Applications of Lucas Balancing Polynomial to Subclasses of Bi-Starlike Functions
Abstract
:1. Introduction and Preliminaries
Lucas-Balancing Polynomial (LBP)
2. Initial Coefficient Bounds for the Class
3. Fekete–Szegö Inequality for the Class
4. Concluding Remarks
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Duren, P. Univalent Functions; Grundlehren der Mathematischen Wissenschaften 259; Springer: New York, NY, USA, 1983. [Google Scholar]
- Duren, P. Subordination in complex analysis. In Lecture Notes in Mathematics; Springer: Berlin, Germany, 1977; Volume 599, pp. 22–29. [Google Scholar]
- Miller, S.; Mocanu, P. Differential Subordination: Theory and Applications; CRC Press: New York, NY, USA, 2000. [Google Scholar]
- Nehari, Z. Conformal Mappings; McGraw-Hill: New York, NY, USA, 1952. [Google Scholar]
- Goodman, A.W. Univalent Functions; 2 volumes; Mariner Publishing Co., Inc.: Boston, MA, USA, 1983. [Google Scholar]
- Lewin, M. On a coefficient problem for bi-univalent functions. Proc. Am. Math. Soc. 1967, 18, 63–68. [Google Scholar] [CrossRef]
- Netanyahu, E. The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in |z| < 1. Arch. Ration. Mech. Anal. 1969, 32, 100–112. [Google Scholar]
- Obradovic, M. A class of univalent functions. Hokkaido Math. J. 1988, 2, 329–335. [Google Scholar]
- Brannan, D.A.; Clunie, J.G. Aspects of contemporary complex analysis. In Proceedings of the NATO Advanced Study Institute, University of Durham, Durham, UK, 1–20 July 1979; Academic Press: New York, NY, USA; London, UK, 1980. [Google Scholar]
- Fekete, M.; Szegö, G. Eine Bemerkung Über ungerade Schlichte Funktionen. J. Lond. Math. Soc. 1933, s1–s8, 85–89. [Google Scholar] [CrossRef]
- Cağlar, M.; Orhan, H.; Kamali, M. Fekete-Szegö problem for a subclass of analytic functions associated with Chebyshev polynomials. Bol. Soc. Paran. Mat. 2022, 40, 1–6. [Google Scholar] [CrossRef]
- Choi, J.H.; Kim, Y.C.; Sugawa, T. A general approach to the Fekete-Szegö problem. J. Math. Jpn. 2007, 59, 707–727. [Google Scholar] [CrossRef]
- Deniz, E.; Jahangiri, J.M.; Hamidi, S.G.; Kna, S.K. Faber polynomial coefficients for generalized bi-subordinate functions of complex order. J. Math. Ineq. 2018, 12, 645–653. [Google Scholar] [CrossRef]
- Kamali, M.; Cağlar, M.; Deniz, E.; Turabaev, M. Fekete Szegö problem for a new subclass of analytic functions satisfying subordinate condition associated with Chebyshev polynomials. Turk. J. Math. 2021, 45, 1195–1208. [Google Scholar] [CrossRef]
- Keogh, F.R.; Merkes, E.P. A Coefficient inequality for certain classes of analytic functions. Proc. Am. Soc. 1969, 20, 8–12. [Google Scholar] [CrossRef]
- Murugusundaramoorthy, G.; Güney, H.x.; Vijaya, K. Coefficient bounds for certain suclasses of bi-prestarlike functions associated with the Gegenbauer polynomial. Adv. Stud. Contemp. Math. 2022, 32, 5–15. [Google Scholar]
- Zaprawa, P. On the Fekete-Szego problem for classes of bi-univalent functions. Bull. Belg. Math. Soc. Simon Stevin 2014, 21, 1–192. [Google Scholar] [CrossRef]
- Zaprawa, P. Estimates of initial coefficients for Biunivalent functions. Abstr. Appl. Anal. 2014, 357480. [Google Scholar]
- Behera, A.; Panda, G.K. On the square roots of triangular numbers. Fibonacci Q. 1999, 37, 98–105. [Google Scholar] [CrossRef]
- Frontczak, R.; Baden-Wrttemberg, L. A note on hybrid convolutions involving balancing and Lucas-balancing numbers. Appl. Math. Sci. 2018, 12, 2001–2008. [Google Scholar] [CrossRef]
- Frontczak, R.; Baden-Wrttemberg, L. Sums of balancing and Lucas-balancing numbers with binomial coefficients. Int. J. Math. Anal. 2018, 12, 585–594. [Google Scholar] [CrossRef]
- Frontczak, R. On balancing polynomials. Appl. Math. Sci. 2019, 13, 57–66. [Google Scholar] [CrossRef]
- Panda, G.K.; Komatsu, T.; Davala, R.K. Reciprocal sums of sequences involving balancing and Lucas-balancing numbers. Math. Rep. 2018, 20, 201–214. [Google Scholar]
- Ray, P.K.; Sahu, J. Generating functions for certain balancing and Lucas-balancing numbers. Palest. J. Math. 2016, 5, 122–129. [Google Scholar]
- Patel, B.K.; Irmak, N.; Ray, P.K. Incomplete balancing and Lucas-balancing numbers. Math. Rep. 2018, 20, 59–72. [Google Scholar]
- Sakaguchi, K. On a certain univalent mapping. J. Math. Soc. Jpn. 1959, 11, 72–75. [Google Scholar] [CrossRef]
- El-Ashwah, R.M.; Thomas, D.K. Some subclasses of close-to-convex functions. J. Ramanujan Math. Soc. 1987, 2, 86–100. [Google Scholar]
- Wah, C.L.; Janteng, A.; Halim, S.A. Quasi-Convex Functions with Respect to Symmetric Conjugate Points. Int. J. Algebra 2012, 6, 117–122. [Google Scholar]
- Öztürk, R.; Aktaş, İ. Coefficient estimates for two new subclasses of bi-univalent functions defined by Lucas-balancing polynomials. Turk. Ineq. 2023, 7, 55–64. [Google Scholar]
- Srivastava, H.M.; Wanas, A.K.; Murugusundaramoorthy, G. A certain family of bi-univalent functions associated with the Pascal distribution series based upon the Horadam polynomials. Surv. Math. Appl. 2021, 16, 193–205. [Google Scholar]
- Hussen, A.; Illafe, M. Coefficient bounds for a certain subclass of bi-Univalent functions associated with Lucas-Balancing polynomials. Mathematics 2023, 11, 4941. [Google Scholar] [CrossRef]
- Wanas, A.K.; Ghali, Z.S. Applications of Lucas-balancing polynomials on a certain families of bi-univalent functions. Asian-Eur. J. Math. 2024, 16, 2450119. [Google Scholar] [CrossRef]
- Aktaş, İ.; Karaman, İ. On some new subclasses of bi-univalent functions defined by balancing polynomials. KaramanoğLu Mehmetbey üNiversitesi MüHendislik DoğA Bilim. Derg. 2023, 5, 25–32. [Google Scholar] [CrossRef]
- Orhan, H.; Aktaş, İ.; Arıkan, H. On a new subclass of biunivalent functions associated with the (p, q)-Lucas polynomials and bi-Bazilevic type functions of order ρ + iξ. Turk. J. Math. 2023, 47, 7. [Google Scholar] [CrossRef]
- Öztürk, R.; Aktaş, İ. Coefficient estimate and fekete-szegö problems for certain new subclasses of bi-univalent functions defined by generalized bivariate Fibonacci polynomial. Sahand Commun. Math. Anal. 2024, 21, 35–53. [Google Scholar] [CrossRef]
- Yilmaz, N. Binomial transforms of the Balancing and Lucas-Balancing polynomials. Contrib. Discret. Math. 2020, 15, 133–144. [Google Scholar] [CrossRef]
- Pommerenke, C. Univalent Functions; Vandenhoeck & Ruprecht: Göttingen, Germany, 1975. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Murugusundaramoorthy, G.; Cotîrlă, L.-I.; Breaz, D.; El-Deeb, S.M. Applications of Lucas Balancing Polynomial to Subclasses of Bi-Starlike Functions. Axioms 2025, 14, 50. https://doi.org/10.3390/axioms14010050
Murugusundaramoorthy G, Cotîrlă L-I, Breaz D, El-Deeb SM. Applications of Lucas Balancing Polynomial to Subclasses of Bi-Starlike Functions. Axioms. 2025; 14(1):50. https://doi.org/10.3390/axioms14010050
Chicago/Turabian StyleMurugusundaramoorthy, Gangadharan, Luminita-Ioana Cotîrlă, Daniel Breaz, and Sheza M. El-Deeb. 2025. "Applications of Lucas Balancing Polynomial to Subclasses of Bi-Starlike Functions" Axioms 14, no. 1: 50. https://doi.org/10.3390/axioms14010050
APA StyleMurugusundaramoorthy, G., Cotîrlă, L.-I., Breaz, D., & El-Deeb, S. M. (2025). Applications of Lucas Balancing Polynomial to Subclasses of Bi-Starlike Functions. Axioms, 14(1), 50. https://doi.org/10.3390/axioms14010050