Integral Transforms in Number Theory †
Abstract
1. Introduction and the Underlying Flow of Ideas
1.1. The Hecke Gamma Transform
1.2. Beta and Hardy Transform and Fourier–Bessel Expansion
1.3. On Proofs of Theorem 1
1.4. Hecke Transform
2. Chowla–Selberg Integral Formula for a Non-Holomorphic Eisenstein Series w.r.t. the Hilbert Modular Group
3. Concluding Remarks
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kanemitsu, S.; Tsukada, H. Contributions to the Theory of Zeta-Functions: The Modular Relation Supremacy; World Scientific: Singapore, 2014. [Google Scholar]
- Chakraborty, K.; Kanemitsu, S.; Kuzumaki, T. Modular Relations and Parity in Number Theory; Springer Nature: Singapore, 2025. [Google Scholar]
- Vilenkin, N.Y. Special Functions and the Theory of Group Representations; AMS: Providence, RI, USA, 1968. [Google Scholar]
- Asai, T. On a certain function analogous to log|η(z)|. Nagoya Math. J. 1970, 40, 193–221. [Google Scholar] [CrossRef]
- Iwaniec, H.; Kowalski, E. Analytic Number Theory; AMS: Providence, RI, USA, 2004. [Google Scholar]
- Paris, R.B.; Kaminski, D. Asymptotics and Mellin-Barnes Integrals; Cambridge UP: Cambridge, UK, 2001. [Google Scholar]
- Sneddon, I.N. The Use of Integral Transforms; MacGraw-Hill: New York, NY, USA, 1972. [Google Scholar]
- Watson, G.N. A Treatise on the Theory of Bessel Functions, 2nd ed.; Cambridge UP: Cambridge, UK, 1944. [Google Scholar]
- Whittaker, E.T.; Watson, G.N. A Course in Modern Analysis, 4th ed.; Cambridge UP: Cambridge, UK, 1927. [Google Scholar]
- Erdélyi, A.; Magnus, W.; Oberhettinger, F.; Tricomi, F.G. (Eds.) Higher Transcendental Functions; McGraw-Hill: New York, NY, USA, 1953; Volumes I–III. [Google Scholar]
- Erdélyi, A.; Magnus, W.; Oberhettinger, F.; Tricomi, F.G. (Eds.) Tables of Integral Transforms; McGraw-Hill Book Company, Inc.: New York, NY, USA; Toronto, ON, Canada; London, UK, 1954; Volumes I–II. [Google Scholar]
- Magnus, M.; Oberhettinger, F.; Soni, K. Formulas and Theorems for the Special Functions of Mathematical Physics, 3rd ed.; Springer: Berlin/Heidelberg, Germany, 1966. [Google Scholar]
- Oberhettinger, F. Tables of Mellin Transforms; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 1974. [Google Scholar]
- Kitaoka, Y. An Introduction to Algebraic Number Theory; World Scientific: Singapore, 2025. [Google Scholar]
- Serre, J.-P. A Course in Arithmetic; Springer: New York, NY, USA, 1973. [Google Scholar]
- Mehta, J.G.; Wang, N.-L.; Kanemitsu, S. Summation Formulas Equivalent to the Functional Equation for the Riemann Zeta-Function. 2026; in preparation. [Google Scholar]
- Kimura, T. Prehomogeneous Vector Spaces; Iwanami-Shoten: Tokyo, Japan, 1998. [Google Scholar]
- Sato, M.; Shintani, T. On zeta functions associated with prehomogeneous vector spaces. Ann. Math. 1974, 100, 131–170. [Google Scholar] [CrossRef]
- Ogg, A. Modular Forms and Dirichlet Series; Benjamin: New York, NY, USA, 1969. [Google Scholar]
- Hecke, E. Über die Bestimmung Dirichletscher Reihen durch ihre Funktionalgleichung. Math. Ann. 1936, 112, 664–699. [Google Scholar] [CrossRef]
- Hecke, E. Lectures on Dirichlet Series, Modular Functions and Quadratic Forms; Schoenberg, B., Maak, W., Eds.; Vandenhoeck u. Ruprecht: Göttingen, Germany, 1983; (first edition: Dirichlet Series, Planographed Lecture Notes, Princeton IAS, Edwards Brothers, Ann Arbor, 1938). [Google Scholar]
- Weil, A. Dirichlet Series and Automorphic Forms; LNM; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 1971; Volume 189. [Google Scholar]
- Kanemitsu, S.; Tanigawa, Y.; Yoshimoto, M. Ramanujan’s formula and modular forms. In Number-Theoretic Methods—Future Trends, Proceedings of a Conference Held in Iizuka; Kanemitsu, S., Jia, C., Eds.; Kluwer: Dordrecht, The Netherlands, 2002; pp. 159–212. [Google Scholar]
- Bellman, R. On a class of functional equations of modular type. Proc. Nat. Acad. Sci. USA 1956, 42, 84–87. [Google Scholar] [CrossRef]
- Chakraborty, K. On the Chowla-Selberg integral formula for nonholomorphic Eisenstein series. Integral Transform. Spec. Funct. 2020, 21, 917–923. [Google Scholar] [CrossRef]
- Chan, H.H. Theta Functions, Elliptic Functions and π; de Gruyter: Berlin, Germany; Boston, MA, USA, 2020. [Google Scholar]
- Chakraborty, K.; Kanemitsu, S.; Tsukada, H. Applications of the beta-transform. Siaulai Math. Sem. 2015, 10, 5–28. [Google Scholar]
- Hardy, G.H. Some multiple integrals. Quart. J. Math. 1908, 5, 357–375. [Google Scholar]
- Koshlyakov, N.S. Investigation of some questions of analytic theory of the rational and quadratic fields. I–III. Izv. Akad. Nauk SSSR Ser. Mat. 1954, 18, 113–144, 213–260, 307–326. Erratum in Izv. Akad. Nauk SSSR Ser. Mat. 1955, 19, 271.(In Russian) [Google Scholar]
- Berndt, B.C. Identities involving the coefficients of a class of Dirichlet series III. Trans. Am. Math. Soc. 1969, 146, 323–348. [Google Scholar] [CrossRef]
- Kuzumaki, T. Asymptotic expansions for a class of zeta-functions. Ramanujan J. 2011, 24, 331–343. [Google Scholar] [CrossRef]
- Zhang, N.-X.; Williams, K. On the Epstein zeta function. Tamkang J. Math. 1995, 26, 165–176. [Google Scholar] [CrossRef]
- Bellman, R. Generalized Eisenstein series and non-analytic automorphic functions. Proc. Nat. Acad. Sci. USA 1950, 36, 356–359. [Google Scholar] [CrossRef] [PubMed]
- Chowla, S.; Selberg, A. On Epstein’s zeta-function (I). Proc. Nat. Acad. Sci. USA 1949, 35, 371–374. [Google Scholar] [CrossRef] [PubMed]
- Selberg, A.; Chowla, S. On Epstein’s zeta-function. J. Reine Angew Math. 1967, 227, 86–110. [Google Scholar]
- Deuring, M.F. On Epstein’s zeta function. Ann. Math. 1937, 38, 585–593. [Google Scholar] [CrossRef]
- Heilbronn, H.A. On the class-number in imaginary quadratic fields. Quart. J. Math. 1934, 5, 150–160. [Google Scholar] [CrossRef]
- Siegel, C.L. Über die Classenzahl quadratischer Zahlkörper. Acta Arith. 1935, l, 86–89. [Google Scholar] [CrossRef]
- Deuring, M.F. Imaginäre quadratische Zahlkörper mit der Klassenzahl Eins. Invent. Math. 1968, 37, 169–179. [Google Scholar] [CrossRef]
- Berndt, B.C. Generalized Dirichlet series and Hecke’s functional equation. Proc. Edinb. Math. Soc. 1967, 15, 309–313. [Google Scholar] [CrossRef]
- Berndt, B.C. Identities involving the coefficients of a class of Dirichlet series IV. Trans. Amer. Math. Soc. 1970, 149, 179–185. [Google Scholar] [CrossRef]
- Berndt, B.C. Identities involving the coefficients of a class of Dirichlet series VI. Trans. Amer. Math. Soc. 1971, 160, 157–167. [Google Scholar]
- Kanemitsu, S.; Tanigawa, Y.; Tsukada, H.; Yoshimoto, M. On Bessel Series Expressions for Some Lattice Sums II. J. Phys. A Math. Gen. 2004, 37, 719–734. [Google Scholar] [CrossRef]
- Katsurada, M.; Matsumoto, K. Explicit formulas and asymptotic expansions for certain mean square of Hurwitz zeta functions II. In Analytic and Probabilistic Methods in Number Theory; New Trends in Probability and Statistics; VSP/TEV; Laurinčikas, E., Manstavicius, E., Stakenas, V., Eds.; De Gruyter Brill: Berlin, Germany, 1997; Volume 4, pp. 119–134. [Google Scholar]
- Katsurada, M.; Matsumoto, K. Explicit formulas and asymptotic expansions for certain mean square of Hurwitz zeta functions III. Compos. Math. 2002, 131, 239–266. [Google Scholar] [CrossRef]
- Wang, X.-H.; Wang, N.-L.; Kanemitsu, S. An extension of Maass theory to general Dirichlet series. Int. Transf. Spec. Funct. 2022, 33, 929–944. [Google Scholar] [CrossRef]
- Katsurada, M.; Matsumoto, K. Explicit formulas and asymptotic expansions for certain mean square of Hurwitz zeta functions I. Math. Scand. 1996, 78, 161–177. [Google Scholar] [CrossRef]
- Soni, K. Some relations associated with an extension of Koshliakov’s formula. Proc. Am. Math. Soc. 1966, 17, 543–551. [Google Scholar] [CrossRef]
- Oberhettinger, F.; Soni, K.L. On some relations which are equivalent to functional equations involving the Riemann zeta-function. Math. Z. 1972, 127, 17–34. [Google Scholar] [CrossRef]
- Dixiom, A.L.; Ferrar, W.L. Latticepoint summation formulae. Quart. J. Math. 1931, 2, 31–54. [Google Scholar]
- Kober, H. Transformationsformeln gewisser Besselscher Reihen, Beziehungen zu Zeta-Funktionen. Math. Z. 1934, 39, 609–624. [Google Scholar]
- Deuring, M.F. Imaginäre quadratische Zahlkörper mit der Klassenzahl 1. Math. Z. 1933, 37, 403–413. [Google Scholar]
- Taylor, P.R. The functional equation for Epstein’s zeta-function. Quart. J. Math. Sec. Ser. 1940, 11, 177–182. [Google Scholar] [CrossRef]
- Taylor, P.R. On the Riemann zeta function. Quart. J. Math. Sec. Ser. 1945, 16, 1–21. [Google Scholar] [CrossRef]
- Bateman, P.T.; Grosswald, E. On Epstein’s zeta function. Acta Arith. 1964, 9, 365–373. [Google Scholar] [CrossRef]
- Maass, H. Lectures on Modular Functions of One Complex Variable; Revised in 1983; Tata Institute: Bombay, India, 1964. [Google Scholar]
- Maass, H. Über eine neue Art von nichtanalytischen automorphen Funktionen und die Bestimmung Dirichletscher Reihen durch Funktionalgelichungen. Math. Ann. 1949, 121, 141–183. [Google Scholar] [CrossRef]
- Lewittes, J. Analytic continuation of the series ∑(m+nz)−s. Trans. Am. Math. Soc. 1971, 159, 505–509. [Google Scholar] [CrossRef]
- Chakraborty, K.; Kanemitsu, S.; Yu, L.-Y. Chapter 10: On the Hamburger-Oberhettinger-Soni modular relations. In Mathematical Analysis: Theory and Applications; CRC Press: Boca Raton, FL, USA, 2024; pp. 161–186. [Google Scholar]
- Stark, H. L-function at s = 1. I–IV. Adv. Math. 1971, 7, 301–343. [Google Scholar] [CrossRef]
- Wang, N.-L.; Kuzumaki, T.; Kanemitsu, S. A Tapestry of Ideas with Ramanujan’s Formula Woven In. Axioms 2025, 14, 146. [Google Scholar] [CrossRef]
- Rademacher, H. Topics in Analytic Number Theory; Springer: Berlin/Heidelberg, Germany, 1973. [Google Scholar]
- Hecke, E. Analytische Funktionen und algebraische Zahlen. I. Abh. Math. Sem. Univ. Hambg. 1921, 1, 102–126. [Google Scholar] [CrossRef]
- Mellin, H. Abriss einer einheitlichen Theorie der Gamma- und der hypergeometrischen Funktionen. Math. Ann. 1910, 68, 305–337. [Google Scholar] [CrossRef]
- Siegel, C.L. Bemerkungen zu einem Satz von Hamburger über die Funktionalgleichung der Riemannschen Zetafunktion. Math. Ann. 1922, 85, 276–279. [Google Scholar] [CrossRef]
- Rademacher, H. Zur additiven Primzahltheorie algebraischer Zahlkörper III. Math. Z. 1927, 27, 321–426. [Google Scholar] [CrossRef]
- Kloosterman, D. On the representation of numbers in the form ax2 + by2 + cz2 + dt2. Acta Math. 1926, 49, 407–464. [Google Scholar] [CrossRef]
| Zeta | Symbol | A |
|---|---|---|
| class Dedekind zeta | ||
| Epstein zeta | ||
| Epstein-type Eisenstein | ||
| Eisenstein–Maass Equation (28) | ||
| real-analytic Eisenstein | 1 |
| Data | ||
|---|---|---|
| PID | ||
| Mod. gr. | ||
| (51) | ||
| Factor gr. | ||
| UHS | ||
| |discr.| | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, G.; Kuzumaki, T.; Kanemitsu, S. Integral Transforms in Number Theory. Axioms 2025, 14, 917. https://doi.org/10.3390/axioms14120917
Liu G, Kuzumaki T, Kanemitsu S. Integral Transforms in Number Theory. Axioms. 2025; 14(12):917. https://doi.org/10.3390/axioms14120917
Chicago/Turabian StyleLiu, Guodong, Takako Kuzumaki, and Shigeru Kanemitsu. 2025. "Integral Transforms in Number Theory" Axioms 14, no. 12: 917. https://doi.org/10.3390/axioms14120917
APA StyleLiu, G., Kuzumaki, T., & Kanemitsu, S. (2025). Integral Transforms in Number Theory. Axioms, 14(12), 917. https://doi.org/10.3390/axioms14120917

