- Lutwak, E.; Yang, D.; Zhang, G. On the Lp-Minkowski problem. Trans. Am. Math. Soc. 2004, 356, 4359–4370. [Google Scholar] [CrossRef]
- Zhu, G. The Lp Minkowski problem for polytopes for p < 0. Indiana Univ. Math. J. 2017, 66, 1333–1350. [Google Scholar]
- Böröczky, K.; Lutwak, E.; Yang, D.; Zhang, G. The logarithmic Minkowski problem. J. Am. Math. Soc. 2013, 26, 831–852. [Google Scholar] [CrossRef]
- Zhu, G. The logarithmic Minkowski problem for polytopes. Adv. Math. 2014, 262, 909–931. [Google Scholar] [CrossRef]
- Guan, B.; Guan, P. Convex hypersurfaces of prescribed curvature. Ann. Math. 2022, 156, 655–673. [Google Scholar] [CrossRef]
- Jerison, D. A Minkowski problem for electrostatic capacity. Acta Math. 1996, 176, 1–47. [Google Scholar] [CrossRef]
- Caffarelli, L.A.; Jerison, D.; Lieb, E.H. On the case of equality in the Brunn-Minkowski inequality for capacity. In Inequalities: Selecta of Elliott H. Lieb; Springer: Berlin/Heidelberg, Germany, 2002; pp. 497–511. [Google Scholar]
- Caffarelli, L.A. Some regularity properties of solution of Monge-Ampère equation. Commun. Pure Appl. Math. 1991, 44, 965–969. [Google Scholar] [CrossRef]
- Colesanti, A.; Nyström, K.; Salani, P.; Xiao, J.; Yang, D.; Zhang, G. The Hadamard variational formula and the Minkowski problem for q-capacity. Adv. Math. 2015, 285, 1511–1588. [Google Scholar] [CrossRef]
- Caffarelli, L.A. Interior W2,p-estimates for solutions of the Monge-Ampère equation. Ann. Math. 1990, 131, 135–150. [Google Scholar] [CrossRef]
- Akman, M.; Gong, J.; Hineman, J.; Lewis, J. The Brunn-Minkowski inequality and a Minkowski problem for nonliner capacity. Am. Math. Socirty 2022, 275, 1348. [Google Scholar]
- Firey, W.J. p-means of convex bodies. Math. Scand. 1962, 10, 17–24. [Google Scholar] [CrossRef]
- Zou, D.; Xiong, G. The Lp Minkowski problem for electrostatic q-capacity. J. Differ. Geom. 2020, 116, 555–596. [Google Scholar]
- Xiong, G.; Xiong, J.; Xu, L. The Lp capacitary Minkowski problem for polytopes. J. Funct. Anal. 2019, 277, 3131–3155. [Google Scholar] [CrossRef]
- Wang, W.; He, R. The discrete logarithmic Minkowski problem for q-capacity. J. Math. Anal. Appl. 2022, 511, 126101. [Google Scholar] [CrossRef]
- Xiong, G.; Xiong, J.W. The logarithmic capacitary Minkowski problem for polytopes. Acta Math. Sin. Engl. Ser. 2022, 38, 406–418. [Google Scholar] [CrossRef]
- Feng, Y.; Zhou, Y.; He, B. The Lp electrostatic q-capacitary Minkowski problem for general measures. J. Math. Anal. Appl. 2020, 487, 123959. [Google Scholar] [CrossRef]
- Chen, Z. The Lp Minkowski problem for q-capacity. Proc. R. Soc. Edinb. Sect. Math. 2021, 151, 1247–1277. [Google Scholar] [CrossRef]
- Colesanti, A.; Cuoghi, P. The Brunn-Minkowski inequality for the n-dimensional logarithmic capacity of convex bodies. Potential Anal. 2005, 22, 289–304. [Google Scholar] [CrossRef]
- Colesanti, A.; Salani, P. The Brunn-Minkowski inequality for p-capacity of convex bodies. Math. Ann. 2003, 327, 459–479. [Google Scholar] [CrossRef]
- Lu, X.; Xiong, G. The Lp Minkowski problem for the electrostatic p-capacity for p ≥ n. Indiana Univ. Math. J. 2021, 70, 1869–1901. [Google Scholar] [CrossRef]
- Akman, M.; Lewis, J.; Saari, O.; Vogel, A. The Brunn-Minkowski inequality and a Minkowski problem for A-harmonic Green’s function. Adv. Calc. Var. 2021, 14, 247–302. [Google Scholar] [CrossRef]
- Gruber, P.J.; Hug, D.; Weil, W. Operations between sets in geometry. J. Eur. Math. Soc. 2013, 15, 2297–2352. [Google Scholar]
- Xi, D.; Jin, H.; Leng, G. The Orlicz Brunn-Minkowski inequality. Adv. Math. 2014, 260, 350–374. [Google Scholar] [CrossRef]
- Lutwak, E.; Yang, D.; Zhang, G. Orlicz projection bodies. Adv. Math. 2010, 223, 220–242. [Google Scholar] [CrossRef]
- Lutwak, E.; Yang, D.; Zhang, G. Orlicz centroid bodies. J. Differ. Geom. 2010, 84, 365–387. [Google Scholar] [CrossRef]
- Böröczky, K. Stronger versions of the Orlicz-Petty projection inequality. J. Differ. Geom. 2013, 95, 215–247. [Google Scholar] [CrossRef]
- Haberl, C.; Lutwak, E.; Yang, D.; Zhang, G. The even Orlicz Minkowski Problem. Adv. Math. 2010, 224, 2485–2510. [Google Scholar] [CrossRef]
- Zhu, B.; Zhou, J.; Xu, W. Dual Orlicz–Brunn–Minkowski theory. Adv. Math. 2014, 264, 700–725. [Google Scholar] [CrossRef]
- Xing, S.; Ye, D. On the general dual Orlicz-Minkowski problem. Indiana Univ. Math. J. 2020, 69, 621–655. [Google Scholar] [CrossRef]
- Ye, D. On the monotone properties of general affine surfaces under the Steiner symmetrization. Indiana Univ. Math. J. 2014, 14, 1–19. [Google Scholar] [CrossRef]
- Zou, D.; Xiong, G. Orlicz-John ellipsoids. Adv. Math. 2014, 265, 132–168. [Google Scholar] [CrossRef]
- Hong, H.; Ye, D.; Zhang, N. The p-capacitary Orlicz-Hadamard variational formula and Orlicz-Minkowski Problems. Calc. Var. Partial. Differ. Equations 2018, 57, 1–31. [Google Scholar] [CrossRef]
- Ji, L.; Yang, Z. The discrete Orlicz-Minkowski problem for q-capacity. Acta Math. Sci. Engl. Ser. 2022, 42, 1403–1413. [Google Scholar] [CrossRef]
- Xiong, G.; Xiong, J. The Orlicz Minkowski problem for the electrostatic q-capacity. Adv. Appl. Math. 2022, 137, 102339. [Google Scholar] [CrossRef]
- Hu, Z.; Li, H. On the Orlicz Minkowski problem for logarithmic capacity. J. Math. Anal. Appl. 2022, 510, 126005. [Google Scholar] [CrossRef]
- Gardner, R.M. Geometric Tomography, 2nd ed.; Cambridge University Press: Cambridge, UK, 2006. [Google Scholar]
- Gruber, P.M. Convex and Discrete Geometry; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Schneider, R. Convex Bodies: The Brunn-Minkowski Theory, 2nd ed.; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Maz’ya, V. Conductor and capacitary inequalities for functions on topological spaces and theier application to Sobolev-type imbeddings. J. Funct. Anal. 2005, 224, 408–430. [Google Scholar] [CrossRef]
- Evans, L.; Gariepy, R. Measure Theory and Fine Properties of Functions; CRC Press: Boca Raton, FL, USA, 2008. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zeng, H.; Liu, L.; Yin, L.; He, R. The Orlicz Electrostatic q-Capacity Minkowski Problem. Axioms 2025, 14, 86. https://doi.org/10.3390/axioms14020086
Zeng H, Liu L, Yin L, He R. The Orlicz Electrostatic q-Capacity Minkowski Problem. Axioms. 2025; 14(2):86. https://doi.org/10.3390/axioms14020086
Chicago/Turabian StyleZeng, Hui, Lijuan Liu, Lu Yin, and Rigao He. 2025. "The Orlicz Electrostatic q-Capacity Minkowski Problem" Axioms 14, no. 2: 86. https://doi.org/10.3390/axioms14020086
APA StyleZeng, H., Liu, L., Yin, L., & He, R. (2025). The Orlicz Electrostatic q-Capacity Minkowski Problem. Axioms, 14(2), 86. https://doi.org/10.3390/axioms14020086