A Conservative Difference Scheme for Solving the Coupled Fractional Schrödinger–Boussinesq System
Abstract
:1. Introduction
2. Construction of Conservative Difference Scheme
2.1. Notations and Lemmas
2.2. Derivation of the Conservative Difference Scheme
3. Theoretical Analysis
3.1. The Conservative Property
3.2. A Priori Bound
3.3. Solvability
3.4. Convergence
4. Numerical Experiments
Algorithm 1: The conservative scheme (26)–(30) of the FCSBS |
1 Given: , and . 2 Step 1: Solve and from (27) and (28). 3 Step 2: Solve from (26). |
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Guo, B. The global solution of the system of equations for complex Schrödinger field coupled with Boussinesq type self-consistent field. Acta Math. Sin. 1983, 26, 295–306. (In Chinese) [Google Scholar] [CrossRef]
- Guo, B. Initial boundary value problem for one class of system of multidimensional nonlinear Schrödinger–Boussinesq type equations. J. Math. Res. Expo. 1988, 8, 61–71. [Google Scholar]
- Banquet, C.; Ferreira, C.F.; Villamizar-Roa, E.J. On the Schrödinger–Boussinesq system with singular initial data. J. Math. Anal. Appl. 2013, 400, 487–496. [Google Scholar] [CrossRef]
- Esfahani, A.; Pastor, A. Well-posedness and orbital stability of traveling waves for the Schrödinger–Boussinesq system. Nonlinear Anal. Real 2015, 22, 206–218. [Google Scholar] [CrossRef]
- Liu, T. Porosity reconstruction based on biot elastic model of porous media by homotopy perturbation method. Chaos Soliton. Fract. 2022, 158, 112007. [Google Scholar] [CrossRef]
- Liu, T. Parameter estimation with the multigrid-homotopy method for a nonlinear diffusion equation. J. Comput. Appl. Math. 2022, 413, 114393. [Google Scholar] [CrossRef]
- Yao, R.; Li, Z. Exact explicit solutions of the nonlinear Schrödinger equation coupled to the Boussinesq equation. Acta Math. Sci. 2003, 23B, 453–460. [Google Scholar] [CrossRef]
- Kumar, D.; Kaplan, M. Application of the modified Kudryashov method to the generalized Schrödinger–Boussinesq equations. Opt. Quant. Electron. 2018, 50, 329. [Google Scholar] [CrossRef]
- Bilige, S.; Chaolu, T.; Wang, X. Application of the extended simplest equation method to the coupled Schrödinger–Boussinesq equation. Appl. Math. Comput. 2013, 224, 517–523. [Google Scholar] [CrossRef]
- Deng, X. Exact solitary and periodic wave solutions for the coupled Schrödinger–Boussinesq equation. Optik 2017, 136, 312–318. [Google Scholar] [CrossRef]
- Huang, L.; Jiao, Y.; Liang, D. Multi-symplectic scheme for the coupled Schrödinger–Boussinesq equations. Chin. Phys. B 2013, 22, 070201. [Google Scholar] [CrossRef]
- Liao, F.; Zhang, L.; Wang, S. Numerical analysis of cubic orthogonal spline collocation methods for the coupled Schrödinger–Boussinesq equtions. Appl. Numer. Math. 2017, 119, 194–212. [Google Scholar] [CrossRef]
- Oruç, Ö. A local radial basis function-finite difference (RBF-FD) method for solving 1D and 2D coupled Schrödinger–Boussinesq (SBq) equations. Eng. Anal. Bound Elem. 2021, 129, 56–66. [Google Scholar] [CrossRef]
- Li, M. Cut-off error splitting technique for conservative nonconforming VEM for N-coupled nonlinear Schrödinger–Boussinesq equations. J. Sci. Comput. 2022, 93, 86. [Google Scholar] [CrossRef]
- He, Y.; Chen, H. Efficient and conservative compact difference scheme for the coupled Schrödinger–Boussinesq equations. Appl. Numer. Math. 2022, 182, 285–307. [Google Scholar] [CrossRef]
- Yan, J.; Zheng, L.; Lu, F.; Zhang, Q. Efficient energy-preserving methods for the Schrödinger–Boussinesq equation. Math. Meth. Appl. Sci. 2022. early view. [Google Scholar] [CrossRef]
- Tian, J.; Sun, Z.; Liu, Y.; Li, H. TT-M finite element algorithm for the coupled Schrödinger–Boussinesq equations. Axioms 2022, 11, 314. [Google Scholar] [CrossRef]
- Yang, Y.; Sun, Z.; Liu, Y.; Li, H. Structure-preserving BDF2 FE method for the coupled Schrödinger–Boussinesq equations. Numer. Algorithms 2023, 93, 1243–1267. [Google Scholar] [CrossRef]
- Almushaira, M. Efficient eighth-order accurate energy-preserving compact difference schemes for the coupled Schrödinger–Boussinesq equations. Math. Methods Appl. Sci. 2023, 46, 17199–17225. [Google Scholar] [CrossRef]
- Laskin, N. Fractional quantum mechanics and Lévy path integrals. Phys. Lett. A 2000, 268, 298–305. [Google Scholar] [CrossRef]
- Laskin, N. Fractional Schrödinger equation. Phys. Rev. E 2002, 66, 056108. [Google Scholar] [CrossRef]
- Macías-Díaz, J.E.; Hendy, A.S.; De Staelen, R.H. A compact fourth-order in space energy-preserving method for Riesz space-fractional nonlinear wave equations. Appl. Math. Comput. 2018, 325, 1–14. [Google Scholar] [CrossRef]
- Wang, P.; Huang, C. An energy conservative difference scheme for the nonlinear fractional Schrödinger equation. J. Comput. Phys. 2015, 293, 238–251. [Google Scholar] [CrossRef]
- Wang, P.; Huang, C. An implicit midpoint difference scheme for the fractional Ginzburg-Landau equation. J. Comput. Phys. 2016, 312, 31–49. [Google Scholar] [CrossRef]
- Han, L.; Zhang, J.; Guo, B. Global well-posedness for the fractional Schrödinger–Boussinesq system. Commun. Nonlinear Sci. Numer. Simulat. 2014, 19, 2644–2652. [Google Scholar] [CrossRef]
- Alzahrani, A.B.M. Numerical analysis of nonlinear coupled Schrödinger-KdV system with fractional derivative. Symmetry 2023, 15, 1666. [Google Scholar] [CrossRef]
- Alzahrani, A.B.M.; Alhawael, G. Novel computations of the time-fractional coupled Korteweg-de Vries equations via non-singular kernel operators in terms of the natural transform. Symmetry 2023, 15, 2010. [Google Scholar] [CrossRef]
- Noor, S.; Alotaibi, B.M.; Shah, R.; Ismaeel, S.M.E.; El-Tantawy, S.A. On the solitary waves and nonlinear oscillations to the fractional Schrödinger-KdV equation in the framework of the Caputo operator. Symmetry 2023, 15, 1616. [Google Scholar] [CrossRef]
- Noor, S.; Hammad, M.A.; Shah, R.; Alrowaily, A.W.; El-Tantawy, S.A. Numerical investigation of fractional-order Fornberg-Whitham equations in the framework of Aboodh transformation. Symmetry 2023, 15, 1353. [Google Scholar] [CrossRef]
- Liu, T.; Shateyi, S. Efficient fourth-order weights in Kernel-Type methods without increasing the stencil size with an application in a time-dependent fractional PDE problem. Mathematics 2024, 12, 1121. [Google Scholar] [CrossRef]
- Shi, Y.; Ma, Q.; Ding, X. Dynamical behaviors in a discrete fractional-order predator-prey system. Filomat 2018, 32, 5857–5874. [Google Scholar] [CrossRef]
- Shi, Y.; Ma, Q.; Ding, X. A New Energy-Preserving Scheme for the Fractional Klein-Gordon-Schrödinger Equations. Adv. Appl. Math. Mech. 2019, 11, 1219–1247. [Google Scholar]
- Shi, Y.; Ma, Q.; Ding, X. Conservative difference scheme for fractional Zakharov system and convergence analysis. Int. J. Comput. Math. 2021, 98, 1474–1494. [Google Scholar] [CrossRef]
- Shao, J.; Guo, B. The Cauchy problem for Schrödinger-damped Boussinesq system. J. Math. Anal. Appl. 2021, 494, 124639. [Google Scholar] [CrossRef]
- Ray, S. A novel approach with time-splitting spectral technique for the coupled Schrödinger–Boussinesq equations involving Riesz fractional derivative. Commun. Theor. Phys. 2017, 68, 301–308. [Google Scholar]
- Liao, F.; Zhang, L.; Hu, X. Conservative finite difference methods for fractional Schrödinger–Boussinesq equations and convergence analysis. Numer. Methods Partial Differ. Equ. 2019, 35, 1305–1325. [Google Scholar] [CrossRef]
- Ortigueira, M.D. Riesz potential operators and inverses via fractional centred derivatives. Int. J. Math. Math. Sci. 2006, 2006, 048391. [Google Scholar] [CrossRef]
- Sun, Z.Z. On the compact difference schemes for heat equation with Neumann boundary conditions. Numer. Methods Partial Differ. Equ. 2009, 25, 1320–1341. [Google Scholar] [CrossRef]
- Kirkpatrick, K.; Lenzmann, E.; Staffilani, G. On the continuum limit for discrete NLS with long-range lattice interactions. Commun. Math. Phys. 2013, 317, 563–591. [Google Scholar] [CrossRef]
- Hardy, G.; Littlewood, J.; Polya, G. Inequalities; Cambridge University Press: London, UK, 1952. [Google Scholar]
- Sun, Z.; Gao, G. A Finite Difference Method for Fractional Differential Equations; Science Press: Beijing, China, 2015. [Google Scholar]
- Sun, Z. Numerical Methods of the Partial Differential Equation, 3rd ed.; Science Press: Beijing, China, 2022. [Google Scholar]
- Zhou, Y.L. Application of Discrete Functional Analysis to the Finite Difference Method; International Academic Publishers: Beijing, China, 1991. [Google Scholar]
0.2 | 1.9023 | - | 3.0730 | - |
0.1 | 4.6269 | 2.0397 | 7.8856 | 1.9624 |
0.05 | 1.1443 | 2.0156 | 1.9945 | 1.9832 |
0.025 | 2.8480 | 2.0064 | 5.0138 | 1.9920 |
h | ||||
---|---|---|---|---|
0.8 | 1.3701 | - | 2.4057 | - |
0.4 | 8.3255 | 4.0406 | 1.1953 | 4.3310 |
0.2 | 5.1080 | 4.0267 | 7.5222 | 3.9901 |
0.1 | 3.2168 | 3.9891 | 4.7002 | 4.0004 |
0.4 | 1.0515 | - | 1.4519 | - | |
0.2 | 2.6501 | 1.9883 | 3.8539 | 1.9135 | |
0.1 | 6.6320 | 1.9985 | 9.9573 | 1.9525 | |
0.05 | 1.6427 | 2.0134 | 2.4988 | 1.9945 | |
0.4 | 1.0853 | - | 1.8775 | - | |
0.2 | 2.7038 | 2.0051 | 5.0057 | 1.9072 | |
0.1 | 6.5112 | 2.0540 | 1.2739 | 1.9744 | |
0.05 | 1.5851 | 2.0384 | 3.1749 | 2.0044 | |
0.4 | 8.4791 | - | 2.1617 | - | |
0.2 | 1.8849 | 2.1694 | 5.5049 | 1.9734 | |
0.1 | 4.5930 | 2.0370 | 1.3870 | 1.9888 | |
0.05 | 1.1236 | 2.0313 | 3.4447 | 2.0095 |
h | |||||
---|---|---|---|---|---|
0.8 | 6.7973 | 2.7931 | |||
0.4 | 3.5251 | 4.2692 | 1.4894 | 4.2291 | |
0.2 | 2.3469 | 3.9088 | 9.1033 | 4.0322 | |
0.8 | 4.4944 | 2.7949 | |||
0.4 | 2.2684 | 4.3084 | 1.5832 | 4.1419 | |
0.2 | 1.4070 | 4.0109 | 9.6993 | 4.0288 | |
0.8 | 1.9728 | 2.6786 | |||
0.4 | 1.2055 | 4.0326 | 1.5358 | 4.1244 | |
0.2 | 7.4847 | 4.0095 | 9.4378 | 4.0244 |
2.554995107627433 | 2.554995107627433 | 2.554995107627433 | |
2.554995107626755 | 2.554995107629729 | 2.554995107640402 | |
2.554995107626069 | 2.554995107632120 | 2.554995107656555 | |
2.554995107625393 | 2.554995107634486 | 2.554995107675087 | |
2.554995107624756 | 2.554995107636796 | 2.554995107695591 | |
2.554995107624175 | 2.554995107639026 | 2.554995107716158 |
−2.129162589689532 | −2.129162589689532 | −2.129162589689532 | |
−2.129162589689426 | −2.129162589689919 | −2.129162589705912 | |
−2.129162589689318 | −2.129162589694141 | −2.129162589842022 | |
−2.129162589689236 | −2.129162589706523 | −2.129162590245636 | |
−2.129162589689183 | −2.129162589730667 | −2.129162591086285 | |
−2.129162589689132 | −2.129162589768579 | −2.129162592542394 |
0.709988640473137 | 0.736137911989638 | 0.760042303573453 | |
0.709988638543045 | 0.736137992708215 | 0.760042445633956 | |
0.709988636400984 | 0.736137952537480 | 0.760042483756246 | |
0.709988634397767 | 0.736137815839193 | 0.760042226275524 | |
0.709988632497735 | 0.736137699207129 | 0.760041902905055 | |
0.709988630697259 | 0.736137652809705 | 0.760041732381828 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, Y.; Yan, R.; Liu, T. A Conservative Difference Scheme for Solving the Coupled Fractional Schrödinger–Boussinesq System. Axioms 2024, 13, 400. https://doi.org/10.3390/axioms13060400
Shi Y, Yan R, Liu T. A Conservative Difference Scheme for Solving the Coupled Fractional Schrödinger–Boussinesq System. Axioms. 2024; 13(6):400. https://doi.org/10.3390/axioms13060400
Chicago/Turabian StyleShi, Yao, Rian Yan, and Tao Liu. 2024. "A Conservative Difference Scheme for Solving the Coupled Fractional Schrödinger–Boussinesq System" Axioms 13, no. 6: 400. https://doi.org/10.3390/axioms13060400
APA StyleShi, Y., Yan, R., & Liu, T. (2024). A Conservative Difference Scheme for Solving the Coupled Fractional Schrödinger–Boussinesq System. Axioms, 13(6), 400. https://doi.org/10.3390/axioms13060400