On the Two-Variable Analogue Matrix of Bessel Polynomials and Their Properties
Abstract
:1. Introduction
2. Some Definitions and Notations
3. The Matrix Bessel Polynomial
- 1.
- Replace θ by and ϑ by in (27), then we obtain
- 2.
- Also, from (27), we can deduce that
- 3.
- If we put in (27), we find that
- 4.
- If putting and in (27), we obtain the relation:
Recurrence Relation of
4. Some Integrals Involving the Matrix Bessel Polynomial
5. The Laplace–Carson Matrix Transform
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Srivastava, H.M.; Agarwal, P.; Jain, S. Generating functions for the generalized Gauss hypergeometric functions. Appl. Math. Comput. 2014, 247, 348–352. [Google Scholar] [CrossRef]
- Agarwal, P.S.; Dragomir, M.J.; Samet, B. Advances in Mathematical Inequalities and Applications; Trends in Mathematics; Birkhaser: Basel, Switzerland, 2019. [Google Scholar]
- Krall, H.L.; Frink, O. A new class of orthogonal polynomials: The Bessel polynomials. Trans. Amer. Math. Soc. 1949, 65, 100–115. [Google Scholar] [CrossRef]
- Galvez, F.; Dehesa, J.S. Some open problems of generalized Bessel polynomials. J. Phys. A Math. Gen. 1984, 17, 2759–2766. [Google Scholar] [CrossRef]
- Berg, C.; Vignat, C. Linearization coefficients of Bessel polynomials and properties of Student t-distributions. Constr. Approx 2008, 27, 15–32. [Google Scholar] [CrossRef]
- Izadi, M.; Srivastava, H.M. A novel matrix technique for multi-order pantograph differential equations of fractional order. Proc. Roy. Soc. Lond. Ser. A Math. Phys. Engrg. Sci. 2021, 477, 20210321. [Google Scholar] [CrossRef]
- Izadi, M.; Cattani, C. Generalized Bessel polynomial for multi-order fractional differential equations. Symmetry 2020, 12, 1260. [Google Scholar] [CrossRef]
- Tcheutia, D.D. Nonnegative linearization coefficients of the generalized Bessel polynomials. Ramanujan J. 2019, 48, 217–231. [Google Scholar] [CrossRef]
- Altomare, M.; Costabile, F. A new determinant form of Bessel polynomials and applications. Math. Comput. Simul. 2017, 141, 16–23. [Google Scholar] [CrossRef]
- Abdalla, M.; Abul-Ez, M.; Morais, J. On the construction of generalized monogenic Bessel polynomials. Math. Meth. Appl. Sci. 2018, 40, 9335–9348. [Google Scholar] [CrossRef]
- Hamza, A.M. Properties of Bessel polynomials. PhD in Loughborough University UK 1974.
- Chauhan, R.; Kumar, N.; Aggarwal, S. Dualities between Laplace–Carson transform and some useful integral transforms. Int. J. Innov. Technol. Explor. Eng. 2019, 8, 1654–1659. [Google Scholar] [CrossRef]
- Batahan, R.S. A new extension Hermite matrix polynomials and its applications. Linear Algebra Appl. 2006, 419, 82–92. [Google Scholar] [CrossRef]
- DeFez, E.; Jódar, L. Chebyshev matrix polynomails and second order matrix differential equations. Utilitas Math. 2002, 61, 107–123. [Google Scholar]
- DeFez, E.; Jódar, L.; Law, A. Jacobi matrix differential equation, polynomial solutions, and their properties. Comput. Math. Appl. 2004, 48, 789–803. [Google Scholar] [CrossRef]
- Jódar, L.; Sastre, J. On the Laguerre matrix polynomials. Util. Math. 1998, 53, 37–48. [Google Scholar]
- Shehata, A. A new extension of Gegenbauer matrix polynomials and their properties. Bull. Internat. Math. Virtual Inst. 2012, 2, 29–42. [Google Scholar]
- Bakhet, A.; Zayed, M. Incomplete exponential type of R-matrix functions and their properties. AIMS Math. 2023, 8, 26081–26095. [Google Scholar] [CrossRef]
- Jódar, L.; Sastre, J. On the hypergeometric matrix Function. J. Comput. Appl. Math. 1998, 99, 205–217. [Google Scholar] [CrossRef]
- Jódar, L.; Sastre, J. Some properties oF Gamma and Beta matrix Functions. Appl. Math. Lett. 1998, 11, 89–93. [Google Scholar] [CrossRef]
- Goyal, R.; Agarwal, P.; Oros, I.G.; Jain, S. Extended Beta and Gamma Matrix Functions via 2-Parameter Mittag-LeFFler Matrix Function. Mathematics 2022, 10, 892. [Google Scholar] [CrossRef]
- Cuchta, T.; Grow, D.; Wintz, N. Discrete matrix hypergeometric functions. J. Math. Anal. Appl. 2023, 518, 126716. [Google Scholar] [CrossRef]
- Khammash, S.G.; Agarwal, P.; Choi, J. Extended k-Gamma and k-Beta Functions of Matrix Arguments. Mathematics 2020, 8, 1715. [Google Scholar] [CrossRef]
- Cuchta, T.; Grow, D.; Wintz, N. Divergence criteria for matrix generalized hypergeometric series. Proc. Am. Math. Soc. 2022, 150, 1235–1240. [Google Scholar] [CrossRef]
- Bakhet, A.; Jiao, Y.; He, F.L. On the Wright hypergeometric matrix functions and their fractional calculus. Integral Transform. Spec. Funct. 2019, 30, 138–156. [Google Scholar] [CrossRef]
- Kishka, Z.M.G.; Shehata, A.; Abul-Dahab, M. The generalized Bessel matrix polynomials. J. Math. Comput. Sci. 2012, 2, 305–316. [Google Scholar]
- Abul-Dahab, M.A.; Abul-Ez, M.; Kishka, Z.; Constales, D. Reverse generalized Bessel matrix differential equation, polynomial solutions, and their properties. Math. Meth. Appl. Sci. 2015, 38, 1005–1013. [Google Scholar] [CrossRef]
- Batahan, R.S.; Metwally, M.S. Differential and integral operators on Appell’s matrix function. Andal. Soc. Appl. Sci. 2009, 3, 7–25. [Google Scholar]
- Rida, S.Z.; Abul-Dahab, M.; Saleem, M.A.; Mohammed, M.T. On Humbert matrix function Ψ1(A, B; C, C′; z, w) of two complex variables under differential operator. Int. J. Ind. Math. 2010, 32, 167–179. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bakhet, A.; Hussain, S.; Niyaz, M.; Zakarya, M.; AlNemer, G. On the Two-Variable Analogue Matrix of Bessel Polynomials and Their Properties. Axioms 2024, 13, 202. https://doi.org/10.3390/axioms13030202
Bakhet A, Hussain S, Niyaz M, Zakarya M, AlNemer G. On the Two-Variable Analogue Matrix of Bessel Polynomials and Their Properties. Axioms. 2024; 13(3):202. https://doi.org/10.3390/axioms13030202
Chicago/Turabian StyleBakhet, Ahmed, Shahid Hussain, Mohamed Niyaz, Mohammed Zakarya, and Ghada AlNemer. 2024. "On the Two-Variable Analogue Matrix of Bessel Polynomials and Their Properties" Axioms 13, no. 3: 202. https://doi.org/10.3390/axioms13030202
APA StyleBakhet, A., Hussain, S., Niyaz, M., Zakarya, M., & AlNemer, G. (2024). On the Two-Variable Analogue Matrix of Bessel Polynomials and Their Properties. Axioms, 13(3), 202. https://doi.org/10.3390/axioms13030202