The Mean Square of the Hurwitz Zeta-Function in Short Intervals
Abstract
:1. Introduction
- periodic with period q: for all ;
- completely multiplicative: for all ;
- for ( is the greatest common divisor of m and q);
- for .
2. Approximate Functional Equation
3. Mean Square of Dirichlet Polynomials
4. Exponential Pairs
5. Proof of the Main Theorem
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hurwitz, A. Einige Eigenschaften der Dirichletschen Funktionen , die bei der Bestimmung der Klassenanzahlen binärer quadratischer Formen auftreten. Z. Math. Phys. 1882, 27, 86–101. [Google Scholar]
- Reynolds, R.; Stauffer, A. Infinite sum of the incomplete gamma-functon expressed in terms of the Hurwitz zeta-function. Mathematics 2021, 9, 1952. [Google Scholar] [CrossRef]
- Schwinger, J. On gauge invariance and vacuum polarization. Phys. Rev. 1951, 82, 664–779. [Google Scholar] [CrossRef]
- Laurinčikas, A.; Garunkštis, R. The Lerch Zeta-Function; Kluwer Academic Publishers: Dordrecht, The Netherlands; Boston, MA, USA; London, UK, 2002. [Google Scholar]
- Apostol, T.M. Introduction to Analytic Number Theory; Springer: New York, NY, USA; Berlin/Heidelberg, Germany, 1976. [Google Scholar]
- Ivič, A. The Riemann Zeta-Function; John Wiley & Sons: New York, NY, USA, 1985. [Google Scholar]
- Davenport, H.; Heilbronn, H. On the zeros of certain Dirichlet series. J. Lond. Math. Soc. 1936, 11, 181–185. [Google Scholar] [CrossRef]
- Cassels, J.W.S. Footnote to a note of Davenport and Heilbronn. J. Lond. Math. Soc. 1961, 36, 177–184. [Google Scholar] [CrossRef]
- Gonek, S.M. Analytic Properties of Zeta and L-Functions. Ph.D. Thesis, University of Michigan, Ann Arbor, MI, USA, 1979. [Google Scholar]
- Bagchi, B. The Statistical Behaviour and Universality Properties of the Riemann Zeta-Function and Other Allied Dirichlet Series. Ph.D. Thesis, Indian Statistical Institute, Calcutta, India, 1981. [Google Scholar]
- Voronin, S.M. Theorem on the “universality” of the Riemann zeta-function. Math. USSR Izv. 1975, 9, 443–453. [Google Scholar] [CrossRef]
- Laurinčikas, A.; Meška, L. On the modification of the universality of the Hurwitz zeta-function. Nonlinear Anal. Model. Control. 2016, 21, 564–576. [Google Scholar] [CrossRef]
- Mauclaire, J.-L. Universality of the Riemann zeta-function: Two remarks. Ann. Univ. Sci. Budapest. Sect. Comp. 2013, 39, 311–319. [Google Scholar]
- Sourmelidis, A.; Steuding, J. On the value distribution of Hurwitz zeta-function with algebraic irrational parameter. Constr. Approx. 2022, 55, 829–860. [Google Scholar] [CrossRef]
- Lerch, M. Note sur la fonction . Acta Math. 1887, 11, 19–24. [Google Scholar] [CrossRef]
- Lipschitz, R. Untersuchung einer aus vier Elementen gebildeten Reihe. J. Reine Angew. Math. 1889, 105, 127–185. [Google Scholar] [CrossRef]
- Garunkštis, R.; Laurinčikas, A.; Steuding, J. An approximate functional equation for Lerch zeta-function. Math. Notes 2003, 74, 469–476. [Google Scholar] [CrossRef]
- Rane, V.V. On the mean square value of Dirichlet L-Functions. J. Lond. Math. Soc. 1980, 21, 203–215. [Google Scholar] [CrossRef]
- Montgomery, H.L.; Vaughan, R.C. Hilbert’s inequality. J. Lond. Math. Soc. 1974, 8, 73–82. [Google Scholar] [CrossRef]
- Ramachandra, K. On the Mean-Value and Omega-Theorems for the Riemann Zeta-Function; Tata Institute of Fundamental Research Lectures on Mathematics and Physics, 85; Springer: Berlin, Germany, 1995. [Google Scholar]
- Laurinčikas, A. Universality of the Riemann zeta-function in short intervals. J. Number Theory 2019, 204, 279–295. [Google Scholar] [CrossRef]
- Anderson, J.; Garunkštis, R.; Kačinskaitė, R.; Nakai, K.; Pańkowski, Ł.; Sourmelidis, A.; Steuding, R.; Steuding, J.; Wananiyakul, S. Notes on universality in short intervals and exponential shifts. Lith. Math. J. 2024, 64, 125–137. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Laurinčikas, A.; Šiaučiūnas, D. The Mean Square of the Hurwitz Zeta-Function in Short Intervals. Axioms 2024, 13, 510. https://doi.org/10.3390/axioms13080510
Laurinčikas A, Šiaučiūnas D. The Mean Square of the Hurwitz Zeta-Function in Short Intervals. Axioms. 2024; 13(8):510. https://doi.org/10.3390/axioms13080510
Chicago/Turabian StyleLaurinčikas, Antanas, and Darius Šiaučiūnas. 2024. "The Mean Square of the Hurwitz Zeta-Function in Short Intervals" Axioms 13, no. 8: 510. https://doi.org/10.3390/axioms13080510
APA StyleLaurinčikas, A., & Šiaučiūnas, D. (2024). The Mean Square of the Hurwitz Zeta-Function in Short Intervals. Axioms, 13(8), 510. https://doi.org/10.3390/axioms13080510