Distribution-Free EWMA Scheme for Joint Monitoring of Location and Scale Based on Post-Sales Online Review Process
Abstract
1. Introduction
2. The EWMA-Lepage Monitoring Scheme
2.1. Lepage Statistic for Bivariate Test
2.2. Design of the EWMA-Lepage Scheme
2.3. Implementation of the EWMA-Lepage Scheme
- Step 1.
- Based on historical process data under IC condition, a reference sample of size m is collected.
- Step 2.
- The i-th test sample of size n is collected from real-time online review data.
- Step 3.
- Calculate the statistics , , , and between the reference sample and the i-th test sample, and obtain their means and variances depending on whether is even or odd.
- Step 4.
- Calculate the Lepage statistics and mentioned in Section 2.1 for the i-th test sample. Then, calculate the plooting statistic for the i-th test sample.
- Step 5.
- Set the control limit h.
- Step 6.
- If exceeds h, the process is considered to be OOC at the i-th test sample. Otherwise, the process is considered to be IC, and the next sample is taken.
- Step 7.
- When an OOC signal is triggered at the i-th test sample, it is concluded that the m reference samples and the n test samples come from different distributions, and the cause of the alarm is subsequently investigated. Therefore, this section adopts the following three rules:
- i.
- If , then a shift in S is detected.
- ii.
- If , then a shift in T is detected.
- iii.
- If both and exceed h, then shifts in both S and T are detected.
2.4. Determination of the Control Limit
3. Performance Investigation
3.1. IC Performance
3.2. OOC Performance
3.2.1. Analysis Under Pattern 1: and
3.2.2. Analysis Under Pattern 2: and
3.2.3. Analysis Under Pattern 3: and
3.2.4. Analysis Under Pattern 4: and
3.2.5. Overall Performance of the EWMA-Lepage Scheme
- Expected . This simplified indicator is used to measure the overall performance of the monitoring scheme, which is called the expected average running length and is determined by:
- Relative . is one of the indicators used to evaluate the comprehensive performance of the scheme relative to the benchmark. It can be concluded that a value greater than 1 indicates inferior overall performance of the proposed scheme compared to the benchmark scheme and the expression of is as follows:In this study, is the value of the shift combination of when .
4. Case Study
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
a | b | |||||
---|---|---|---|---|---|---|
1 | 0 | 373.27 (483.59) 17, 70, 178, 450, 1633 | 375.17 (458.82) 17, 76, 198, 473, 1490 | 375.75 (446.71) 15, 80, 208, 485, 1409 | 367.87 (424.95) 15, 84, 212, 482, 1322 | 369.59 (421.95) 15, 85, 217, 491, 1298 |
0.25 | 177.91 (288.91) 10, 31, 76, 191, 692 | 198.07 (304.26) 10, 35, 89, 224, 756 | 212.21 (296.75) 9, 41, 105, 253, 783 | 221.79 (301.45) 9, 43, 116, 270, 795 | 227.66 (306.56) 8, 46, 122, 280, 818 | |
0.5 | 34.37 (54.20) 5, 11, 20, 38, 104 | 39.71 (66.23) 4, 11, 21, 43, 133 | 50.81 (83.00) 3, 11, 25, 56, 179 | 59.03 (97.92) 3, 11, 28, 67, 216 | 71.08 (109.14) 3, 14, 36, 83, 254 | |
0.75 | 10.46 (8.68) 3, 5, 8, 13, 25 | 10.70 (10.83) 2, 5, 8, 13, 28 | 12.46 (15.27) 2, 5, 8, 15, 37 | 13.97 (17.77) 2, 5, 8, 16, 44 | 18.54 (24.97) 2, 5, 11, 22, 61 | |
1 | 5.37 (3.19) 2, 3, 5, 7, 11 | 4.99 (3.32) 2, 3, 4, 6, 11 | (4.16) 1, 3, 4, 6, 13 | 5.42 (4.84) 1, 2, 4, 7, 14 | 6.53 (6.72) 1, 2, 4, 8, 19 | |
1.5 | 2.46 (1.07) 1, 2, 2, 3, 4 | 2.24 (1.06) 1, 2, 2, 3, 4 | 2.09 (1.05) 1, 1, 2, 3, 4 | 2.09 (1.16) 1, 1, 2, 3, 4 | 2.11 (1.37) 1, 1, 2, 3, 5 | |
2 | 1.60 (0.62) 1, 1, 2, 2, 3 | 1.46 (0.58) 1, 1, 1, 2, 2 | 1.35 (0.54) 1, 1, 1, 2, 2 | 1.32 (0.53) 1, 1, 1, 2, 2 | 1.28 (0.53) 1, 1, 1, 1, 2 | |
1.25 | 0 | 63.61 (91.95) 7, 18, 37, 73, 201 | 73.01 (110.11) 6, 18, 40, 85, 243 | 86.34 (116.15) 6, 21, 49, 107, 294 | 94.78 (124.96) 5, 22, 54, 118, 320 | 111.30 (136.91) 6, 27, 66, 144, 370 |
0.25 | 41.25 (57.38) 6, 14, 25, 48, 125 | 48.02 (71.28) 5, 13, 27, 56, 158 | 57.35 (81.31) 4, 14, 31, 69, 196 | 62.92 (82.88) 4, 15, 36, 78, 212 | 77.04 (99.12) 4, 18, 45, 98, 251 | |
0.5 | 17.91 (17.04) 4, 8, 13, 22, 48 | 19.52 (23.23) 3, 7, 13, 23, 57 | 22.01 (27.55) 3, 7, 14, 27, 70 | 26.39 (35.77) 2, 7, 16, 32, 82 | 31.56 (44.66) 2, 8, 19, 39, 100 | |
0.75 | 8.88 (6.31) 2, 5, 7, 11, 20 | 8.95 (7.50) 2, 4, 7, 11, 22 | 9.48 (9.78) 2, 4, 7, 12, 26 | 10.40 (11.59) 2, 4, 7, 13,30 | 12.67 (14.03) 1, 4, 8, 16, 39 | |
1 | 5.37 (3.23) 2, 3, 5, 7, 11 | 5.06 (3.29) 1, 3, 4, 6, 11 | 5.01 (3.79) 1, 2, 4, 6, 12 | 5.34 (4.49) 1, 2, 4, 7, 14 | 6.14 (6.05) 1, 2, 4, 8, 17 | |
1.5 | 2.72 (1.30) 1, 2, 2, 3, 5 | 2.51 (1.25) 1, 2, 2, 3, 5 | 2.38 (1.32) 1, 1, 2, 3, 5 | 2.35 (1.40) 1, 1, 2, 3, 5 | 2.39 (1.66) 1, 1, 2, 3, 6 | |
2 | 1.81 (0.74) 1, 1, 2, 2, 3 | 1.66 (0.71) 1, 1, 2, 2, 3 | 1.55 (0.69) 1, 1, 1, 2, 3 | 1.51 (0.70) 1, 1, 1, 2, 3 | 1.46 (0.72) 1, 1, 1, 2, 3 | |
1.50 | 0 | 18.89 (16.61) 4, 9, 14, 24, 48 | 19.85 (19.01) 3, 8, 14, 25, 55 | 23.52 (25.09) 3, 8, 16, 30, 70 | 28.55 (33.39) 3, 8, 18, 36, 88 | 37.35 (43.18) 3, 10, 24, 48, 117 |
0.25 | 15.98 (13.20) 4, 8, 12, 20, 39 | 16.96 (16.01) 3, 7, 12, 21, 47 | 19.44 (20.52) 3, 7, 13, 24, 58 | 23.17 (26.70) 2, 7, 15, 30, 70 | 30.09 (34.25) 2, 8, 19, 40, 95 | |
0.5 | 11.16 (8.13) 3, 6, 9, 14, 27 | 11.13 (9.23) 2, 5, 8, 14, 28 | 12.11 (11.69) 2, 5, 9, 15, 34 | 13.65 (14.14) 2, 5, 9, 17, 40 | 17.17 (19.08) 2, 5, 11, 22, 53 | |
0.75 | 7.36 (4.68) 2, 4, 6, 9, 16 | 7.06 (5.02) 2, 4, 6, 9, 17 | 7.48 (6.33) 2, 3, 6, 10, 19 | 8.03 (7.40) 1, 3, 6, 10, 22 | 9.28 (9.32) 1, 3, 6, 12, 27 | |
1 | 5.16 (3.01) 2, 3, 5, 7, 11 | 4.87 (3.09) 1, 3, 4, 6, 11 | 4.76 (3.43) 1, 2, 4, 6, 11 | 4.93 (3.90) 1, 2, 4, 6, 12 | 5.59 (5.03) 1, 2, 4, 7, 15 | |
1.5 | 2.93 (1.41) 1, 2, 3, 4, 6 | 2.71 (1.42) 1, 2, 2, 3, 5 | 2.58 (1.49) 1, 2, 2, 3, 5 | 2.55 (1.58) 1, 1, 2, 3, 6 | 2.60 (1.83) 1, 1, 2, 3, 6 | |
2 | 2.02 (0.87) 1, 1, 2, 2, 4 | 1.85 (0.83) 1, 1, 2, 2, 3 | 1.73 (0.82) 1, 1, 2, 2, 3 | 1.68 (0.84) 1, 1, 1, 2, 3 | 1.64 (0.90) 1, 1, 1, 2, 3 | |
2.00 | 0 | 7.27 (4.29) 2, 4, 6, 9, 16 | 6.95 (4.57) 2, 4, 6, 9, 16 | 7.27 (5.61) 2, 4, 6, 9, 18 | 7.86 (6.57) 2, 3, 6, 10, 21 | 9.92 (9.54) 1, 4, 7, 13, 29 |
0.25 | 7.02 (4.01) 2, 4, 6, 9, 15 | 6.64 (4.16) 2, 4, 6, 8, 15 | 6.88 (5.11) 2, 3, 6, 9, 17 | 7.53 (6.25) 2, 3, 6, 10, 20 | 9.50(8.94) 1, 3, 7, 12, 27 | |
0.5 | 6.24 (3.54) 2, 4, 5, 8, 13 | 5.91 (3.91) 2, 3, 5, 7, 13 | 6.07 (4.43) 1, 3, 5, 8, 15 | 6.35 (5.18) 1, 3, 5, 8, 16 | 7.75 (7.17) 1, 3, 6, 10, 22 | |
0.75 | 5.29 (2.92) 2, 3, 5, 7, 11 | 4.96 (2.98) 2, 3, 4, 6, 11 | 4.94 (3.46) 1, 3, 4, 6, 11 | 5.12 (3.83) 1, 2, 4, 7, 13 | 5.88 (5.09) 1, 2, 4, 8, 16 | |
1 | 4.44 (2.40) 2, 3, 4, 6, 9 | 4.08 (2.37) 1, 2, 4, 5, 9 | 3.99 (2.62) 1, 2, 3, 5, 9 | 4.11 (3.02) 1, 2, 3, 5, 10 | 4.43 (3.64) 1, 2, 3, 6, 12 | |
1.5 | 3.14 (1.55) 1, 2, 3, 4, 6 | 2.85 (1.49) 1, 2, 3, 4, 6 | 2.70 (1.59) 1, 2, 2, 3, 6 | 2.68 (1.70) 1, 1, 2, 3, 6 | 2.76 (1.96) 1, 1, 2, 4, 7 | |
2 | 2.34 (1.05) 1, 2, 2, 3, 4 | 2.12 (1.02) 1, 1, 2, 3, 4 | 1.98 (1.02) 1, 1, 2, 2, 4 | 1.91 (1.04) 1, 1, 2, 2, 4 | 1.92 (1.17) 1, 1, 2, 2, 4 |
a | b | |||||
---|---|---|---|---|---|---|
1 | 0 | 149.36 (255.23) 10, 28, 63, 152, 581 | 174.33 (278.04) 9, 30, 77, 191, 666 | 210.38 (315.29) 8, 36, 95, 242, 796 | 225.28 (320.25) 8, 39, 109, 272, 855 | 238.07 (316.87) 9, 47, 125, 291, 870 |
0.25 | 90.40 (166.60) 8, 21, 42, 90, 318 | 107.87 (182.69) 7, 22, 50, 117, 385 | 133.25 (207.74) 6, 25, 63, 151, 497 | 147.38 (224.70) 6, 28, 71, 171, 555 | 157.32 (220.45) 6, 32, 84, 194, 544 | |
0.5 | 27.18 (34.89) 5, 10, 18, 31, 76 | 31.18 (45.97) 4, 10, 18, 35, 98 | 42.15 (69.63) 3, 10, 21, 48, 147 | 47.85 (77.21) 3, 10, 25, 56, 166 | 57.12 (84.40) 3, 12, 30, 68, 202 | |
0.75 | 10.16 (7.89) 3, 5, 8, 13, 25 | 10.20 (9.40) 2, 5, 8, 12, 27 | 11.52 (12.57) 2, 4, 8, 14, 33 | 13.55 (17.35) 2, 4, 8, 16, 41 | 17.44 (22.82) 2, 5, 10, 21, 57 | |
1 | 5.27 (3.09) 2, 3, 5, 7, 11 | 5.01 (3.27) 1, 3, 4, 6, 11 | 5.06 (3.87) 1, 3, 4, 6, 12 | 5.38 (4.68) 1, 2, 4, 7, 14 | 6.51 (6.96) 1, 2, 4, 8, 19 | |
1.5 | 2.45 (1.06) 1, 2, 2, 3, 4 | 2.23 (1.04) 1, 2, 2, 3, 4 | 2.09 (1.08) 1, 1, 2, 3, 4 | 2.05 (1.12) 1, 1, 2, 3, 4 | 2.08 (1.31) 1, 1, 2, 3, 5 | |
2 | 1.60 (0.62) 1, 1, 2, 2, 3 | 1.46 (0.58) 1, 1, 1, 2, 2 | 1.35 (0.54) 1, 1, 1, 2, 2 | 1.32 (0.54) 1, 1, 1, 2, 2 | 1.27 (0.53) 1, 1, 1, 1, 2 | |
1.25 | 0 | 45.30 (64.24) 7, 15, 28, 52, 136 | 53.26 (73.46) 5, 15, 31, 62, 175 | 65.08 (88.89) 5, 16, 36, 78, 215 | 73.94 (96.64) 4, 18, 42, 93, 253 | 89.34 (112.93) 4, 22, 53, 114, 287 |
0.25 | 32.61 (40.04) 5, 12, 22, 38, 96 | 36.95 (48.50) 5, 12, 23, 44, 111 | 45.12 (59.63) 4, 12, 26, 54, 150 | 52.49 (68.70) 4, 13, 31, 65, 173 | 62.92 (79.60) 3, 15, 37, 80, 211 | |
0.5 | 16.37 (14.65) 3, 8, 12, 20, 42 | 17.44 (18.55) 3, 7, 12, 21, 49 | 20.21 (23.81) 2, 7, 13, 25, 61 | 22.85 (28.33) 2, 7, 14, 28, 73 | 28.44 (35.45) 2, 7, 17, 36, 93 | |
0.75 | 8.85 (6.25) 2, 5, 7, 11, 20 | 8.57 (6.79) 2, 4, 7, 11, 21 | 9.09 (8.58) 2, 4, 7, 11, 25 | 10.06 (10.60) 1, 4, 7, 13, 29 | 12.28 (13.50) 1, 4, 8, 16, 39 | |
1 | 5.34 (3.13) 2, 3, 5, 7, 11 | 5.05 (3.30) 1, 3, 4, 6, 11 | 5.02 (3.87) 1, 3, 4, 6, 12 | 5.21 (4.32) 1, 2, 4, 7, 13 | 6.09 (5.97) 1, 2, 4, 8, 17 | |
1.5 | 2.73 (1.28) 1, 2, 2, 3, 5 | 2.52 (1.26) 1, 2, 2, 3, 5 | 2.37 (1.30) 1, 1, 2, 3, 5 | 2.33 (1.36) 1, 1, 2, 3, 5 | 2.43 (1.71) 1, 1, 2, 3, 6 | |
2 | 1.83 (0.75) 1, 1, 2, 2, 3 | 1.68 (0.73) 1, 1, 2, 2, 3 | 1.55 (0.69) 1, 1, 1, 2, 3 | 1.50 (0.68) 1, 1, 1, 2, 3 | 1.48 (0.76) 1, 1, 1, 2, 3 | |
1.5 | 0 | 17.51 (14.73) 4, 8, 14, 22, 44 | 18.53 (17.88) 3, 8, 13, 23, 51 | 22.05 (23.91) 3, 8, 15, 28, 66 | 25.44 (28.76) 3, 8, 17, 33, 78 | 33.97 (38.22) 3, 10, 22, 44, 107 |
0.25 | 15.11 (11.85) 4, 7, 12, 19, 37 | 15.63 (14.41) 3, 7, 12, 20, 41 | 18.19 (19.00) 3, 7, 12, 23, 55 | 21.13 (23.89) 2, 7, 14, 27, 65 | 27.21 (31.25) 2, 8, 17, 35, 86 | |
0.5 | 10.85 (7.88) 3, 6, 9, 14, 25 | 10.76 (8.89) 2, 5, 8, 14, 27 | 11.79 (11.32) 2, 5, 8, 15, 33 | 13.06 (14.06) 2, 5, 9, 17, 37 | 16.17 (17.52) 2, 5, 11, 21, 49 | |
0.75 | 7.34 (4.57) 2, 4, 6, 9, 16 | 7.03 (4.97) 2, 4, 6, 9, 16 | 7.25 (6.12) 1, 3, 6, 9, 19 | 7.63 (6.96) 1, 3, 6, 10, 21 | 9.00 (8.76) 1, 3, 6, 12, 26 | |
1 | 5.14 (2.98) 2, 3, 4, 7, 11 | 4.79 (3.01) 1, 3, 4, 6, 10 | 4.75 (3.50) 1, 2, 4, 6, 11 | 4.86 (3.80) 1, 2, 4, 6, 12 | 5.45 (4.80) 1, 2, 4, 7, 15 | |
1.5 | 2.94 (1.44) 1, 2, 3, 4, 6 | 2.70 (1.40) 1, 2, 2, 3, 5 | 2.53 (1.45) 1, 2, 2, 3, 5 | 2.53 (1.63) 1, 1, 2, 3, 6 | 2.59 (1.82) 1, 1, 2, 3, 6 | |
2 | 2.02 (0.87) 1, 1, 2, 2, 4 | 1.85 (0.83) 1, 1, 2, 2, 3 | 1.72 (0.83) 1, 1, 2, 2, 3 | 1.66 (0.83) 1, 1, 1, 2, 3 | 1.65 (0.92) 1, 1, 1, 2, 3 | |
2 | 0 | 7.24 (4.18) 2, 4, 6, 9, 15 | 6.85 (4.31) 2, 4, 6, 9, 15 | 7.18 (5.55) 2, 3, 6, 9, 18 | 7.74 (6.39) 2, 3, 6, 10, 20 | 9.74 (9.22) 1, 4, 7, 13, 28 |
0.25 | 6.89 (3.88) 2, 4, 6, 9, 14 | 6.59 (4.23) 2, 4, 6, 8, 15 | 6.79 (5.07) 2, 3, 5, 9, 16 | 7.34 (6.17) 1, 3, 6, 9, 19 | 9.09 (8.41) 1, 3, 7, 12, 25 | |
0.5 | 6.14 (3.46) 2, 4, 5, 8, 13 | 5.89 (3.69) 2, 3, 5, 8, 13 | 5.86 (4.27) 1, 3, 5, 8, 14 | 6.29 (5.08) 1, 3, 5, 8, 16 | 7.42 (6.84) 1, 3, 5, 10, 21 | |
0.75 | 5.27 (2.90) 2, 3, 5, 7, 11 | 4.93 (2.90) 2, 3, 4, 6, 10 | 4.93 (3.37) 1, 3, 4, 6, 12 | 5.11 (3.90) 1, 2, 4, 7, 13 | 5.81 (5.02) 1, 2, 4, 8, 16 | |
1 | 4.39 (2.35) 2, 3, 4, 6, 9 | 4.12 (2.40) 1, 2, 4, 5, 9 | 3.94 (2.57) 1, 2, 3, 5, 9 | 4.03 (2.93) 1, 2, 3, 5, 10 | 4.43 (3.57) 1, 2, 3, 6, 11 | |
1.5 | 3.11 (1.51) 1, 2, 3, 4, 6 | 2.87 (1.49) 1, 2, 3, 4, 6 | 2.71 (1.56) 1, 2, 2, 3, 6 | 2.68 (1.69) 1, 1, 2, 3, 6 | 2.75 (1.97) 1, 1, 2, 4, 7 | |
2 | 2.33 (1.04) 1, 2, 2, 3, 4 | 2.14 (1.02) 1, 1, 2, 3, 4 | 1.96 (1.02) 1, 1, 2, 2, 4 | 1.93 (1.07) 1, 1, 2, 2, 4 | 1.91 (1.14) 1, 1, 2, 2, 4 |
a | b | |||||
---|---|---|---|---|---|---|
1 | 0 | 29.89 (49.23) 5, 11, 18, 32, 87 | 38.99 (70.81) 4, 10, 19, 40, 134 | 56.32 (100.75) 4, 11, 25, 60, 209 | 73.25 (133.33) 4, 13, 31, 78, 274 | 91.77 (150.44) 4, 16, 43, 105, 337 |
0.25 | 25.22 (31.68) 5, 10, 17, 29, 72 | 30.99 (44.89) 4, 10, 18, 34, 102 | 45.54 (76.94) 4, 10, 23, 50, 159 | 56.51 (91.59) 3, 11, 27, 64, 203 | 71.71 (111.56) 3, 14, 36, 84, 258 | |
0.5 | 15.99 (13.94) 4, 8, 12, 20, 39 | 17.29 (18.41) 3, 7, 12, 21, 48 | 23.15 (32.88) 3, 7, 14, 27, 74 | 27.24 (37.24) 2, 7, 15, 33, 88 | 35.79 (48.60) 2, 9, 20, 44, 123 | |
0.75 | 8.82 (5.83) 3, 5, 7, 11, 20 | 8.72 (7.06) 2, 4, 7, 11, 21 | 9.62 (9.50) 2, 4, 7, 12, 26 | 11.22 (13.25) 2, 4, 7, 14, 33 | 14.53 (18.58) 2, 4, 9, 18, 46 | |
1 | 5.14 (2.87) 2, 3, 5, 6, 11 | 4.81 (3.04) 1, 3, 4, 6, 10 | 4.78 (3.54) 1, 2, 4, 6, 11 | 5.15 (4.34) 1, 2, 4, 6, 13 | 6.15 (6.37) 1, 2, 4, 8, 18 | |
1.5 | 2.47 (1.07) 1, 2, 2, 3, 4 | 2.23 (1.04) 1, 2, 2, 3, 4 | 2.08 (1.07) 1, 1, 2, 3, 4 | 2.04 (1.13) 1, 1, 2, 2, 4 | 2.07 (1.30) 1, 1, 2, 3, 4 | |
2 | 1.59 (0.62) 1, 1, 2, 2, 3 | 1.45 (0.58) 1, 1, 1, 2, 2 | 1.35 (0.53) 1, 1, 1, 2, 2 | 1.32 (0.53) 1, 1, 1, 2, 2 | 1.28 (0.54) 1, 1, 1, 1, 2 | |
1.25 | 0 | 20.46 (21.13) 4, 9, 15, 25, 53 | 22.89 (27.26) 4, 9, 15, 27, 66 | 31.08 (39.50) 3, 9, 18, 38, 101 | 39.85 (55.53) 3, 10, 22, 48, 133 | 49.75 (65.55) 3, 11, 27, 62, 174 |
0.25 | 17.68 (15.85) 4, 9, 14, 22, 44 | 19.97 (21.94) 3, 8, 14, 24, 56 | 24.70 (29.76) 3, 8, 15, 30, 77 | 30.40 (38.97) 3, 8, 18, 38, 99 | 39.90 (52.06) 3, 10, 23, 50, 131 | |
0.5 | 12.42 (9.11) 3, 6, 10, 16, 29 | 12.74 (11.35) 3, 6, 10, 16, 33 | 14.82 (16.36) 2, 6, 10, 18, 43 | 17.55 (20.88) 2, 6, 11, 22, 53 | 21.84 (26.51) 2, 6, 13, 27, 71 | |
0.75 | 7.87 (5.00) 2, 4, 7, 10, 17 | 7.67 (5.72) 2, 4, 6, 10, 18 | 7.97 (6.88) 2, 4, 6, 10, 21 | 8.85 (8.59) 1, 4, 6, 11, 24 | 10.81 (11.33) 1, 3, 7, 14, 33 | |
1 | 5.19 (2.91) 2, 3, 5, 7, 11 | 4.83 (3.03) 1, 3, 4, 6, 10 | 4.82 (3.53) 1, 2, 4, 6, 11 | 4.95 (4.02) 1, 2, 4, 6, 13 | 5.59 (5.25) 1, 2, 4, 7, 15 | |
1.5 | 2.74 (1.29) 1, 2, 3, 3, 5 | 2.52 (1.25) 1, 2, 2, 3, 5 | 2.34 (1.29) 1, 1, 2, 3, 5 | 2.31 (1.36) 1, 1, 2, 3, 5 | 2.34 (1.57) 1, 1, 2, 3, 5 | |
2 | 1.82 (0.75) 1, 1, 2, 2, 3 | 1.67 (0.72) 1, 1, 2, 2, 3 | 1.54 (0.69) 1, 1, 1, 2, 3 | 1.50 (0.68) 1, 1, 1, 2, 3 | 1.46 (0.72) 1, 1, 1, 2, 3 | |
1.5 | 0 | 12.96 (9.29) 3, 7, 11, 16, 30 | 13.51 (11.34) 3, 6, 10, 17, 34 | 15.62 (15.93) 2, 6, 11, 19, 44 | 19.01 (20.68) 2, 6, 12, 24, 57 | 25.14 (29.48) 2, 7, 16, 32, 79 |
0.25 | 11.77 (8.04) 3, 6, 10, 15, 27 | 12.04 (9.56) 3, 6, 10, 15, 30 | 13.87 (13.28) 2, 5, 10, 18, 38 | 16.37 (17.34) 2, 6, 11, 21, 49 | 21.09 (23.76) 2, 6, 13, 27, 66 | |
0.5 | 9.28 (5.89) 3, 5, 8, 12, 20 | 9.25 (6.84) 2, 5, 8, 12, 22 | 10.01 (8.87) 2, 4, 8, 13, 27 | 11.16 (11.08) 2, 4, 8, 14, 32 | 14.11 (15.18) 1, 5, 9, 18, 43 | |
0.75 | 6.76 (4.08) 2, 4, 6, 9, 14 | 6.44 (4.31) 2, 3, 5, 8, 15 | 6.56 (5.25) 1, 3, 5, 8, 16 | 7.10 (6.16) 1, 3, 5, 9, 19 | 8.43 (8.30) 1, 3, 6, 11, 25 | |
1 | 4.94 (2.73) 2, 3, 4, 6, 10 | 4.61 (2.82) 1, 3, 4, 6, 10 | 4.56 (3.19) 1, 2, 4, 6, 11 | 4.62 (3.58) 1, 2, 4, 6, 12 | 5.08 (4.34) 1, 2, 4, 7, 14 | |
1.5 | 2.92 (1.41) 1, 2, 3, 4, 6 | 2.66 (1.36) 1, 2, 2, 3, 5 | 2.54 (1.45) 1, 2, 2, 3, 5 | 2.49 (1.53) 1, 1, 2, 3, 5 | 2.54 (1.82) 1, 1, 2, 3, 6 | |
2 | 2.04 (0.88) 1, 1, 2, 2, 4 | 1.88 (0.83) 1, 1, 2, 2, 3 | 1.71 (0.81) 1, 1, 2, 2, 3 | 1.67 (0.84) 1, 1, 1, 2, 3 | 1.64 (0.89) 1, 1, 1, 2, 3 | |
2 | 0 | 6.74 (3.64) 2, 4, 6, 9, 14 | 6.41 (3.97) 2, 4, 6, 8, 14 | 6.55 (4.82) 2, 3, 5, 8, 16 | 7.17 (5.80) 1, 3, 6, 9, 18 | 8.88 (8.23) 1, 3, 6, 12, 25 |
0.25 | 6.54 (3.54) 2, 4, 6, 8, 13 | 6.22 (3.86) 2, 4, 5, 8, 13 | 6.30 (4.54) 2, 3, 5, 8, 15 | 6.82 (5.56) 1, 3, 5, 9, 18 | 8.29 (7.65) 1, 3, 6, 11, 23 | |
0.5 | 5.91 (3.19) 2, 4, 5, 7, 12 | 5.54 (3.34) 2, 3, 5, 7, 12 | 5.63 (3.98) 1, 3, 5, 7, 13 | 5.89 (4.52) 1, 3, 5, 8, 15 | 6.98 (6.30) 1, 3, 5, 9, 19 | |
0.75 | 5.08 (2.70) 2, 3, 5, 6, 10 | 4.79 (2.80) 1, 3, 4, 6, 10 | 4.74 (3.23) 1, 2, 4, 6, 11 | 4.89 (3.65) 1, 2, 4, 6, 12 | 5.63 (4.86) 1, 2, 4, 7, 15 | |
1 | 4.34 (2.25) 2, 3, 4, 5, 9 | 4.01 (2.27) 1, 2, 4, 5, 8 | 3.89 (2.47) 1, 2, 3, 5, 9 | 3.93 (2.85) 1, 2, 3, 5, 9 | 4.34 (3.56) 1, 2, 3, 6, 11 | |
1.5 | 3.12 (1.52) 1, 2, 3, 4, 6 | 2.84 (1.48) 1, 2, 3, 4, 6 | 2.64 (1.51) 1, 2, 2, 3, 6 | 2.64 (1.65) 1, 1, 2, 3, 6 | 2.69 (1.87) 1, 1, 2, 3, 6 | |
2 | 2.33 (1.05) 1, 2, 2, 3, 4 | 2.11 (1.02) 1, 1, 2, 3, 4 | 1.97 (1.02) 1, 1, 2, 2, 4 | 1.89 (1.05) 1, 1, 2, 2, 4 | 1.90 (1.16) 1, 1, 2, 2, 4 |
a | b | |||||
---|---|---|---|---|---|---|
1 | 0 | 376.86 (480.80) 17, 71, 187, 468, 1627 | 378.51 (462.28) 17, 75, 199, 485, 1492 | 373.73 (448.92) 17, 82, 210, 492, 1448 | 371.96 (433.03) 16, 79, 210, 491, 1350 | 366.58 (419.88) 15, 83, 216, 481, 1294 |
0.25 | 180.58 (291.41) 10, 33, 79, 193, 687 | 197.65 (298.47) 9, 35, 91, 222, 780 | 216.42 (304.94) 8, 39, 108, 257, 801 | 219.02 (299.70) 8, 42, 113, 265, 825 | 228.03 (300.01) 8, 46, 120, 289, 815 | |
0.5 | 33.27 (52.15) 5, 11, 20, 37, 103 | 40.04 (64.79) 4, 11, 21, 44, 132 | 50.54 (86.81) 4, 11, 25, 56, 176 | 59.55 (103.85) 3, 12, 29, 66, 208 | 71.05 (108.87) 3, 14, 36, 83, 252 | |
0.75 | 10.49 (8.43) 3, 5, 8, 13, 25 | 10.79 (10.97) 2, 5, 8, 13, 28 | 12.30 (14.79) 2, 4, 8, 15, 36 | 14.43 (20.47) 2, 5, 8, 17, 46 | 18.76 (26.06) 2, 5, 11, 22, 62 | |
1 | 5.33 (3.15) 2, 3, 5, 7, 11 | 5.08 (3.41) 1, 3, 4, 6, 11 | 5.10 (3.99) 1, 3, 4, 6, 12 | 5.48 (4.86) 1, 2, 4, 7, 14 | 6.60 (7.26) 1, 2, 4, 8, 19 | |
1.5 | 2.45 (1.06) 1, 2, 2, 3, 4 | 2.26 (1.06) 1, 2, 2, 3, 4 | 2.09 (1.07) 1, 1, 2, 3, 4 | 2.05 (1.13) 1, 1, 2, 3, 4 | 2.10 (1.36) 1, 1, 2, 3, 5 | |
2 | 1.59 (0.61) 1, 1, 2, 2, 3 | 1.45 (0.58) 1, 1, 1, 2, 2 | 1.35 (0.54) 1, 1, 1, 2, 2 | 1.31 (0.52) 1, 1, 1, 2, 2 | 1.28 (0.54) 1, 1, 1, 1, 2 | |
1.25 | 0 | 64.99 (97.92) 7, 19, 36, 73, 209 | 71.04 (99.27) 6, 19, 40, 84, 242 | 85.34 (114.89) 5, 20, 48, 106, 289 | 94.67 (120.96) 5, 22, 54, 119, 325 | 110.65 (138.05) 5, 26, 65, 140, 371 |
0.25 | 42.71 (58.64) 6, 14, 26, 49, 133 | 46.72 (64.13) 5, 13, 27, 56, 152 | 55.47 (76.99) 4, 14, 31, 66, 185 | 62.98 (83.63) 4, 15, 36, 78, 215 | 75.75 (97.99) 4, 18, 43, 97, 254 | |
0.5 | 17.91 (17.62) 4, 8, 13, 22, 47 | 19.09 (21.85) 3, 7, 13, 23, 56 | 21.76 (26.50) 3, 7, 14, 26, 67 | 25.61 (33.42) 2, 7, 15, 31, 84 | 31.88 (41.32) 2, 8, 18, 40, 103 | |
0.75 | 9.06 (6.53) 2, 5, 7, 12, 21 | 8.70 (7.04) 2, 4, 7, 11, 21 | 9.51 (9.14) 2, 4, 7, 12, 26 | 10.72 (11.57) 2, 4, 7, 13, 31 | 13.03 (15.92) 1, 4, 8, 16, 41 | |
1 | 5.35 (3.20) 2, 3, 5, 7, 11 | 5.09 (3.30) 1, 3, 4, 6, 11 | 5.09 (3.88) 1, 3, 4, 6, 12 | 5.31 (4.50) 1, 2, 4, 7, 14 | 6.07 (5.72) 1, 2, 4, 8, 17 | |
1.5 | 2.74 (1.29) 1, 2, 3, 3, 5 | 2.51 (1.26) 1, 2, 2, 3, 5 | 2.37 (1.31) 1, 1, 2, 3, 5 | 2.34 (1.38) 1, 1, 2, 3, 5 | 2.38 (1.65) 1, 1, 2, 3, 6 | |
2 | 1.83 (0.75) 1, 1, 2, 2, 3 | 1.66 (0.71) 1, 1, 2, 2, 3 | 1.54 (0.68) 1, 1, 1, 2, 3 | 1.50 (0.70) 1, 1, 1, 2, 3 | 1.46 (0.71) 1, 1, 1, 2, 3 | |
1.50 | 0 | 18.73 (15.69) 4, 9, 15, 24, 47 | 20.10 (19.51) 3, 8, 14, 25, 56 | 24.51 (27.79) 3, 8, 16, 30, 75 | 28.41 (31.97) 3, 9, 18, 36, 89 | 37.17 (43.17) 3, 10, 23, 48, 117 |
0.25 | 16.10 (13.03) 4, 8, 13, 20, 40 | 16.81 (15.59) 3, 7, 12, 21, 46 | 19.82 (21.26) 3, 7, 13, 25, 58 | 23.03 (26.76) 2, 7, 15, 29, 72 | 29.15 (32.75) 2, 8, 19, 38, 92 | |
0.5 | 11.20 (8.10) 3, 6, 9, 14, 26 | 11.03 (9.23) 2, 5, 9, 14, 28 | 12.25 (12.00) 2, 5, 9, 15, 34 | 13.98 (14.92) 2, 5, 9, 18, 41 | 17.21 (19.41) 2, 5, 11, 22, 53 | |
0.75 | 7.45 (4.74) 2, 4, 6, 10, 16 | 7.11 (5.22) 2, 4, 6, 9, 17 | 7.27 (5.99) 1, 3, 6, 9, 19 | 7.98 (7.27) 1, 3, 6, 10, 22 | 9.48 (10.11) 1, 3, 6, 12, 28 | |
1 | 5.13 (3.02) 2, 3, 4, 6, 11 | 4.78 (3.05) 1, 3, 4, 6, 10 | 4.79 (3.50) 1, 2, 4, 6, 12 | 4.98 (3.87) 1, 2, 4, 6, 12 | 5.56 (5.03) 1, 2, 4, 7, 15 | |
1.5 | 2.94 (1.45) 1, 2, 3, 4, 6 | 2.69 (1.41) 1, 2, 2, 3, 5 | 2.55 (1.46) 1, 2, 2, 3, 5 | 2.52 (1.58) 1, 1, 2, 3, 6 | 2.58 (1.79) 1, 1, 2, 3, 6 | |
2 | 2.02 (0.88) 1, 1, 2, 2, 4 | 1.85 (0.84) 1, 1, 2, 2, 3 | 1.73 (0.83) 1, 1, 2, 2, 3 | 1.67 (0.82) 1, 1, 1, 2, 3 | 1.64 (0.89) 1, 1, 1, 2, 3 | |
2.00 | 0 | 7.25 (4.21) 2, 4, 6, 9, 15 | 6.98 (4.55) 2, 4, 6, 9, 16 | 7.29 (5.56) 2, 4, 6, 9, 18 | 7.95 (6.69) 2, 3, 6, 10, 21 | 10.19 (10.20) 1, 4, 7, 13, 29 |
0.25 | 7.00 (4.09) 2, 4, 6, 9, 15 | 6.72 (4.40) 2, 4, 6, 9, 15 | 6.94 (5.28) 2, 3, 6, 9, 17 | 7.64 (6.38) 1, 3, 6, 10, 20 | 9.31 (8.63) 1, 3, 7, 12, 26 | |
0.5 | 6.28 (3.61) 2, 4, 6, 8, 13 | 5.88 (3.74) 2, 3, 5, 8, 13 | 5.97 (4.38) 1, 3, 5, 8, 14 | 6.32 (5.05) 1, 3, 5, 8, 16 | 7.61 (6.96) 1, 3, 6, 10, 21 | |
0.75 | 5.29 (2.94) 2, 3, 5, 7, 11 | 4.95 (2.99) 2, 3, 4, 6, 11 | 4.94 (3.42) 1, 3, 4, 6, 12 | 5.08 (3.89) 1, 2, 4, 7, 13 | 5.96 (5.30) 1, 2, 4, 8, 16 | |
1 | 4.38 (2.26) 2, 3, 4, 6, 9 | 4.06 (2.36) 1, 2, 4, 5, 8 | 3.99 (2.63) 1, 2, 3, 5, 9 | 4.12 (2.98) 1, 2, 3, 5, 10 | 4.48 (3.62) 1, 2, 3, 6, 12 | |
1.5 | 3.11 (1.54) 1, 2, 3, 4, 6 | 2.85 (1.48) 1, 2, 3, 4, 6 | 2.69 (1.58) 1, 2, 2, 3, 6 | 2.69 (1.73) 1, 1, 2, 3, 6 | 2.78 (2.00) 1, 1, 2, 4, 7 | |
2 | 2.33 (1.05) 1, 2, 2, 3, 4 | 2.13 (1.02) 1, 1, 2, 3, 4 | 1.99 (1.03) 1, 1, 2, 2, 4 | 1.92 (1.06) 1, 1, 2, 2, 4 | 1.93 (1.18) 1, 1, 2, 2, 4 |
a | b | |||||
---|---|---|---|---|---|---|
1 | 0 | 42.34 (65.29) 6, 13, 24, 47, 132 | 47.17 (70.52) 5, 12, 25, 53, 159 | 57.32 (82.60) 4, 13, 30, 67, 200 | 65.19 (95.03) 4, 14, 34, 78, 233 | 73.24 (104.99) 4, 16, 40, 89, 251 |
0.25 | 34.69 (44.13) 5, 12, 22, 40, 104 | 38.23 (50.81) 4, 11, 23, 45, 126 | 47.16 (68.06) 4, 12, 27, 56, 157 | 52.44 (75.54) 3, 12, 29, 63, 179 | 59.43 (76.97) 3, 14, 35, 75, 198 | |
0.5 | 19.21 (19.96) 4, 9, 14, 23, 51 | 20.35 (23.12) 3, 8, 14, 25, 58 | 24.20 (29.50) 3, 7, 15, 30, 77 | 27.26 (35.06) 2, 7, 16, 34, 91 | 33.25 (42.02) 2, 8, 19, 42, 111 | |
0.75 | 9.18 (7.33) 3, 5, 8, 12, 21 | 9.12 (8.00) 2, 4, 7, 11, 23 | 9.93 (9.64) 2, 4, 7, 12, 27 | 11.22 (12.26) 2, 4, 8, 14, 33 | 14.11 (16.55) 1, 4, 9, 18, 44 | |
1 | 5.16 (2.91) 2, 3, 5, 6, 11 | 4.78 (2.97) 1, 3, 4, 6, 10 | 4.84 (3.79) 1, 2, 4, 6, 11 | 5.02 (4.18) 1, 2, 4, 6, 13 | 6.05 (6.34) 1, 2, 4, 8, 18 | |
1.5 | 2.44 (1.06) 1, 2, 2, 3, 4 | 2.24 (1.04) 1, 2, 2, 3, 4 | 2.08 (1.07) 1, 1, 2, 3, 4 | 2.05 (1.15) 1, 1, 2, 3, 4 | 2.08 (1.31) 1, 1, 2, 3, 5 | |
2 | 1.61 (0.62) 1, 1, 2, 2, 3 | 1.45 (0.58) 1, 1, 1, 2, 2 | 1.35 (0.55) 1, 1, 1, 2, 2 | 1.32 (0.53) 1, 1, 1, 2, 2 | 1.27 (0.52) 1, 1, 1, 1, 2 | |
1.25 | 0 | 25.77 (28.11) 5, 11, 18, 31, 70 | 28.56 (33.54) 4, 10, 18, 35, 89 | 33.66 (39.95) 3, 10, 21, 43, 106 | 37.12 (44.25) 3, 10, 23, 47, 120 | 45.92 (56.47) 3, 11, 28, 59, 149 |
0.25 | 21.52 (20.11) 4, 9, 16, 26, 57 | 22.53 (23.12) 3, 9, 16, 28, 64 | 27.03 (33.07) 3, 8, 17, 33, 83 | 30.54 (36.80) 3, 9, 19, 38, 99 | 36.88 (45.74) 3, 10, 23, 47, 116 | |
0.5 | 13.74 (11.07) 3, 7, 11, 17, 33 | 13.98 (13.11) 3, 6, 10, 17, 36 | 15.58 (17.26) 2, 6, 11, 20, 45 | 17.51 (20.14) 2, 6, 11, 22, 53 | 21.04 (24.04) 2, 6, 13, 27, 66 | |
0.75 | 8.13 (5.44) 2, 4, 7, 10, 18 | 7.92 (6.09) 2, 4, 6, 10, 19 | 8.19 (7.17) 2, 4, 6, 10, 21 | 8.90 (8.65) 1, 3, 6, 11, 25 | 10.91 (11.38) 1, 3, 7, 14, 33 | |
1 | 5.16 (2.94) 2, 3, 5, 7, 11 | 4.84 (3.07) 1, 3, 4, 6, 11 | 4.73 (3.42) 1, 2, 4, 6, 11 | 5.04 (4.18) 1, 2, 4, 6, 13 | 5.65 (5.29) 1, 2, 4, 7, 16 | |
1.5 | 2.74 (1.28) 1, 2, 3, 3, 5 | 2.49 (1.25) 1, 2, 2, 3, 5 | 2.35 (1.29) 1, 1, 2, 3, 5 | 2.33 (1.37) 1, 1, 2, 3, 5 | 2.33 (1.56) 1, 1, 2, 3, 5 | |
2 | 1.83 (0.75) 1, 1, 2, 2, 3 | 1.67 (0.70) 1, 1, 2, 2, 3 | 1.55 (0.69) 1, 1, 1, 2, 3 | 1.49 (0.68) 1, 1, 1, 2, 3 | 1.46 (0.71) 1, 1, 1, 2, 3 | |
1.5 | 0 | 14.24 (10.27) 4, 7, 12, 18, 33 | 14.92 (13.17) 3, 7, 11, 19, 39 | 17.01 (16.75) 3, 6, 12, 22, 48 | 19.40 (20.32) 2, 6, 13, 25, 58 | 24.38 (27.03) 2, 7, 16, 32, 75 |
0.25 | 12.92 (9.60) 3, 7, 10, 16, 30 | 12.73 (10.40) 3, 6, 10, 16, 32 | 14.44 (13.81) 2, 6, 10, 19, 41 | 16.35 (16.55) 2, 6, 11, 21, 48 | 20.50 (22.33) 2, 6, 13, 27, 64 | |
0.5 | 9.71 (6.53) 3, 5, 8, 12, 22 | 9.61 (7.22) 2, 5, 8, 12, 23 | 10.29 (9.34) 2, 4, 8, 13, 27 | 11.22 (10.98) 2, 4, 8, 14, 32 | 13.60 (14.11) 1, 4, 9, 18, 41 | |
0.75 | 6.95 (4.21) 2, 4, 6, 9, 15 | 6.63 (4.60) 2, 4, 6, 9, 15 | 6.77 (5.50) 1, 3, 5, 9, 17 | 7.17 (6.38) 1, 3, 5, 9, 19 | 8.42 (8.34) 1, 3, 6, 11, 25 | |
1 | 4.96 (2.83) 2, 3, 4, 6, 10 | 4.69 (2.93) 1, 3, 4, 6, 10 | 4.59 (3.22) 1, 2, 4, 6, 11 | 4.73 (3.66) 1, 2, 4, 6, 12 | 5.25 (4.67) 1, 2, 4, 7, 15 | |
1.5 | 2.92 (1.42) 1, 2, 3, 4, 6 | 2.71 (1.41) 1, 2, 2, 3, 5 | 2.52 (1.43) 1, 2, 2, 3, 5 | 2.48 (1.53) 1, 1, 2, 3, 5 | 2.57 (1.81) 1, 1, 2, 3, 6 | |
2 | 2.03 (0.87) 1, 1, 2, 2, 4 | 1.86 (0.83) 1, 1, 2, 2, 3 | 1.70 (0.80) 1, 1, 2, 2, 3 | 1.66 (0.83) 1, 1, 1, 2, 3 | 1.64 (0.87) 1, 1, 1, 2, 3 | |
2 | 0 | 6.86 (3.81) 2, 4, 6, 9, 14 | 6.59 (4.23) 2, 4, 6, 8, 15 | 6.81 (4.99) 2, 3, 6, 9, 16 | 7.26 (5.99) 1, 3, 6, 10, 19 | 8.93 (8.24) 1, 3, 6, 12, 25 |
0.25 | 6.61 (3.62) 2, 4, 6, 8, 13 | 6.22 (3.93) 2, 3, 5, 8, 14 | 6.39 (4.74) 2, 3, 5, 8, 16 | 6.90 (5.59) 1, 3, 5, 9, 18 | 8.28 (7.57) 1, 3, 6, 11, 23 | |
0.5 | 5.96 (3.26) 2, 4, 5, 8, 12 | 5.58 (3.41) 2, 3, 5, 7, 12 | 5.69 (4.06) 1, 3, 5, 7, 13 | 5.91 (4.60) 1, 3, 5, 8, 15 | 7.09 (6.39) 1, 3, 5, 9, 20 | |
0.75 | 5.12 (2.79) 2, 3, 5, 6, 10 | 4.77 (2.82) 1, 3, 4, 6, 10 | 4.68 (3.17) 1, 2, 4, 6, 11 | 4.86 (3.58) 1, 2, 4, 6, 12 | 5.56 (4.73) 1, 2, 4, 7, 15 | |
1 | 4.32 (2.24) 2, 3, 4, 5, 8 | 3.96 (2.26) 1, 2, 3, 5, 8 | 3.90 (2.56) 1, 2, 3, 5, 9 | 3.93 (2.81) 1, 2, 3, 5, 9 | 4.35 (3.54) 1, 2, 3, 6, 11 | |
1.5 | 3.07 (1.49) 1, 2, 3, 4, 6 | 2.84 (1.50) 1, 2, 3, 4, 6 | 2.67 (1.55) 1, 2, 2, 3, 6 | 2.65 (1.67) 1, 1, 2, 3, 6 | 2.73 (1.93) 1, 1, 2, 4, 6 | |
2 | 2.33 (1.03) 1, 2, 2, 3, 4 | 2.12 (1.01) 1, 1, 2, 3, 4 | 1.96 (0.99) 1, 1, 2, 2, 4 | 1.92 (1.05) 1, 1, 2, 2, 4 | 1.90 (1.13) 1, 1, 2, 2, 4 |
a | b | |||||
---|---|---|---|---|---|---|
1 | 0 | 10.73 (8.16) 3, 5, 9, 13, 26 | 10.77 (9.51) 2, 5, 8, 14, 28 | 12.09 (12.18) 2, 5, 8, 15, 35 | 13.22 (15.54) 2, 4, 9, 16, 39 | 16.52 (19.10) 2, 5, 10, 21, 51 |
0.25 | 10.55 (7.99) 3, 5, 9, 13, 25 | 10.41 (8.81) 2, 5, 8, 13, 27 | 11.24 (11.09) 2, 4, 8, 14, 32 | 12.82 (13.91) 2, 4, 8, 16, 39 | 15.32 (17.09) 1, 5, 10, 19, 48 | |
0.5 | 9.11 (6.24) 2, 5, 8, 12, 21 | 8.79 (6.89) 2, 4, 7, 11, 21 | 9.47 (8.68) 2, 4, 7, 12, 25 | 10.47 (10.85) 2, 4, 7, 13, 30 | 12.58 (13.56) 1, 4, 8, 16, 38 | |
0.75 | 6.68 (3.98) 2, 4, 6, 8, 14 | 6.39 (4.25) 2, 3, 5, 8, 14 | 6.39 (5.06) 1, 3, 5, 8, 16 | 6.89 (6.40) 1, 3, 5, 9, 18 | 8.27 (8.47) 1, 3, 6, 11, 24 | |
1 | 4.59 (2.44) 2, 3, 4, 6, 9 | 4.25 (2.48) 1, 3, 4, 5, 9 | 4.07 (2.79) 1, 2, 3, 5, 9 | 4.27 (3.35) 1, 2, 3, 5, 10 | 4.86 (4.31) 1, 2, 4, 6, 13 | |
1.5 | 2.42 (1.03) 1, 2, 2, 3, 4 | 2.20 (1.01) 1, 2, 2, 3, 4 | 2.01 (0.99) 1, 1, 2, 2, 4 | 1.97 (1.06) 1, 1, 2, 2, 4 | 2.00 (1.23) 1, 1, 2, 2, 4 | |
2 | 1.60 (0.62) 1, 1, 2, 2, 3 | 1.45 (0.57) 1, 1, 1, 2, 2 | 1.34 (0.54) 1, 1, 1, 2, 2 | 1.29 (0.51) 1, 1, 1, 2, 2 | 1.26 (0.51) 1, 1, 1, 1, 2 | |
1.25 | 0 | 10.05 (7.18) 3, 5, 8, 13, 24 | 9.70 (7.91) 2, 5, 8, 12, 25 | 10.62 (10.05) 2, 4, 8, 13, 29 | 11.81 (12.88) 2, 4, 8, 15, 35 | 14.59 (16.89) 1, 4, 9, 19, 45 |
0.25 | 9.65 (6.66) 2, 5, 8, 12, 22 | 9.42 (7.51) 2, 5, 7, 12, 23 | 10.00 (9.71) 2, 4, 7, 13, 27 | 11.14 (11.67) 2, 4, 8, 14, 33 | 13.02 (14.42) 1, 4, 8, 17, 41 | |
0.5 | 8.13 (5.19) 2, 5, 7, 10, 18 | 7.79 (5.55) 2, 4, 6, 10, 18 | 8.03 (6.97) 2, 4, 6, 10, 21 | 8.73 (8.09) 1, 4, 6, 11, 24 | 10.45 (10.90) 1, 3, 7, 13, 31 | |
0.75 | 6.25 (3.61) 2, 4, 6, 8, 13 | 5.85 (3.80) 2, 3, 5, 8, 13 | 5.88 (4.47) 1, 3, 5, 8, 14 | 6.25 (5.42) 1, 3, 5, 8, 17 | 7.11 (6.99) 1, 3, 5, 9, 20 | |
1 | 4.59 (2.47) 2, 3, 4, 6, 9 | 4.24 (2.51) 1, 2, 4, 5, 9 | 4.15 (2.88) 1, 2, 3, 5, 9 | 4.19 (3.11) 1, 2, 3, 5, 10 | 4.58 (4.10) 1, 2, 3, 6, 12 | |
1.5 | 2.65 (1.22) 1, 2, 2, 3, 5 | 2.41 (1.18) 1, 2, 2, 3, 5 | 2.26 (1.19) 1, 1, 2, 3, 4 | 2.23 (1.29) 1, 1, 2, 3, 5 | 2.21 (1.43) 1, 1, 2, 3, 5 | |
2 | 1.81 (0.75) 1, 1, 2, 2, 3 | 1.65 (0.70) 1, 1, 2, 2, 3 | 1.52 (0.67) 1, 1, 1, 2, 3 | 1.47 (0.67) 1, 1, 1, 2, 3 | 1.43 (0.69) 1, 1, 1, 2, 3 | |
1.5 | 0 | 8.43 (5.24) 2, 5, 7, 11, 18 | 8.12 (5.88) 2, 4, 7, 10, 19 | 8.46 (7.24) 2, 4, 7, 11, 22 | 9.32 (9.16) 1, 4, 7, 12, 26 | 11.05 (11.36) 1, 4, 7, 14, 32 |
0.25 | 8.01 (4.90) 2, 5, 7, 10, 17 | 7.65 (5.39) 2, 4, 6, 10, 18 | 8.08 (6.64) 2, 4, 6, 10, 21 | 8.67 (7.94) 1, 4, 6, 11, 23 | 10.59 (10.83) 1, 4, 7, 14, 31 | |
0.5 | 7.04 (4.18) 2, 4, 6, 9, 15 | 6.58 (4.28) 2, 4, 6, 8, 15 | 6.79 (5.43) 1, 3, 5, 9, 17 | 7.05 (6.06) 1, 3, 5, 9, 19 | 8.42 (8.23) 1, 3, 6, 11, 25 | |
0.75 | 5.61 (3.13) 2, 3, 5, 7, 11 | 5.20 (3.26) 2, 3, 4, 7, 11 | 5.15 (3.75) 1, 3, 4, 7, 12 | 5.38 (4.33) 1, 2, 4, 7, 14 | 6.18 (5.57) 1, 2, 4, 8, 17 | |
1 | 4.45 (2.34) 2, 3, 4, 6, 9 | 4.11 (2.39) 1, 2, 4, 5, 9 | 3.96 (2.64) 1, 2, 3, 5, 9 | 3.98 (2.88) 1, 2, 3, 5, 9 | 4.35 (3.64) 1, 2, 3, 6, 11 | |
1.5 | 2.82 (1.34) 1, 2, 3, 4, 5 | 2.61 (1.31) 1, 2, 2, 3, 5 | 2.39 (1.32) 1, 1, 2, 3, 5 | 2.35 (1.40) 1, 1, 2, 3, 5 | 2.38 (1.59) 1, 1, 2, 3, 5 | |
2 | 2.00 (0.86) 1, 1, 2, 2, 4 | 1.83 (0.81) 1, 1, 2, 2, 3 | 1.68 (0.79) 1, 1, 2, 2, 3 | 1.62 (0.81) 1, 1, 1, 2, 3 | 1.59 (0.84) 1, 1, 1, 2, 3 | |
2 | 0 | 5.76 (3.06) 2, 4, 5, 7, 11 | 5.32 (3.12) 2, 3, 5, 7, 11 | 5.24 (3.59) 1, 3, 4, 7, 12 | 5.49 (4.21) 1, 3, 4, 7, 14 | 6.43 (5.59) 1, 3, 5, 8, 17 |
0.25 | 5.51 (2.86) 2, 3, 5, 7, 11 | 5.13 (3.02) 2, 3, 5, 7, 11 | 5.04 (3.37) 1, 3, 4, 7, 12 | 5.30 (3.98) 1, 3, 4, 7, 13 | 6.19 (5.41) 1, 3, 5, 8, 17 | |
0.5 | 5.12 (2.63) 2, 3, 5, 6, 10 | 4.77 (2.77) 2, 3, 4, 6, 10 | 4.65 (3.05) 1, 3, 4, 6, 11 | 4.75 (3.54) 1, 2, 4, 6, 12 | 5.48 (4.75) 1, 2, 4, 7, 15 | |
0.75 | 4.60 (2.40) 2, 3, 4, 6, 9 | 4.22 (2.38) 1, 3, 4, 5, 9 | 4.08 (2.62) 1, 2, 3, 5, 9 | 4.11 (2.97) 1, 2, 3, 5, 10 | 4.51 (3.62) 1, 2, 3, 6, 12 | |
1 | 4.01 (2.03) 1, 3, 4, 5, 8 | 3.64 (2.01) 1, 2, 3, 5, 8 | 3.50 (2.17) 1, 2, 3, 4, 8 | 3.48 (2.37) 1, 2, 3, 4, 8 | 3.77 (2.91) 1, 2, 3, 5, 9 | |
1.5 | 2.98 (1.41) 1, 2, 3, 4, 6 | 2.72 (1.40) 1, 2, 2, 3, 5 | 2.52 (1.44) 1, 1, 2, 3, 5 | 2.46 (1.49) 1, 1, 2, 3, 5 | 2.54 (1.73) 1, 1, 2, 3, 6 | |
2 | 2.27 (1.00) 1, 2, 2, 3, 4 | 2.07 (0.97) 1, 1, 2, 3, 4 | 1.90 (0.97) 1, 1, 2, 2, 4 | 1.86 (0.99) 1, 1, 2, 2, 4 | 1.84 (1.10) 1, 1, 2, 2, 4 |
References
- Elkhani, N.; Soltani, S.; Jamshidi, M.H.M. Examining a hybrid model for e-satisfaction and e-loyalty to e-ticketing on airline websites. J. Air Transp. Manag. 2014, 37, 36–44. [Google Scholar] [CrossRef]
- Andrejić, M. Different Approaches for Performance Appraisal and Bonus Calculation: The Case of Truck Drivers. J. Intell. Manag. Decis. 2022, 1, 97–107. [Google Scholar] [CrossRef]
- Song, Z.; Mukherjee, A.; Qiu, P.; Zhou, M. Two robust multivariate exponentially weighted moving average charts to facilitate distinctive product quality features assessment. Comput. Ind. Eng. 2023, 183, 109469. [Google Scholar] [CrossRef]
- Book, L.A.; Tanford, S.; Montgomery, R.; Love, C. Online traveler reviews as social influence: Price is no longer king. J. Hosp. Tour. Res. 2018, 42, 445–475. [Google Scholar] [CrossRef]
- De Langhe, B.; Fernbach, P.M.; Lichtenstein, D.R. Navigating by the stars: Investigating the actual and perceived validity of online user ratings. J. Consum. Res. 2016, 42, 817–833. [Google Scholar] [CrossRef]
- Kim, W.G.; Li, J.; Brymer, R.A. The impact of social media reviews on restaurant performance: The moderating role of excellence certificate. Int. J. Hosp. Manag. 2016, 55, 41–51. [Google Scholar] [CrossRef]
- Nielsen Grimes, M. Global Consumers’ Trust in ‘Earned’ Advertising Grows in Importance. 2014. Available online: https://academized.com/blog/global-consumers-trust-in-earned-advertising-grows (accessed on 7 September 2025).
- Liu, X.; Schuckert, M.; Law, R. Online incentive hierarchies, review extremity, and review quality: Empirical evidence from the hotel sector. J. Travel Tour. Mark. 2016, 33, 279–292. [Google Scholar] [CrossRef]
- Xu, X. Examining the relevance of online customer textual reviews on hotels’ product and service attributes. J. Hosp. Tour. Res. 2019, 43, 141–163. [Google Scholar] [CrossRef]
- Oni, M.O.; Jha, B.K.; Abba, J.M.; Adebayo, O.H. Influence of Radially Varying Magnetic Fields and Heat Sources/Sinks on MHD Free-Convection Flow Within a Vertical Concentric Annulus. Power Eng. Eng. Thermophys. 2024, 3, 27–44. [Google Scholar] [CrossRef]
- İkinci, B.; Hadji, L.; Avcar, M. Natural Frequency Analysis of Functionally Graded Porous Beams Using Hyperbolic Shear Deformation Theory. GeoStruct. Innov. 2024, 2, 125–134. [Google Scholar] [CrossRef]
- Song, Z.; Mukherjee, A.; Ma, N.; Zhang, J. A class of new nonparametric circular-grid charts for signal classification. Qual. Reliab. Eng. Int. 2021, 37, 2738–2759. [Google Scholar] [CrossRef]
- Li, C.; Mukherjee, A.; Su, Q.; Xie, M. Distribution-free phase-II exponentially weighted moving average schemes for joint monitoring of location and scale based on subgroup samples. Int. J. Prod. Res. 2016, 54, 7259–7273. [Google Scholar] [CrossRef]
- Song, Z.; Mukherjee, A.; Tao, G. A class of distribution-free one-sided Cucconi schemes for joint surveillance of location and scale parameters and their application in monitoring cab services. Comput. Ind. Eng. 2020, 148, 106625. [Google Scholar] [CrossRef]
- Qiu, P. Introduction to Statistical Process Control; CRC Press: Boca Raton, FL, USA, 2013. [Google Scholar]
- Ju, Y.; Back, K.J.; Choi, Y.; Lee, J.S. Exploring Airbnb service quality attributes and their asymmetric effects on customer satisfaction. Int. J. Hosp. Manag. 2019, 77, 342–352. [Google Scholar] [CrossRef]
- Drégelyi-Kiss, Á.; Tóth, G.N.; Horváth, A.; Farkas, G. Risk Management in the Transport of Dangerous Goods in Hungary: A Statistical and FMEA-Based Case Study on Bitumen Transportation. J. Eng. Manag. Syst. Eng. 2024, 3, 236–247. [Google Scholar] [CrossRef]
- Naeem, M.Z. An efficient road image dehazing model based on entropy-weighted gaussian mixture model and level set refinement for autonomous driving applications. Mechatronics Intell. Transp. Syst. 2025, 4, 16–27. [Google Scholar] [CrossRef]
- Ajemunigbohun, S.S.; Sogunro, A.B.; Oluwaleye, T.O. Claims Handling Process Attributes: Perceptions of Motor Insurance Policyholders in Lagos, Nigeria; Acadlore Publishing: Hong Kong, 2022. [Google Scholar]
- Lucas, J.M.; Saccucci, M.S. Exponentially weighted moving average control schemes: Properties and enhancements. Technometrics 1990, 32, 1–12. [Google Scholar] [CrossRef]
- Maravelakis, P.E.; Castagliola, P. An EWMA chart for monitoring the process standard deviation when parameters are estimated. Comput. Stat. Data Anal. 2009, 53, 2653–2664. [Google Scholar] [CrossRef]
- Castagliola, P. A new S2-EWMA control chart for monitoring the process variance. Qual. Reliab. Eng. Int. 2005, 21, 781–794. [Google Scholar] [CrossRef]
- Hamilton, M.D.; Crowder, S.V. Average run lengths of EWMA control charts for monitoring a process standard deviation. J. Qual. Technol. 1992, 24, 44–50. [Google Scholar] [CrossRef]
- Zou, C.; Tsung, F. Likelihood ratio-based distribution-free EWMA control charts. J. Qual. Technol. 2010, 42, 174–196. [Google Scholar] [CrossRef]
- Li, S.Y.; Tang, L.C.; Ng, S.H. Nonparametric CUSUM and EWMA control charts for detecting mean shifts. J. Qual. Technol. 2010, 42, 209–226. [Google Scholar] [CrossRef]
- Song, Z.; Mukherjee, A.; Marozzi, M.; Zhang, J. A class of distribution-free exponentially weighted moving average schemes for joint monitoring of location and scale parameters. In Distribution-Free Methods for Statistical Process Monitoring and Control; Springer: Cham, Switzerland; pp. 183–217.
- McCracken, A.K.; Chakraborti, S.; Mukherjee, A. Control charts for simultaneous monitoring of unknown mean and variance of normally distributed processes. Qual. Control Appl. Stat. 2014, 59, 307–308. [Google Scholar] [CrossRef]
- Mukherjee, A.; Chakraborti, S. A distribution-free control chart for the joint monitoring of location and scale. Qual. Reliab. Eng. Int. 2012, 28, 335–352. [Google Scholar] [CrossRef]
- Chowdhury, S.; Mukherjee, A.; Chakraborti, S. Distribution-free phase II CUSUM control chart for joint monitoring of location and scale. Qual. Reliab. Eng. Int. 2015, 31, 135–151. [Google Scholar] [CrossRef]
- Lepage, Y. A combination of Wilcoxon’s and Ansari-Bradley’s statistics. Biometrika 1971, 58, 213–217. [Google Scholar] [CrossRef]
- Wu, Z.; Jiao, J.; He, Z. A control scheme for monitoring the frequency and magnitude of an event. Int. J. Prod. Res. 2009, 47, 2887–2902. [Google Scholar] [CrossRef]
- Xu, X. Examining an asymmetric effect between online customer reviews emphasis and overall satisfaction determinants. J. Bus. Res. 2020, 106, 196–210. [Google Scholar] [CrossRef]
- Peters, D.; Randles, R.H. A multivariate signed-rank test for the one-sample location problem. J. Am. Stat. Assoc. 1990, 85, 552–557. [Google Scholar] [CrossRef]
- Zhao, Y.; Xu, X.; Wang, M. Predicting overall customer satisfaction: Big data evidence from hotel online textual reviews. Int. J. Hosp. Manag. 2019, 76, 111–121. [Google Scholar] [CrossRef]
- Rakhshan, A.; Pishro-Nik, H.; Nekoui, M. Driver-based adaptation of Vehicular Ad Hoc Networks for design of active safety systems. In Proceedings of the 2015 49th Annual Conference on Information Sciences and Systems (CISS), IEEE, Baltimore, MD, USA, 18–20 March 2015; pp. 1–6. [Google Scholar]
- Soo-Guan Khoo, C.; Nourbakhsh, A.; Na, J.C. Sentiment analysis of online news text: A case study of appraisal theory. Online Inf. Rev. 2012, 36, 858–878. [Google Scholar] [CrossRef]
- Read, J. Weakly-Supervised Techniques for the Analysis of Evaluation in Text. Ph.D. Thesis, University of Sussex, Brighton, UK, 2009. [Google Scholar]
- Graham, M.A.; Mukherjee, A.; Chakraborti, S. Design and implementation issues for a class of distribution-free Phase II EWMA exceedance control charts. Int. J. Prod. Res. 2017, 55, 2397–2430. [Google Scholar] [CrossRef]
- Li, C.; Mukherjee, A.; Su, Q.; Xie, M. Design and implementation of two CUSUM schemes for simultaneously monitoring the process mean and variance with unknown parameters. Qual. Reliab. Eng. Int. 2016, 32, 2961–2975. [Google Scholar] [CrossRef]
- Zhang, T.; He, Z.; Zhao, X.; Qu, L. Joint monitoring of post-sales online review processes based on a distribution-free EWMA scheme. Comput. Ind. Eng. 2021, 158, 107372. [Google Scholar] [CrossRef]
- Huang, S.; Yang, J.; Mukherjee, A. Distribution-free EWMA schemes for simultaneous monitoring of time between events and event magnitude. Comput. Ind. Eng. 2018, 126, 317–336. [Google Scholar] [CrossRef]
- Zhang, T.; Li, G.; Cheng, T.C.E.; Lai, K.K. Welfare economics of review information: Implications for the online selling platform owner. Int. J. Prod. Econ. 2017, 184, 69–79. [Google Scholar] [CrossRef]
- Zhang, J.; Li, Z.; Chen, B.; Wang, Z. A new exponentially weighted moving average control chart for monitoring the coefficient of variation. Comput. Ind. Eng. 2014, 78, 205–212. [Google Scholar] [CrossRef]
- Chen, Y.; Cai, Z.; Xu, T.; Lai, G. The early-warning and control of service complaint based on time series forecasting method and SPC model-Take Ctrip as an example. In Proceedings of the 2018 15th International Conference on Service Systems and Service Management (ICSSSM), IEEE, Hangzhou, China, 21–22 July 2018; pp. 1–6. [Google Scholar]
h | ||||
---|---|---|---|---|
m | n | r = 0.5 | r = 0.1 | r = 0.2 |
50 | 5 | 2.7495 | 3.3125 | 4.2773 |
100 | 5 | 2.8068 | 3.3906 | 4.4304 |
150 | 5 | 2.8267 | 3.4208 | 4.4766 |
50 | 10 | 2.7128 | 3.2636 | 4.2217 |
100 | 10 | 2.7969 | 3.3906 | 4.4216 |
150 | 10 | 2.8359 | 3.4291 | 4.4766 |
50 | 15 | 2.6543 | 3.2061 | 4.1484 |
100 | 15 | 2.7734 | 3.3643 | 4.3711 |
150 | 15 | 2.8203 | 3.4200 | 4.4648 |
r | m | n | ARL | SDRL | 5th | 25th | 50th | 75th | 95th |
---|---|---|---|---|---|---|---|---|---|
0.05 | 50 | 5 | 366.44 | 526.00 | 13 | 48 | 137 | 403 | 2000 |
100 | 5 | 369.77 | 474.87 | 18 | 69 | 182 | 451 | 1585 | |
150 | 5 | 369.54 | 445.38 | 20 | 80 | 202 | 468 | 1418 | |
50 | 10 | 372.79 | 568.44 | 10 | 36 | 113 | 406 | 2000 | |
100 | 10 | 368.04 | 498.74 | 14 | 55 | 157 | 440 | 1744 | |
150 | 10 | 373.11 | 467.83 | 17 | 70 | 189 | 467 | 1532 | |
0.1 | 50 | 5 | 371.17 | 504.71 | 12 | 54 | 159 | 447 | 1805 |
100 | 5 | 370.70 | 456.60 | 15 | 73 | 194 | 471 | 1460 | |
150 | 5 | 369.82 | 430.61 | 18 | 83 | 213 | 480 | 1349 | |
50 | 10 | 369.15 | 536.65 | 9 | 39 | 132 | 427 | 2000 | |
100 | 10 | 369.72 | 477.12 | 13 | 65 | 181 | 455 | 1597 | |
150 | 10 | 369.25 | 441.62 | 17 | 77 | 202 | 475 | 1394 | |
0.2 | 50 | 5 | 367.55 | 480.80 | 12 | 60 | 171 | 453 | 1603 |
100 | 5 | 373.95 | 440.85 | 15 | 81 | 210 | 488 | 1387 | |
150 | 5 | 370.99 | 416.61 | 16 | 89 | 226 | 490 | 1270 | |
50 | 10 | 371.20 | 511.30 | 9 | 48 | 155 | 447 | 1821 | |
100 | 10 | 372.53 | 461.72 | 13 | 70 | 195 | 474 | 1495 | |
150 | 10 | 367.92 | 432.88 | 15 | 78 | 208 | 479 | 1344 |
EARL | |||||
Pattern 1 | 18.86 | 20.24 | 22.88 | 24.93 | 28.29 |
Pattern 2 | 15.40 | 15.81 | 17.04 | 18.12 | 20.23 |
Pattern 3 | 22.85 | 24.75 | 28.49 | 30.88 | 35.33 |
Pattern 4 | 18.35 | 18.94 | 20.73 | 22.12 | 24.45 |
RARL | |||||
Pattern 1 | 1.00 | 1.01 | 1.06 | 1.15 | 1.34 |
Pattern 2 | 1.00 | 0.96 | 1.01 | 1.05 | 1.20 |
Pattern 3 | 1.00 | 1.00 | 1.08 | 1.18 | 1.38 |
Pattern 4 | 1.00 | 0.97 | 1.00 | 1.06 | 1.22 |
No. | S | T | No. | S | T | No. | S | T |
---|---|---|---|---|---|---|---|---|
1 | 8.78 | 3 | 8 | 14.16 | 3 | 15 | 5.15 | 0.2 |
6.72 | 1 | 9.04 | 4 | 3.3 | 0.2 | |||
3.95 | 1 | 8.39 | 3 | 4.16 | 0.2 | |||
2.42 | 2 | 3.78 | 1 | 4.53 | 1 | |||
14.03 | 0.33 | 6.71 | 3 | 3.91 | 2 | |||
2 | 11.36 | 0.33 | 9 | 4.4 | 3 | 16 | 7.35 | 1 |
2.82 | 0.33 | 4.96 | 1 | 16.62 | 1 | |||
15.39 | 4 | 4.38 | 1 | 2.61 | 0.5 | |||
10.23 | 3 | 3.52 | 3 | 5.23 | 0.5 | |||
5.34 | 5 | 11.5 | 2 | 2.46 | 3 | |||
3 | 4.6 | 1 | 10 | 5.26 | 2 | 17 | 9.19 | 2 |
5.42 | 4 | 4.97 | 4 | 9.68 | 1 | |||
11.7 | 2 | 6.13 | 3 | 7.22 | 1 | |||
3.81 | 1 | 4.28 | 2 | 12.5 | 0.5 | |||
8.38 | 1 | 3.41 | 1 | 5.49 | 2 | |||
4 | 7.52 | 2 | 11 | 2.84 | 1 | 18 | 7.87 | 3 |
6.07 | 3 | 3.57 | 0.33 | 5.11 | 1 | |||
7.57 | 2 | 4.06 | 0.33 | 9.52 | 4 | |||
6.27 | 1 | 3.57 | 1 | 6.49 | 1 | |||
7.06 | 4 | 6.49 | 1 | 4.3 | 3 | |||
5 | 6.85 | 2 | 12 | 3.39 | 6 | 19 | 10.16 | 0.33 |
7.21 | 1 | 2.96 | 1 | 5.32 | 0.33 | |||
3.57 | 4 | 6.42 | 2 | 4.3 | 0.33 | |||
8.69 | 1 | 4.02 | 6 | 8.55 | 1 | |||
7.19 | 1 | 5.85 | 1 | 6.8 | 0.33 | |||
6 | 5.65 | 2 | 13 | 4.16 | 4 | 20 | 6.93 | 0.5 |
6.93 | 4 | 5.6 | 4 | 13.34 | 0.5 | |||
5.86 | 1 | 1.44 | 1 | 12.28 | 0.5 | |||
26.7 | 1 | 6.15 | 3 | 14.8 | 0.5 | |||
4.66 | 1 | 11.97 | 2 | 18.42 | 0.5 | |||
7 | 18.41 | 1 | 14 | 8.1 | 2 | |||
9.12 | 3 | 7.62 | 2 | |||||
4.95 | 1 | 4.39 | 2 | |||||
7.07 | 2 | 5.37 | 1 | |||||
3.5 | 2 | 5.53 | 4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
An, S.; Zhang, J. Distribution-Free EWMA Scheme for Joint Monitoring of Location and Scale Based on Post-Sales Online Review Process. Axioms 2025, 14, 719. https://doi.org/10.3390/axioms14100719
An S, Zhang J. Distribution-Free EWMA Scheme for Joint Monitoring of Location and Scale Based on Post-Sales Online Review Process. Axioms. 2025; 14(10):719. https://doi.org/10.3390/axioms14100719
Chicago/Turabian StyleAn, Sirui, and Jiujun Zhang. 2025. "Distribution-Free EWMA Scheme for Joint Monitoring of Location and Scale Based on Post-Sales Online Review Process" Axioms 14, no. 10: 719. https://doi.org/10.3390/axioms14100719
APA StyleAn, S., & Zhang, J. (2025). Distribution-Free EWMA Scheme for Joint Monitoring of Location and Scale Based on Post-Sales Online Review Process. Axioms, 14(10), 719. https://doi.org/10.3390/axioms14100719