The Cotangent Function as an Avatar of the Polylogarithm Function of Order 0 and Ramanujan’s Formula
Abstract
1. Introduction
Notation and Preliminaries
2. Hecke Theory as RHB
3. Cotangent Function as the Polylogarithm Function of Order 0
3.1. Proof of Ramanujan’s Formula in the Case
3.2. Treatment of Theorem 3 in the Case
3.3. Comparison with Berndt’s Procedure
4. A Chapter in Complex Analysis Governed by Argument Principle
- Argument principle. This is case. ⟹
- Rouche’s theorem. ⟹
- Open mapping theorem. ⟹
- Maximum modulus principle. ⟹
- Phragmén-Lindelöf principle. ⟹
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Berndt, B.C. Modular transformations and generalization of several formulas of Ramanujan. Rocky Mount. J. Math. 1977, 7, 147–189. [Google Scholar] [CrossRef]
- Berndt, B.C. Ramanujan’s Notebooks Part I; Springer: Berlin/Heidelberg, Germany, 1985. [Google Scholar]
- Chakraborty, K.; Kanemitsu, S.; Kuzumaki, T. Modular Relations and Parity in Number Theory; Springer Nature: Singapore, 2025; 275p. [Google Scholar]
- Kanemitsu, S.; Tanigawa, Y.; Yoshimoto, M. Ramanujan’s formula and modular forms. In Number-Theoretic Methods-Future Trends, Proceedings of the Second China-Japan Seminar, Tokyo, Japan, 21–23 September 2002; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2002; pp. 159–212. [Google Scholar]
- Serre, J.-P. A Course in Arithmetic; Springer: New York, NY, USA, 1973. [Google Scholar]
- Hamburger, H. Über einige Beziehungen, die mit der Funktionalgleichung der Riemannschen ζ-Funktion äquivalent sind. Math. Ann. 1922, 85, 129–140. [Google Scholar] [CrossRef]
- Koshlyakov, N.S. Investigation of some questions of analytic theory of the rational and quadratic fields, I–III. Izv. Ross. Akad. Nauk. Seriya Mat. 1954, 18, 113–144, 213–260, 307–326. Erratum in Izv. Ross. Akad. Nauk. Seriya Mat. 1955, 19, 271. (In Russian) [Google Scholar]
- Kanemitsu, S.; Tsukada, H. Vistas of Special Functions; World Scientific: Singapore; London, UK; New York, NY, USA, 2007. [Google Scholar]
- Wang, N.-L.; Li, R.-Y.; Kuzumaki, T. Partial sums for the Hurwitz zeta-function and its derivatives and their special values. Mathematics 2025, 13, 1469. [Google Scholar] [CrossRef]
- Euler, L. Remarques sur un beau rapport entre les series des puissances tant directes que reciproques. Mém. Acad. Sci. Berlin 1768, 17, 83–106. [Google Scholar]
- Kanemitsu, S.; Tsukada, H. Contributions to the Theory of Zeta-Functions: The Modular Relation Supremacy; World Scientific: Singapore, 2014. [Google Scholar]
- Bochner, S. Some properties of modular relations. Ann. Math. 1951, 53, 332–363. [Google Scholar] [CrossRef]
- Hecke, E. Über die Bestimmung Dirichletscher Reihen durch ihre Funktionalgleichung. Math. Ann. 1936, 112, 664–669. [Google Scholar] [CrossRef]
- Hecke, E. Lectures on Dirichlet Series, Modular Functions and Quadratic Forms; Schoeneberg, B., Maak, W., Eds.; Vandenhoeck u. Ruprecht: Göttingen, Germany, 1983. [Google Scholar]
- Wang, N.-L.; Chakraborty, L.; Kuzumaki, T. On the product of zeta-functions. Mathematics 2025, 13, 1900. [Google Scholar] [CrossRef]
- Stein, E.M.; Shakarchi, R. Complex Analysis; Princeton UP: Princeton, TX, USA, 2003. [Google Scholar]
- Siegel, C.L. A simple proof of η(−1/τ) = η(τ). Mathematika 1954, 1, 4. [Google Scholar] [CrossRef]
- Ayoub, R. An Introduction to Analytic Number Theory; AMS: Providence, RI, USA, 1963. [Google Scholar]
- Hardy, G.H.; Riesz, M. The General Theory of Dirichlet’s Series; CUP: Cambridge, UK, 1915; Reprint in Hafner: New York, NY, USA, 1972. [Google Scholar]
- Berndt, B.C. Ramanujan’s Notebooks Part IV; Springer: Berlin/Heidelberg, Germany, 1994. [Google Scholar]
- Berndt, B.C. Ramanujan’s Notebooks Part II; Springer: Berlin/Heidelberg, Germany, 1989. [Google Scholar]
- Lindelöf, E. Calcul des résidus et ses applications a la théorie des fonctions; Gauthier-Villars: Paris, France, 1905. [Google Scholar]
- Mitrinović, D.S.; Kečkić, J.D. The Cauchy Method of Residues. Theory and Applications; Reidel Publisher: Dordrecht, The Netherlands, 1984. [Google Scholar]
- Maier, H.; Rassias, M.T. On the maximum of cotangent sums related to the Riemann Hypothesis in rational numbers in short intervals. Moscow J. Comb. Number Theory 2021, 10, 303–313. [Google Scholar] [CrossRef]
- Maier, H.; Rassias, M.T.; Tóth, L. Recent Progress on Topics of Ramanujan Sums and Cotangent Sums Associated with the Riemann Hypothesis; World Scientific: Singapore, 2022. [Google Scholar]
- Rassias, M.T. From a cotangent sum to a generalized totient function. Appl. Anal. Discret. Math. 2017, 11, 369–385. [Google Scholar] [CrossRef]
Name | Siegel | Berndt |
---|---|---|
cotangent | ||
Lambert | ||
polylogarithm | ||
formula | Hecke | Bochner |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, R.; Lu, H.; Kanemitsu, S. The Cotangent Function as an Avatar of the Polylogarithm Function of Order 0 and Ramanujan’s Formula. Axioms 2025, 14, 774. https://doi.org/10.3390/axioms14100774
Li R, Lu H, Kanemitsu S. The Cotangent Function as an Avatar of the Polylogarithm Function of Order 0 and Ramanujan’s Formula. Axioms. 2025; 14(10):774. https://doi.org/10.3390/axioms14100774
Chicago/Turabian StyleLi, Ruiyang, Haoyang Lu, and Shigeru Kanemitsu. 2025. "The Cotangent Function as an Avatar of the Polylogarithm Function of Order 0 and Ramanujan’s Formula" Axioms 14, no. 10: 774. https://doi.org/10.3390/axioms14100774
APA StyleLi, R., Lu, H., & Kanemitsu, S. (2025). The Cotangent Function as an Avatar of the Polylogarithm Function of Order 0 and Ramanujan’s Formula. Axioms, 14(10), 774. https://doi.org/10.3390/axioms14100774