On the Application of a Hypergeometric Identity to Generate Generalized Hypergeometric Reduction Formulas
Abstract
1. Introduction
2. Preliminaries
3. Main Result
4. Application to Reduction Formulas with Arguments
5. Application to and Reduction Formulas with and Arbitrary z
6. Application to Reduction Formulas with Arbitrary p and z
7. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Berglund, P.; Candelas, P.; De La Ossa, X.; Font, A.; Hübsch, T.; Jančić, D.; Quevedo, F. Periods for Calabi-Yau and Landau-Ginzburg vacua. Nucl. Phys. B 1994, 419, 352–403. [Google Scholar] [CrossRef]
- Andrews, G.E.; Askey, R.; Roy, R. Special Functions; Cambridge University Press: Cambridge, UK, 1999; Volume 71. [Google Scholar]
- González-Santander, J.L. Hypergeometric distribution of the number of draws from an urn with two types of items before one of the counts reaches a threshold. Turk. J. Math. 2020, 44, 1881–1898. [Google Scholar] [CrossRef]
- Prudnikov, A.P.; Brychkov, Y.A.; Marichev, O.I. Integrals and Series: More Special Functions; CRC Press: Boca Raton, FL, USA, 1986; Volume 3. [Google Scholar]
- Krupnikov, E.D.; Kölbig, K.S. Some special cases of the generalized hypergeometric function q+1Fq. J. Comput. Appl. Math. 1997, 78, 79–95. [Google Scholar] [CrossRef]
- Brychkov, Y.A. Handbook of Special Functions: Derivatives, Integrals, Series and Other Formulas; Chapman and Hall/CRC: Boca Raton, FL, USA, 2008. [Google Scholar]
- Rakha, M.A.; Rathie, A.K. Generalizations of classical summation theorems for the series 2F1 and 3F2 with applications. Integral Transform. Spec. Funct. 2011, 22, 823–840. [Google Scholar] [CrossRef]
- Lewanowicz, S. Generalized Watson’s summation formula for 3F2(1). J. Comput. Appl. Math. 1997, 86, 375–386. [Google Scholar] [CrossRef]
- Kim, Y.S.; Rathie, A.; Paris, R.B. Evaluations of some terminating hypergeometric 2F1(2) series with applications. Turk. J. Math. 2018, 42, 2563–2575. [Google Scholar] [CrossRef]
- Choi, J.; Rathie, A.K.; Malani, S. Kummer’s theorem and its contiguous identities. Taiwan. J. Math. 2007, 11, 1521–1527. [Google Scholar] [CrossRef]
- Atasha, A.A.; Bellehaja, H.S. On Two Summation Formulas for the Generalized Hypergeometric Functions 3F2(1) and 4F3(1). Gen. Lett. Math. 2025, 15, 42–48. [Google Scholar] [CrossRef]
- Karlsson, P.W. Hypergeometric functions with integral parameter differences. J. Math. Phys. 1971, 12, 270–271. [Google Scholar] [CrossRef]
- González-Santander, J.L.; Sánchez Lasheras, F. A Note on Some Generalized Hypergeometric Reduction Formulas. Mathematics 2023, 11, 3483. [Google Scholar] [CrossRef]
- Lebedev, N.N. Special Functions and Their Applications; Prentice-Hall Inc.: Upper Saddle River, NJ, USA, 1965. [Google Scholar]
- Lozier, D.W. NIST Digital Library of Mathematical Functions. In Annals of Mathematics and Artificial Intelligence; Olver, F.W.J., Daalhuis, A.B.O., Lozier, D.W., Schneider, B.I., Boisvert, R.F., Clark, C.W., Miller, B.R., Saunders, B.V., Cohl, H.S., McClain, M.A., Eds.; Springer: Berlin/Heidelberg, Germany, 2003; Volume 38, pp. 105–119. [Google Scholar]
- Oldham, K.; Myland, J.; Spanier, J. An Atlas of Functions: With Equator, the Atlas Function Calculator; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- González-Santander, J.L.; Sánchez Lasheras, F. Sums involving the digamma function connected to the incomplete beta function and the Bessel functions. Mathematics 2023, 11, 1937. [Google Scholar] [CrossRef]
- González-Santander, J.L. A Note on Some Reduction Formulas for the Generalized Hypergeometric Function 2F2 and Kampé de Fériet Function. Results Math. 2017, 71, 949–954. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
González-Santander, J.L. On the Application of a Hypergeometric Identity to Generate Generalized Hypergeometric Reduction Formulas. Axioms 2025, 14, 847. https://doi.org/10.3390/axioms14110847
González-Santander JL. On the Application of a Hypergeometric Identity to Generate Generalized Hypergeometric Reduction Formulas. Axioms. 2025; 14(11):847. https://doi.org/10.3390/axioms14110847
Chicago/Turabian StyleGonzález-Santander, Juan Luis. 2025. "On the Application of a Hypergeometric Identity to Generate Generalized Hypergeometric Reduction Formulas" Axioms 14, no. 11: 847. https://doi.org/10.3390/axioms14110847
APA StyleGonzález-Santander, J. L. (2025). On the Application of a Hypergeometric Identity to Generate Generalized Hypergeometric Reduction Formulas. Axioms, 14(11), 847. https://doi.org/10.3390/axioms14110847
