The Existence of Fixed Points for Generalized -Contractions and Applications
Abstract
1. Introduction
2. Preliminaries
- (i)
- ;
- (ii)
- the map is LSC;
- (iii)
- , with and we have .
- (i)
- ;
- (ii)
- ;
- (iii)
- .
- (i)
- ;
- (ii)
- the map is b-LSC;
- (iii)
- with and implies .
- (a)
- if and for any , then . In particular, if and , then ;
- (b)
- if and for any , then ;
- (c)
- if for any with , then is a Cauchy sequence;
- (d)
- if for any , then is a Cauchy sequence.
- (1)
- The multivalued mapping G from to is called a generalized -contraction if there exist an -distance on and such that, for any and , there is with
- (2)
- G is called -admissible if the following is satisfied for all
- (3)
- G is called -admissible whenever, for each and with , one has for all
3. Main Results
- (a)
- G is φ-admissible;
- (b)
- there exists and such that
- (c)
- for every with we have
- (a)
- for each and , there exist and such that
- (b)
- for every with , we have
- (2)
- Note that using φ-admissibility in the previous results guarantees the existence of a monotonic sequence to handle the proof of the existence of FPs in the framework of nonlinear mappings.
- (a)
- G is φ-admissible;
- (b)
- there exists and such that
- (c)
- for every with we have
- (a)
- ;
- (b)
- G is -admissible;
- (c)
- there exist such that and ;
- (d)
- for all with , one has
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Nadler, S.B. Multi-valued contraction mappings. Pac. J. Math. 1969, 30, 475–488. [Google Scholar] [CrossRef]
- Ćirić, L.B. Common fixed point theorems for multi-valued mappings. Demonstr. Math. 2006, 39, 419–428. [Google Scholar]
- Feng, Y.; Liu, S. Fixed point theorems for multi-valued contractive mappings and multi-valued Caristi type mappings. J. Math. Anal. Appl. 2006, 317, 103–112. [Google Scholar] [CrossRef]
- Klim, D.; Wardowski, D. Fixed point theorems for set-valued contractions in complete metric spaces. J. Math. Anal. Appl. 2007, 334, 132–139. [Google Scholar] [CrossRef]
- Bakhtin, I.A. The contraction mapping principle in almost metric spaces. Funct. Anal. Gos. Ped. Inst. Unianowsk 1989, 30, 26–37. [Google Scholar]
- Czerwik, S. Nonlinear set-valued contraction mappings in b-metric spaces. Atti Sem. Mat. Fis. Univ. Modena 1998, 46, 263–276. [Google Scholar]
- Czerwik, S.; Dlutek, K.; Singh, S.L. Round-off stability of iteration procedures for set-valued operators in b-metric spaces. J. Nat. Phys. Sci. 2001, 11, 87–94. [Google Scholar]
- Agarwal, R.P.; Karapinar, E.; O’Regan, D.; Roldán-López-de-Hierro, A.F. Fixed Point Theory in Metric Type Spaces; Springer-International Publishing: Cham, Switzerland, 2015. [Google Scholar]
- An, T.V.; Dung, N.V.; Kadelburg, Z.; Radenović, S. Various generalizations of metric spaces and fixed point theorems. Rev. Real Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. 2015, 109, 175–198. [Google Scholar]
- Aydi, H.; Bota, M.F.; Karapinar, E.; Mitrović, S. A fixed point theorem for set-valued quasi-contractions in b-metric spaces. Fixed Point Theory Appl. 2012, 2012, 88. [Google Scholar] [CrossRef]
- Bota, M.; Molnar, A.; Varga, C. On Ekeland’s variational principle in b-metric spaces. Fixed Point Theory 2011, 12, 21–28. [Google Scholar]
- Cobzas, S.; Czerwik, S. The completion of generalized b-metric spaces and fixed points. Fixed Point Theory 2020, 21, 133–150. [Google Scholar] [CrossRef]
- Karapinar, E.; Czerwik, S.; Aydi, H. (α, ψ)-Meir-Keeler contraction mappings in generalized b-metric spaces. J. Funct. Spaces 2018, 3264620. [Google Scholar] [CrossRef]
- Khamsi, M.A.; Hussain, N. KKM mappings in metric type spaces. Nonlinear Anal. Theory Methods Appl. 2010, 73, 3123–3129. [Google Scholar] [CrossRef]
- Petrusel, G.; Lazar, T.; Lazar, V.L. Fixed points and coupled fixed points for multi-valued (φ, ψ)-contractions in b-metric spaces. Appl. Anal. Optim. 2018, 1, 99–112. [Google Scholar]
- Kada, O.; Suzuki, T.; Takahashi, W. Nonconvex minimization theorems and fixed point theorems in complete metric spaces. Math. Jpn. 1996, 44, 381–391. [Google Scholar]
- Suzuki, T.; Takahashi, W. Fixed point theorems and characterizations of metric completeness. Topol. Methods Nonlinear Anal. 1996, 8, 371–382. [Google Scholar] [CrossRef]
- Kaneko, S.; Takahashi, W.; Wen, C.-F.; Yao, J.-C. Existence theorems for single-valued and multivalued mappings with w-distances in metric spaces. Fixed Point Theory Appl. 2016, 2016, 38. [Google Scholar] [CrossRef]
- Latif, A.; Abdou, A.A.N. Multivalued generalized nonlinear contractive maps and fixed points. Nonlinear Anal. 2011, 74, 1436–1444. [Google Scholar] [CrossRef]
- Takahashi, W.; Wong, N.-C.; Yao, J.-C. Fixed point theorems for general contractive mappings with w-distances in metric spaces. J. Nonlinear Convex Anal. 2013, 14, 637–648. [Google Scholar]
- Hussain, N.; Saadati, R.; Agrawal, R.P. On the topology and wt-distance on metric type spaces. Fixed Point Theory Appl. 2014, 2014, 88. [Google Scholar] [CrossRef]
- Demma, M.; Saadati, R.; Vetro, P. Multi-valued operators with respect wt-distance on metric type spaces. Bull. Iran. Math. Soc. 2016, 42, 1571–1582. [Google Scholar]
- Fallahi, K.; Savic, D.; Rad, G.S. The existence theorem for contractive mappings on wt-distance in b-metric spaces endowed with a graph and its application. Sahand Commun. Math. Anal. 2019, 13, 1–15. [Google Scholar]
- Latif, A.; Subaie, R.F.A.; Alansari, M.O. Metric fixed points for contractive type mappings and applications. J. Nonlinear Convex Anal. 2022, 23, 501–511. [Google Scholar]
- Latif, A.; Alotaibi, A.; Noorwali, M. Multivalued nonlinear contractive type mappings and fixed points. J. Nonlinear Convex Anal. 2024, 25, 2611–2624. [Google Scholar]
- An, T.V.; Tuyen, L.Q.; Dungć, N.V. Stone-type theorem on b-metric spaces and applications. Topol Appl. 2015, 185–186, 50–64. [Google Scholar] [CrossRef]
- Asl, J.H.; Rezapour, S.; Shahzad, N. On fixed points of α − ψ-contractive multifunctions. Fixed Point Theory Appl. 2012, 2012, 212. [Google Scholar] [CrossRef]
- Du, W.-S. Fixed point theorems for generalized Hausdorff metrics. Int. Math. Forum 2008, 3, 1011–1022. [Google Scholar]
- Ghosh, S.K.; Nahak, C. An extension of Lakzian-Rhoades results in the structure of ordered b-metric spaces via wt-distance with an application. Appl. Math. Comput. 2020, 378, 18. [Google Scholar] [CrossRef]
- Haghi, R.H.; Rezapour, S.; Shahzad, N. Some fixed point generalizations are not real generalizations. Nonlinear Anal. Theory Methods Appl. 2011, 74, 1799–1803. [Google Scholar] [CrossRef]
- Hussain, N. Common fixed points in best approximation for Banach operator pairs with Ciric Type I-contractions. J. Math. Anal. Appl. 2008, 338, 1351–1363. [Google Scholar] [CrossRef]
- Kutbi, M.A. f-contractive multivalued maps and coincidence points. J. Inequal. Appl. 2013, 2013, 141. [Google Scholar] [CrossRef]
- Kutbi, M.; Sintunavarat, W. The Existence Of Fixed Point Theorems via w-distance and α-admissible Mappings and Applications. Abstr. Appl. Anal. 2013, 2013, 165434. [Google Scholar] [CrossRef]
- Miculescu, R.; Mihail, A. New fixed point theorems for set-valued contractions in b-metric spaces. J. Fixed Point Theory Appl. 2017, 19, 2153–2163. [Google Scholar] [CrossRef]
- Mizoguchi, N.; Takahashi, W. Fixed point theorems for multivalued mappings on complete metric spaces. J. Math. Anal. Appl. 1989, 141, 177–188. [Google Scholar] [CrossRef]
- Mohammadi, B.; Rezapour, S.; Shahzad, N. Some results on fixed points of α − ψ-ciric generalized multifunctions. J. Fixed Point Theory Appl. 2013, 2013, 24. [Google Scholar] [CrossRef]
- Suzuki, T. Basic inequality on a b-metric space and its applications. J. Inequal. Appl. 2017, 2017, 256. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alotaibi, A.H.; Noorwali, M.
The Existence of Fixed Points for Generalized
Alotaibi AH, Noorwali M.
The Existence of Fixed Points for Generalized
Alotaibi, Ahad Hamoud, and Maha Noorwali.
2025. "The Existence of Fixed Points for Generalized
Alotaibi, A. H., & Noorwali, M.
(2025). The Existence of Fixed Points for Generalized