Harmonic Series with Multinomial Coefficient and Central Binomial Coefficient
Abstract
:1. Introduction and Outline
- Reformulate the equality by identifying a variable “x” and eventual parameters so that both sides of the resulting equality are analytic in x at .
- Determine the formal equality by extracting across the equality and then equating the coefficients for a fixed monomial .
- Find infinite series identities by computing the coefficients for particularly specified values of parameters .
2. Infinite Series of Convergence Rate “”
2.1.
- Ramanujan [29]
2.2.
2.3.
2.4.
2.5.
3. Concluding Comments
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, K.-W. Generalized harmonic numbers and Euler sums. Int. J. Number Theory 2017, 13, 513–528. [Google Scholar] [CrossRef]
- Furdui, O. Series involving products of two harmonic numbers. Math. Mag. 2011, 84, 371–377. [Google Scholar] [CrossRef]
- Sebbar, A. Harmonic numbers, harmonic series and zeta function. Moroc. J. Pure Appl. Anal. (MJPAA) 2018, 4, 122–157. [Google Scholar] [CrossRef]
- Batir, N.; Sofo, A. A unified treatment of certain classes of combinatorial identities. J. Integer Seq. 2021, 24, 3. [Google Scholar]
- Benjiamin, A.T.; Preston, G.O.; Quinn, J.J. A Stirling encounter with harmonic numbers. Math. Mag. 2002, 75, 94–103. [Google Scholar] [CrossRef]
- Britannica. Harmonic Number|Physics. Available online: https://www.britannica.com/science/harmonic-number (accessed on 11 April 2024).
- Greene, D.H.; Knuth, D.E. Mathematics for the Analysis of Algorithms, 2nd ed.; Birkhäuser: Boston, MA, USA; Basel, Switzerland; Stuttgart, Germany, 1982. [Google Scholar]
- Wilf, H.S. Generatingfunctionology, 3rd ed.; A K Peters: Natick, MA, USA; CRC Press: New York, NY, USA, 2005. [Google Scholar]
- Chu, W. Hypergeometric approach to Apéry–like series. Integral Transform. Spec. Funct. 2017, 28, 505–518. [Google Scholar] [CrossRef]
- Comtet, L. Advanced Combinatorics; Holland: Dordrecht, The Netherlands, 1974. [Google Scholar]
- Chen, K.W.; Chen, Y.H. Infinite series containing generalized harmonic functions. Number Theory Discret. Math. 2020, 26, 85–104. [Google Scholar] [CrossRef]
- Valean, C.I.; Furdui, O. Reviving the quadratic series of Au–Yeung. J. Class. Anal. 2015, 6, 113–118. [Google Scholar] [CrossRef]
- Wang, X.Y. Infinite series containing generalized harmonic numbers. Results Math. 2018, 73, 24. [Google Scholar] [CrossRef]
- Boros, G.; Moll, V.H. Irresistible Integrals; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
- Freitas, P. Integrals of polylogarithmic functions, recurrence relations, and associated Euler sums. Math. Comp. 2005, 74, 1425–1440. [Google Scholar] [CrossRef]
- Jameron, G.; Lord, N. Integrals evaluated in terms of Catalan’s constant. Math. Gaz. 2017, 101, 38–49. [Google Scholar] [CrossRef]
- Li, C.L.; Chu, W. Evaluating Infinite Series Involving Harmonic Numbers by Integration. Mathematics 2024, 12, 589. [Google Scholar] [CrossRef]
- Vǎlean, C.I. (Almost) Impossible Integrals, Sums, and Series; Springer Nature AG: Cham, Switzerland, 2019. [Google Scholar]
- Cantarini, M.; D’Aurizio, J. On the interplay between hypergeometric series, Fourier Legendre expansions and Euler sums. Boll. Unione Mat. Ital. 2019, 12, 623–656. [Google Scholar] [CrossRef]
- Chen, H.W. Interesting Ramanujan-Like Series Associated with Powers of Central Binomial Coefficients. J. Integer Seq. 2022, 25, Article 22.1.8. [Google Scholar]
- Chu, W.; Campbell, J.M. Expansions over Legendre Polynomials and Infinite Double Series Identities. Ramanujan J. 2023, 60, 317–353. [Google Scholar] [CrossRef]
- Chu, W. Hypergeometric series and the Riemann Zeta function. Acta Arith. 1997, 82, 103–118. [Google Scholar] [CrossRef]
- Bailey, W.N. Generalized Hypergeometric Series; Cambridge University Press: Cambridge, UK, 1935. [Google Scholar]
- Brychkov, Y.A. Handbook of Special Functions; CRC Press: Boca Raton, FL, USA; Taylor & Francis Group: Abingdon, UK, 2008. [Google Scholar]
- Gessel, I.; Stanton, D. Strange evaluations of hypergeometric series. SIAM J. Math. Anal. 1982, 13, 295–308. [Google Scholar] [CrossRef]
- Rainville, E.D. Special Functions; The Macmillan Company: New York, NY, USA, 1960. [Google Scholar]
- Chu, W. Dougall’s bilateral 2H2-series and Ramanujan–like π-formulae. Math. Comp. 2011, 80, 2223–2251. [Google Scholar] [CrossRef]
- Sun, Z.-W. Series with summands involving harmonic numbers. arXiv 2023, arXiv:2210.07238v8. [Google Scholar]
- Ramanujan, S. Modular equations and approximations to π. Quart. J. Math. 1914, 45, 350–372. [Google Scholar]
- Boyadzhiev, K.N. Series with central binomial coefficients, Catalan numbers, and harmonic numbers. J. Integer Seq. 2012, 15, 11. [Google Scholar]
- Elsner, C. On sums with binomial coefficient. Fibonacci Quart. 2005, 43, 31–45. [Google Scholar]
- Gould, H.W. Some generalizations of Vandermonde’s convolution. Amer. Math. Mon. 1956, 63, 84–91. [Google Scholar] [CrossRef]
- Lehmer, D.H. Interesting series involving the central binomial coefficient. Amer. Math. Mon. 1985, 92, 449–457. [Google Scholar] [CrossRef]
- Riordan, J. Combinatorial Identities; John Wiley & Sons: New York, NY, USA, 1968. [Google Scholar]
- Zucker, I.J. On the series . J. Number Theory 1985, 20, 92–102. [Google Scholar] [CrossRef]
- Chu, W.; Zhang, W.L. Accelerating Dougall’s 5F4-sum and infinite series involving π. Math. Comp. 2014, 83, 475–512. [Google Scholar] [CrossRef]
- Chu, W. q-series reciprocities and further π-formulae. Kodai Math. J. 2018, 41, 512–530. [Google Scholar] [CrossRef]
- Gasper, G. Summation, transformation and expansion formulas for bibasic series. Trans. Amer. Math. Soc. 1989, 312, 257–277. [Google Scholar] [CrossRef]
- Gasper, G.; Rahman, M. An indefinite bibasic summation formula and some quadratic, cubic and quartic summations and transformation formulae. Canad. J. Math. 1990, 17, 1–27. [Google Scholar] [CrossRef]
- Gessel, I.M. Finding identities with the WZ method. J. Symb. Comput. 1995, 20, 537–566. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, C.; Chu, W.
Harmonic Series with Multinomial Coefficient
Li C, Chu W.
Harmonic Series with Multinomial Coefficient
Li, Chunli, and Wenchang Chu.
2024. "Harmonic Series with Multinomial Coefficient
Li, C., & Chu, W.
(2024). Harmonic Series with Multinomial Coefficient