New Improvements of the Jensen–Mercer Inequality for Strongly Convex Functions with Applications
Abstract
:1. Introduction
2. Main Results
3. Applications to Strong -Divergences and the Shannon Entropy
4. Estimates for Mercer-Type Means
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Niculescu, C.P.; Persson, L.E. Convex Functions and Their Applications. A Contemporary Approach, 2nd ed.; CMS Books in Mathematics; Springer: New York, NY, USA, 2018; Volume 2. [Google Scholar]
- Polyak, B.T. Existence theorems and convergence of minimizing sequences in extremum problems with restrictions. Sov. Math. Dokl. 1966, 7, 72–75. [Google Scholar]
- Roberts, A.W.; Varberg, D.E. Convex Functions; Academic Press: New York, NY, USA, 1973. [Google Scholar]
- Ivelić Bradanović, S. Improvements of Jensen’s inequality and its converse for strongly convex functions with applications to strongly f-divergences. J. Math. Anal. Appl. 2024, 2, 1–16. [Google Scholar] [CrossRef]
- Nikodem, K. On Strongly Convex Functions and Related Classes of Functions, Handbook of Functional Equations; Springer: New York, NY, USA, 2014; pp. 365–405. [Google Scholar]
- Pečarić, J.; Proschan, F.; Tong, Y.L. Convex Functions, Partial Orderings and Statistical Applications; Academic Press: New York, NY, USA, 1992. [Google Scholar]
- Moradi, H.R.; Omidvar, M.E.; Adil Khan, M.; Nikodem, K. Around Jensen’s inequality for strongly convex functions. Aequat. Math. 2018, 92, 25–37. [Google Scholar] [CrossRef]
- Mercer, A.M. A variant of Jensen’s inequality. J. Ineq. Pure Appl. Math. 2003, 4, 1–2. [Google Scholar]
- Jarad, F.; Sahoo, S.K.; Nisar, K.S.; Treanţă, S.; Emadifar, H.; Botmart, T. New stochastic fractional integral and related inequalities of Jensen–Mercer and Hermite–Hadamard–Mercer type for convex stochastic processes. J. Inequal. Appl. 2023, 2023, 51. [Google Scholar] [CrossRef]
- Krnić, M.; Lovričević, N.; Pečarić, J. On some properties of Jensen-Mercer’s functional. J. Math. Inequal. 2012, 6, 125–139. [Google Scholar] [CrossRef]
- Sayyari, Y.; Barsam, H. Jensen-Mercer inequality for uniformly convex functions with some applications. Afr. Mat. 2023, 34, 38. [Google Scholar] [CrossRef]
- Adil Khan, M.; Husain, Z.; Chu, Y.-M. New Estimates for Csiszár Divergence and Zipf–Mandelbrot Entropy via Jensen–Mercer’s Inequality. Complexity 2020, 2020, 8928691. [Google Scholar] [CrossRef]
- Butt, S.I.; Agarwal, P.; Yousaf, S.; Guirao, J.L.G. Generalized fractal Jensen and Jensen–Mercer inequalities for harmonic convex function with applications. J. Inequal. Appl. 2022, 2022, 1. [Google Scholar] [CrossRef]
- Horváth, L. Some notes on Jensen-Mercer’s type inequalities; extensions and refinements with applications. Math. Inequal. Appl. 2021, 24, 1093–1111. [Google Scholar] [CrossRef]
- Ivelić, S.; Matković, A.; Pečarić, J. On a Jensen-Mercer operator inequality. Banach J. Math. Anal. 2011, 5, 19–28. [Google Scholar] [CrossRef]
- Khan, A.R.; Rubab, F. Mercer type variants of the Jensen–Steffensen inequality. Rocky Mt. Math. 2022, 52, 1693–1712. [Google Scholar] [CrossRef]
- Dragomir, S.S.; Scarmozzino, F.P. A Refinement of Jensen’s discrete inequality for differentiable convex functions. Rgmia Res. Rep. 2002, 5, 4. [Google Scholar]
- Ullah, S.Z.; Adil Khan, M.; Chu, Y.-M. Majorization Theorems for strongly convex functions. J. Inequal. Appl. 2019, 13, 58. [Google Scholar] [CrossRef]
- Ullah, S.Z.; Adil Khan, M.; Khan, Z.A.; Chu, Y.-M. Integral majorization type inequalities for the functions in the sense of strongly convexity. J. Funct. Spaces 2019, 11, 9487823. [Google Scholar]
- Song, Y.-Q.; Adil Khan, M.; Ullah, S.Z.; Chu, Y.-M. Integral inequalities for strongly convex functions. J. Funct. 2018, 8, 6595921. [Google Scholar] [CrossRef]
- Adil Khan, M.; Ullah, S.Z.; Chu, Y.-M. The concept of coordinate strongly convex functions and related inequalities. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. AMat. RACSAM 2019, 113, 2235–2251. [Google Scholar] [CrossRef]
- Adil Khan, M.; Adnan; Saeed, T.; Nwaeze, E.R. A New Advanced Class of Convex Functions with Related Results. Axioms 2023, 12, 195. [Google Scholar] [CrossRef]
- Kalsoom, H.; Vivas-Cortez, M.; Latif, M.A. Trapezoidal-Type inequalities for strongly convex and quasi-convex functions via post-quantum calculus. Entropy 2021, 23, 1238. [Google Scholar] [CrossRef]
- Fitzsimmons, M.; Liu, J. A note on the equivalence of a strongly convex function and its induced contractive differential equation. Automatica 2022, 142, 110349. [Google Scholar] [CrossRef]
- Dragomir, S.S.; Ionescu, N.M. Some Converse of Jensen’s inequality and applications. Anal. Num. Theor. Approx. 1994, 23, 71–78. [Google Scholar]
- Chen, S.-B.; Rashid, S.; Noor, M.A.; Hammouch, Z.; Chu, Y.-M. New fractional approaches for n-polynomial P-convexity with applications in special function theory. Adv. Differ. Equ. 2020, 2020, 543. [Google Scholar] [CrossRef]
- Zhao, T.-H.; Shi, L.; Chu, Y.-M. Convexity and concavity of the modified Bessel functions of the first kind with respect to Hölder means. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 2020, 114, 96. [Google Scholar] [CrossRef]
- Rashid, S.; Latif, M.A.; Hammouch, Z.; Chu, Y.-M. Fractional integral inequalities for strongly h-preinvex functions for a kth order differentiable functions. Symmetry 2019, 11, 1448. [Google Scholar] [CrossRef]
- Kalsoom, H.; Rashid, S.; Idrees, M.; Chu, Y.-M.; Baleanu, D. Two-variable quantum integral inequalities of Simpson-type based on higher-order generalized strongly preinvex and quasi-preinvex functions. Symmetry 2020, 12, 51. [Google Scholar] [CrossRef]
- Ivelić Bradanović, S. Sherman’s inequality and its converse for strongly convex functions with applications to generalized f-divergences. Turk. J. Math. 2019, 6, 2680–2696. [Google Scholar] [CrossRef]
- Mercer, A. Mcd. A monotonicity property of power means. J. Ineq. Pure Appl. Math. 2002, 3, 3. [Google Scholar]
- Csiszár, I. Information-type measures of difference of probability functions and indirect observations. Studia Sci. Math. Hungar 1967, 2, 299–318. [Google Scholar]
- Crooks, G.E. On measures of entropy and information. Tech. Note 2021, 9, 1–20. [Google Scholar]
- Bussandri, D.G.; Osán, T.M. Quantum distance measures based upon classical symmetric Csiszár Divergences. Entropy 2023, 25, 912. [Google Scholar] [CrossRef]
- Csiszár, I.; Körner, J. Information Theory: Coding Theorem for Discrete Memoryless Systems; Academic Press: New York, NY, USA, 1981. [Google Scholar]
- Shannon, C.E.; Weaver, W. The Mathemtiatical Theory of Communication; Urbana, University of Illinois Press: Champaign, IL, USA, 1949. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adil Khan, M.; Ivelić Bradanović, S.; Mahmoud, H.A. New Improvements of the Jensen–Mercer Inequality for Strongly Convex Functions with Applications. Axioms 2024, 13, 553. https://doi.org/10.3390/axioms13080553
Adil Khan M, Ivelić Bradanović S, Mahmoud HA. New Improvements of the Jensen–Mercer Inequality for Strongly Convex Functions with Applications. Axioms. 2024; 13(8):553. https://doi.org/10.3390/axioms13080553
Chicago/Turabian StyleAdil Khan, Muhammad, Slavica Ivelić Bradanović, and Haitham Abbas Mahmoud. 2024. "New Improvements of the Jensen–Mercer Inequality for Strongly Convex Functions with Applications" Axioms 13, no. 8: 553. https://doi.org/10.3390/axioms13080553
APA StyleAdil Khan, M., Ivelić Bradanović, S., & Mahmoud, H. A. (2024). New Improvements of the Jensen–Mercer Inequality for Strongly Convex Functions with Applications. Axioms, 13(8), 553. https://doi.org/10.3390/axioms13080553