The Existence and Representation of the Solutions to the System of Operator Equations AiXBi + CiYDi + EiZFi = Gi(i = 1, 2)
Abstract
:1. Introduction
2. Preliminaries
- (i)
- ⇒
- (ii)
- ⇔.
- (iii)
- ⇒⇒
- (iv)
- ⇔ and .
- (i)
- Operator equation
- (ii)
- For some inner inverses , we have .
- (iii)
- A representation of the general solution is
- (i)
- ;
- (ii)
- for some constant ;
- (iii)
- for some
- (a)
- ;
- (b)
- ;
- (c)
- .
- (i)
- The operator equation system
- (ii)
- and
- (i)
- The system of operator equations
- (ii)
- , and the system
3. Existence of Solutions
3.1. The Existence of General Solutions
- (i)
- The operator equation system
- (ii)
- (iii)
- , and the operator equation systemhas a solution.
- Claim 1
- The operator equation system (1) has a solution if and only if the operator equation system
- Claim 2
- The system (4) has a solution if and only if
- Claim 3
- Claim 4
- (a)
- (b)
- The systemhas a solution.
- (i)
- The operator equation system
- (ii)
- (iii)
- , and the systemhas a solution.
- Claim 1
- The system (2) has a solution if and only if
- Claim 2
- Claim 3
- The system (9) has a solution equivalent to the system , where and , .
- (a)
- (b)
- The system(i = 1, 2) has a solution.
3.2. The Existence of Self-Adjoint Solutions
- (i)
- The system
- (ii)
- The system(i = 1,2) has a self-adjoint solution.
- (i)
- The system
- (ii)
- The systemhas self-adjoint solution.
- (i)
- The operator equation system
- (ii)
- The operator equation system
3.3. The Existence of Positive Solutions
- (i)
- The operator equation system
- (ii)
- The operator equation system(i=1, 2) has positive solution.
- (i)
- The operator equation system
- (ii)
- The operator equation systemhas positive solution.
- (i)
- The operator equation system
- (ii)
- The operator equation system
4. Representation of Solutions
4.1. The Representation of General Solutions
4.2. The Representation of Self-Adjoint Solutions
4.3. The Representation of Positive Solutions
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Özgüler, A.B. The matrix equation AXB + CYD = E over a principal ideal domain. SIAM J. Matrix Anal. Appl. 1991, 12, 581–591. [Google Scholar] [CrossRef]
- Liao, A.P.; Lei, Y. Optimal approximate solution of the matrix equation AXB = C over symmetric matrices. J. Comput. Math. 2007, 25, 543–552. [Google Scholar]
- Groß, J. A note on the general Hermitian solution to AXA* = B. Bull. Malays. Math. Soc. 1998, 21, 57–62. [Google Scholar]
- Huang, L.P.; Zeng, Q. The solvability of matrix equation AXB + CYD = E over a simple Arinian ring. Linear Multilinear Algebra 1995, 38, 225–232. [Google Scholar]
- Dehghan, M.; Hajarian, M. Finite iterative algorithms for the reflexive and anti-reflexive solutions of the matrix equation A1XB1 + A2XB2 = C. Math. Comput. Model. 2009, 49, 1937–1959. [Google Scholar] [CrossRef]
- Dehghan, M.; Hajarian, M. The general coupled matrix equations over generalized bisymmetric matrices. Linear Algebra Appl. 2010, 432, 1531–1552. [Google Scholar] [CrossRef]
- Dehghan, M.; Hajarian, M. Two algorithms for finding the Hermitian reflexive and skew-Hermitian solutions of Sylvester matrix equations. Appl. Math. Lett. 2011, 24, 444–449. [Google Scholar] [CrossRef]
- Wang, Q.W.; van der Woude, J.W.; Chang, H.X. A system of real quaternion matrix equations with applications. Linear Algebra Appl. 2009, 431, 2291–2303. [Google Scholar] [CrossRef]
- Xu, Q.X. Common Hermitian and positive solutions to the adjointable operator equations AX = C, XB = D. Linear Algebra Appl. 2008, 429, 1–11. [Google Scholar] [CrossRef]
- Yuan, S.F.; Liao, A.P.; Wei, L. On solution of quaternion matrix equation AXB + CYD = E. Far East J. Appl. Math. 2008, 33, 369–385. [Google Scholar]
- Yuan, S.F.; Liao, A.P.; Lei, Y. Least squares Hermitian solution of the matrix equation (AXB, CXD) = (E, F) with the least norm over the skew field of quaternions. Math. Comput. Model. 2008, 48, 91–100. [Google Scholar] [CrossRef]
- Mitra, S.K. Common solutions to a pair of linear matrix equations A1XB1 = C1, A2XB2 = C2. Math. Proc. Camb. Philos. Soc. 1973, 74, 213–216. [Google Scholar] [CrossRef]
- Wang, Q.W.; He, Z.H. Some matrix equations with applications. Linear Multilinear Algebra 2012, 60, 1327–1353. [Google Scholar] [CrossRef]
- Duan, X.F.; Liao, A.P. On the existence of Hermitian positive definite solutions of the matrix equation Xs + A*X−tA = Q. Linear Algebra Appl. 2008, 429, 673–687. [Google Scholar] [CrossRef]
- Duan, X.F.; Peng, Z.Y.; Duan, F.J. Positive definite solution of two kinds of nonlinear matrix equations. Surv. Math. Appl. 2009, 4, 179–190. [Google Scholar]
- Tian, Y. The solvability of two linear matrix equations. Linear Multilinear Algebra 2000, 48, 123–147. [Google Scholar] [CrossRef]
- Roth, W.E. The equation AX − YB = C and AX − XB = C in matrices. Proc. Am. Math. Soc. 1952, 3, 392–396. [Google Scholar] [CrossRef]
- Lancaster, P.; Tismenetsky, M. The Theory of Matrices: With Applications; Academic Press: New York, NY, USA, 1985. [Google Scholar]
- Dmytryshyn, A.D.; Kagstrm, B. Coupled Sylvester-type matrix equations and block diagonalization. SIAM J. Matrix Anal. Appl. 2015, 36, 580–593. [Google Scholar] [CrossRef]
- Xu, G.P.; Wei, M.S.; Zheng, D.S. On solutions of matrix equation AXB + CYD = F. Linear Algebra Appl. 1998, 279, 93–109. [Google Scholar] [CrossRef]
- Baksalary, J.K.; Kala, R. The matrix equation AXB + CYD = E. Linear Algebra Its Appl. 1980, 30, 141–147. [Google Scholar] [CrossRef]
- Konstantinov, M.M.; Gu, D.W.; Mehrmann, V.; Petkov, P.H. Perturbation Theory for Matrix Equations; Gulf Professional Publishing: Oxford, UK, 2003; Volume 9. [Google Scholar]
- Tian, Y.G.; Takane, Y. On consistency, natural restrictions and estimability under classical and extended growth curve models. J. Stat. Plan. Inference 2009, 139, 2445–2458. [Google Scholar] [CrossRef]
- Douglas, R.G. On majorization, factorization and range inclusion of operators in Hilbert space. Proc. Am. Math. Soc. 1966, 17, 413–415. [Google Scholar] [CrossRef]
- Boussaid, A.; Lombarkia, F. Hermitian solutions to the equation AXA* + BYB* = C, for Hilbert space operators. Ser. Math. Inform. 2021, 36, 1–14. [Google Scholar]
- Deng, C. On the solutions of operator equation CAX = C = XAC. J. Math. Anal. Appl. 2013, 398, 664–670. [Google Scholar] [CrossRef]
- Djordjević, D.S. Explicit solution of the operator equation A*X + X*A = B. J. Comput. Appl. Math. 2007, 200, 701–704. [Google Scholar] [CrossRef]
- Stanković, H. Solvability of AiXBi = Ci, i = , with applications to inequality C AXB. Doc. Math. 2023, 4, 275–283. [Google Scholar]
- Xu, Q.; Sheng, L.; Gu, Y. The solutions to some operator equation. Linear Algebra Appl. 2008, 429, 1997–2024. [Google Scholar] [CrossRef]
- Cvetković-IIića, D.; Wang, Q.W.; Xu, Q.X. Douglas’ + Sebestyén’s lemmas = a tool for solving an operator equation problem. J. Math. Anal. Appl. 2019, 482, 123599. [Google Scholar] [CrossRef]
- Vosough, M.; Moslehian, M.S. Solutions of the system of operator equations AXB = B = BXA via ★−order. Electron. J. Linear Algebra 2017, 32, 172–183. [Google Scholar] [CrossRef]
- Zhang, X.; Ji, G. Solutions to the system of operator equations AXB = C = BXA. Acta Math. Sci. 2018, 38, 1143–1150. [Google Scholar] [CrossRef]
- Cvetković IIić, D.S. Note on the assumptions in working with generalized inverses. Appl. Math. Comput. 2022, 432, 127359. [Google Scholar] [CrossRef]
- Nashed, M.Z. Inner, outer, and generalized inverses in Banach and Hilbert spaces. Numer. Funct. Anal. Optim. 1987, 9, 261–325. [Google Scholar] [CrossRef]
- Wang, H.; Huang, J.J.; Li, M.R. On the solutions of the operator equation XAX = BX. Linear Multilinear Algebra 2022, 70, 7753–7761. [Google Scholar] [CrossRef]
- Antezana, J.; Cano, C.; Mosconi, I.; Stojanoff, D. A note on the star order in Hilbert spaces. Linear Multilinear Algebra 2010, 58, 1037–1051. [Google Scholar] [CrossRef]
- Baksalary, J.K.; Baksalary, O.M.; Liu, X.J. Further properties of the star, left-star, right-star, and minus partial orderings. Linear Algebra Appl. 2003, 375, 83–94. [Google Scholar] [CrossRef]
- Arias, M.L.; Maestripieri, A. On partial orders of operators. Ann. Funct. Anal. 2023, 14, 1–19. [Google Scholar] [CrossRef]
- Drazin, M.P. Natural structures on semigroups with involution. Bull. Am. Math. Soc. 1978, 84, 139–141. [Google Scholar] [CrossRef]
- Hartwig, R.E.; Drazin, M.P. Lattice properties of the *-order for complex matrices. J. Math. Anal. Appl. 1982, 86, 359–378. [Google Scholar] [CrossRef]
- Xu, X.M.; Du, H.K.; Fang, X.C.; Li, Y. The supremum of linear operators for the ★-order. Linear Algebra Appl. 2010, 433, 2198–2207. [Google Scholar] [CrossRef]
- Penrose, R. A generalized inverse for matrices. Math. Proc. Camb. Philos. Soc. 1955, 51, 406–413. [Google Scholar] [CrossRef]
- Arias, M.L.; Gonzalez, M.C. Positive solutions to operator equations AXB = C. Linear Algbra Appl. 2010, 433, 1194–1202. [Google Scholar] [CrossRef]
- Radenkovic, J.N.; Cvetkovic-Ilić, D.; Xu, Q.X. Solvability of the system of operator equations AX = C, XB = D in Hilbert C*-modules. Acta Math. Sci. 2021, 12, 32. [Google Scholar] [CrossRef]
- Rehman, A.; Wang, Q.W.; Ali, I.; Akram, M.; Ahmad, M.O. A constraint system of gen- eralized Sylvester quaternion matrix equations. Adv. Appl. Clifford Algebr. 2017, 27, 3183–3196. [Google Scholar] [CrossRef]
- Mehany, M.S.; Wang, Q.W. Three Symmetrical Systems of Coupled Sylvester-like Quaternion Matrix Equations. Symmetry 2022, 14, 550. [Google Scholar] [CrossRef]
- He, Z.H.; Wang, M. A quaternion matrix equations with two different restrictions. Adv. Appl. Clifford Algebr. 2021, 31, 1–30. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Che, G.; Hai, G.; Mei, J.; Cao, X. The Existence and Representation of the Solutions to the System of Operator Equations AiXBi + CiYDi + EiZFi = Gi(i = 1, 2). Axioms 2024, 13, 435. https://doi.org/10.3390/axioms13070435
Che G, Hai G, Mei J, Cao X. The Existence and Representation of the Solutions to the System of Operator Equations AiXBi + CiYDi + EiZFi = Gi(i = 1, 2). Axioms. 2024; 13(7):435. https://doi.org/10.3390/axioms13070435
Chicago/Turabian StyleChe, Gen, Guojun Hai, Jiarui Mei, and Xiang Cao. 2024. "The Existence and Representation of the Solutions to the System of Operator Equations AiXBi + CiYDi + EiZFi = Gi(i = 1, 2)" Axioms 13, no. 7: 435. https://doi.org/10.3390/axioms13070435
APA StyleChe, G., Hai, G., Mei, J., & Cao, X. (2024). The Existence and Representation of the Solutions to the System of Operator Equations AiXBi + CiYDi + EiZFi = Gi(i = 1, 2). Axioms, 13(7), 435. https://doi.org/10.3390/axioms13070435