Non-Global Lie Higher Derivations on Triangular Algebras Without Assuming Unity
Abstract
1. Introduction
- (a)
- A higher derivation if for all and every ,
- (b)
- A Lie higher derivation if for all and every ,
- (c)
- A non-global Lie higher derivation if for all (with ) and every ,
- (i)
- and ;
- (ii)
- M is strong faithful;
- (iii)
- For any , we have that if and only if .
2. Triangular Algebras Without Assuming Unity
- Left strongly faithful if for any , the condition implies ;
- Right strongly faithful if for any , the condition implies ;
- Strongly faithful if it is both left and right strongly faithful.
- (a)
- is a nonzero mapping on and is an identity mapping on ;
- (b)
- ;
- (c)
- with .
3. Non-Global Lie Higher Derivations
- (i)
- ;
- (ii)
- ;
- (iii)
- ,
- (iv)
- , and
- (i)
- and ;
- (ii)
- M is strong faithful;
- (iii)
- For any , we have that if and only if .
- (1)
- Define the first mapping asfor all . Using Claim 1 and together with (16), (18), and (20), we get from Theorem 2 that a sequence of linear mappings is a higher derivation.
- (2)
- Let us define the second mapping as follows:for all and .
- (1)
- Define the first mapping asfor all . It follows from (6) and Claim 1 that a sequence of linear mappings is a higher derivation.
- (2)
- Let us define the second mapping as follows:for all .
- (a)
- is a nonzero mapping on ;
- (b)
- for all ;
- (c)
- for all ;
- (d)
- for all with .
- (i)
- and
- (ii)
- M is strong faithful;
- (iii)
- For any , we have that if and only if .
- (i)
- and ;
- (ii)
- M is faithful;
- (iii)
- Both A and B are unital.
- (i)
- and ;
- (ii)
- M is faithful;
- (iii)
- Both A and B are unital.
4. Open Problems and Future Work
5. Conclusions
- (i)
- and ;
- (ii)
- M is strong faithful;
- (iii)
- For any , we have that if and only if .
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cheung, W.-S. Lie derivations of triangular algebras. Linear Multilinear Algebra 2003, 51, 299–310. [Google Scholar] [CrossRef]
- Martindale, W.S., III. Lie derivations of primitive rings. Linear Multilinear Algebra 1964, 11, 183–187. [Google Scholar] [CrossRef]
- Miers, C.R. Lie derivations of von Neumann algebras. Duke Math. J. 1973, 40, 403–409. [Google Scholar] [CrossRef]
- Wang, Y. Lie derivations of triangular algebras without assuming unity. Linear Multilinear Algebra 2020, 68, 2069–2086. [Google Scholar] [CrossRef]
- Ashraf, M.; Haetinger, C.; Ali, S. On higher derivations: A survey. Int. J. Math. Game Theory Algebra 2011, 19, 359–379. [Google Scholar]
- Ferrero, M.; Haetinger, C. Higher derivations and a theorem by Herstein. Quaest. Math. 2002, 25, 249–257. [Google Scholar] [CrossRef]
- Ferrero, M.; Haetinger, C. Higher derivations of semiprime rings. Commun. Algebra 2002, 30, 2321–2333. [Google Scholar] [CrossRef]
- Li, J.; Shen, Q. Characterization of Lie higher and Lie triple derivation on triangular algebra. J. Korean Math. Soc. 2012, 49, 419–433. [Google Scholar] [CrossRef]
- Wei, F.; Xiao, Z.-K. Higher derivations of triangular algebras and its generalizations. Linear Algebra Appl. 2011, 435, 1034–1054. [Google Scholar] [CrossRef]
- Zhang, X.; An, R.-L.; Hou, J.-C. Characterization of higher derivations on CSL algebras. Expo. Math. 2013, 31, 392–404. [Google Scholar] [CrossRef]
- Xiao, Z.-K.; Wei, F. Lie triple derivations of triangular algebras. Linear Algebra Appl. 2012, 437, 1234–1249. [Google Scholar] [CrossRef]
- Xiao, Z.-K.; Wei, F. Nonlinear Lie higher derivations on triangular algebras. Linear Multilinear Algebra 2012, 60, 979–994. [Google Scholar] [CrossRef]
- Brešar, M. Centralizing mappings on von Neumann algebras. Proc. Amer. Math. Soc. 1991, 111, 501–510. [Google Scholar] [CrossRef]
- Brešar, M. On a generalization of the notion of centralizing mappings. Proc. Am. Math. Soc. 1992, 114, 641–649. [Google Scholar] [CrossRef]
- Brešar, M. Commuting traces of biadditive mappings, commutativity-preserving mappings and Lie mappings. Trans. Am. Math. Soc. 1993, 335, 525–546. [Google Scholar] [CrossRef]
- Brešar, M. Centralizing mappings and derivations in prime rings. J. Algebra 1993, 156, 385–394. [Google Scholar] [CrossRef]
- Brešar, M.; Chebotar, M.A.; Martindale, W.S., 3rd. Functional Identities, Frontiers in Mathematics; Birkhäuser Verlag: Switzerland, Basel, 2007. [Google Scholar]
- Cheung, W.-S. Commuting maps of triangular algebras. J. Lond. Math. Soc. 2001, 63, 117–127. [Google Scholar] [CrossRef]
- Qi, X.-F.; Hou, J.-C. Lie higher derivations on nest algebras. Comm. Math. Res. 2010, 26, 131–143. [Google Scholar]
- Moafian, F.; Vishki, H.R.E. Lie Higher Derivations on Triangular Algebras Revisited. Filomat 2016, 30, 3187–3194. [Google Scholar] [CrossRef]
- Ji, P.; Qi, X.-F.W. Characterizations of Lie derivations of Triangular Algebras. Linear Algebra Appl. 2011, 435, 1137–1146. [Google Scholar] [CrossRef]
- Lin, W. Characterizations of Lie Higher Derivations on Triangular Algebras. Indian J. Pure Appl. Math. 2020, 51, 77–104. [Google Scholar] [CrossRef]
- Ghahramani, H.; Ghosseiri, M.N.; Rezaei, T. Characterizing Jordan Derivable Maps on Triangular Rings by Local Actions. J. Math. 2022, 2022, 1–10. [Google Scholar] [CrossRef]
- Fadaee, B.; Fosner, A.; Ghahramani, H. Centralizers of Lie Structure of Triangular Algebras. Results Math. 2022, 77, 1–16. [Google Scholar] [CrossRef]
- Liang, X.; Ren, D. Lie higher derivations on triangular algebra without assuming unity. Filomat 2024, 38, 919–937. [Google Scholar] [CrossRef]
- Behfar, R.; Ghahramani, H. Lie Maps on Triangular Algebras Without Assuming Unity. Mediterr. J. Math. 2021, 18, 215. [Google Scholar] [CrossRef]
- Fošner, A.; Liang, X.-F.; Wei, F. Centralizing Traces with Automorphisms on Triangular Algebras. Acta Math. Hungar. 2018, 214, 315–342. [Google Scholar] [CrossRef]
- Mohammad, A.; Mohammad, A.A. Lie higher derivations of arbitrary triangular algebras. arXiv 2021, arXiv:2109.01204. [Google Scholar] [CrossRef]
- Qi, X.F. Characterization of Lie higher derivations on triangular algebras. Acta Math. Sin. Engl. Ser. 2013, 29, 1007–1018. [Google Scholar] [CrossRef]
- Ferreira, B.L.M.; Barros, D.A.S.; Batista, T.C.; Wei, F. Lie triple centralizers of alternative algebras. J. Algebra Appl. 2024. [Google Scholar] [CrossRef]
- Ferreira, B.L.M.; Henrique, G.J. Characterization of Lie multiplicative derivation on alternative rings. Rocky Mt. J. Math. 2019, 49, 761–772. [Google Scholar] [CrossRef]
- Pierin, T.C.; Ferreira, R.N.; Borges, F.; Ferreira, B.L.M. Nonlinear mixed ∗-Jordan type derivations on alternative ∗-algebras. J. Algebra Appl. 2025, 24, 2550028. [Google Scholar] [CrossRef]
- Ferreira, J.C.D.; Guzzo, H. Jordan Elementary Maps on Alternative Rings. Commun. Algebra 2014, 42, 779–794. [Google Scholar] [CrossRef]
- Andrade, A.J.D.O.; Barreiro, E.; Ferreira, B.L.M. ∗-Lie-type maps on on alternative ∗-algebras. J. Algebra Appl. 2023, 22, 2350130. [Google Scholar] [CrossRef]
- Ferreira, B.L.M.; Julius, H.; Douglas, S. Commuting maps and identities with inverses on alternative division rings. J. Algebra 2024, 638, 488–505. [Google Scholar] [CrossRef]
- Ferreira, B.L.M.; Julius, H. Additive maps preserving products equal to fixed elements on Cayley-Dickson algebras. J. Algebra Appl. 2025, 53, 2218–2231. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, X.; Sun, Y. Non-Global Lie Higher Derivations on Triangular Algebras Without Assuming Unity. Axioms 2025, 14, 790. https://doi.org/10.3390/axioms14110790
Liang X, Sun Y. Non-Global Lie Higher Derivations on Triangular Algebras Without Assuming Unity. Axioms. 2025; 14(11):790. https://doi.org/10.3390/axioms14110790
Chicago/Turabian StyleLiang, Xinfeng, and Yujiao Sun. 2025. "Non-Global Lie Higher Derivations on Triangular Algebras Without Assuming Unity" Axioms 14, no. 11: 790. https://doi.org/10.3390/axioms14110790
APA StyleLiang, X., & Sun, Y. (2025). Non-Global Lie Higher Derivations on Triangular Algebras Without Assuming Unity. Axioms, 14(11), 790. https://doi.org/10.3390/axioms14110790

