Enhanced Real-Life Data Modeling with the Modified Burr III Odds Ratio–G Distribution
Abstract
:1. Introduction
2. Burr III Scaled Inverse Odds Ratio–G Distribution
3. Examples of B-SIOR-G Distributions
3.1. Burr III Scaled Inverse Odds Ratio–Uniform Distribution
3.2. Burr III Scaled Inverse Odds Ratio–Exponential Distribution
3.3. Burr III Scaled Inverse Odds Ratio–Pareto Distribution
4. Statistical Properties of the Burr III Scaled Inverse Odds Ratio–G Distribution
4.1. Basic Properties of the B-SIOR-G Distribution
4.2. Moments, Incomplete Moments, and Generating Functions
4.3. Moment of Residual Life and Reversed Residual Life
4.4. Skewness and Kurtosis Analysis
4.5. Rényi Entropy
4.6. Order Statistics and Stochastic Ordering
4.7. Probability Weighted Moments
5. Methods of Estimation
Algorithm 1 Monte Carlo Simulation for Parameter Estimation |
|
6. Application
- The -2 Log-Likelihood Statistic [36], which quantifies the fit of a model by summarizing the discrepancies between observed and expected values under the model. A lower statistic suggests a better fit and this metric underpins various other statistical tests.
- Cramér–von Mises Statistic () [37], which measures how closely a theoretical cdf matches the empirical cdf by integrating the squared differences across all values. A lower value indicates a better fit, as it means there is less deviation between the theoretical and empirical cdfs. This provides a thorough assessment of the deviation between the modeled and observed data.
- Anderson–Darling Statistic () [38], akin to but placing greater emphasis on the tails of the distribution. This makes it particularly sensitive to extremities in data, valuable for analyses where tail behavior is crucial. A lower value indicates a better fit, especially when the tails of the distribution are well modeled.
- Akaike Information Criterion () [36], which balances model fit against the number of parameters, penalizing unnecessary complexity. Derived from information entropy, it seeks to minimize information loss, preferring models with lower values. A lower value indicates a better fit, as it suggests that the model achieves a good balance between accuracy and simplicity.
- Bayesian Information Criterion () [39], similar to but imposing a stronger penalty on the number of parameters. Based on Bayesian probability, it is useful for selecting among a finite set of models, favoring simplicity unless a more complex model significantly enhances fit. A lower value indicates a better fit, favoring models that are simpler and have fewer parameters unless a more complex model significantly improves the fit.
- Consistent Akaike Information Criterion () [40], an augmentation of that incorporates an extra penalty for parameter count, making it more conservative and particularly apt for larger datasets where overfitting is a concern. A lower value indicates a better fit, particularly in larger datasets where it helps avoid overfitting.
- Hannan–Quinn Criterion () [41], which, like and , employs a logarithmically growing penalty term with sample size. It offers a compromise between the propensity of to overfit and the strict penalties of . A lower value indicates a better fit, balancing between the risk of overfitting and underfitting.
- Kolmogorov–Smirnov Test Statistic () [42], which identifies the maximum divergence between the empirical distribution function of the sample and the cumulative distribution function of the reference distribution. The corresponding p-value assists in recognizing statistically significant deviations, with a smaller statistic indicating a more accurate fit between observed and modeled distributions, as it suggests minimal divergence.
6.1. Lifetime Data
6.2. Failure Data
6.3. Lung Cancer Data
6.4. Bladder Cancer Data
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
MB-OR-G | Modified Burr III Scaled Inverse Odds Ratio–G |
cdf | Cumulative distribution function |
Probability density function | |
hrf | hHzard rate function |
B-SIOR-G | Burr III Scaled Inverse Odds Ratio–G |
PWM | Probability weighted moments |
B-SIOR-E | Burr III Scaled Inverse Odds Ratio–Exponential |
B-SIOR-U | Burr III Scaled Inverse Odds Ratio–Uniform |
B-SIOR-P | Burr III Scaled Inverse Odds Ratio–Pareto |
MLE | Maximum likelihood estimates |
MPS | Maximum product spacing estimates |
LS | Least square estimates |
WLS | Weighted least square estimates |
CVM | Cramér–von Mises estimates |
AD | Anderson and Darling estimates |
GL | Generalized Lindley |
KW | Kumaraswamy Weibull |
LG2 | Lomax Gumbel Type-2 |
T2G | Type-2 Gumbel |
WE | Weibull Exponential |
CAIC | Consistent Akaike Information Criterion |
BIC | Bayesian Information Criterion |
HQIC | Hannan–Quinn Criterion |
Cramér–von Mises statistic | |
Anderson–Darling statistic | |
K-S | Kolmogorov–Smirnov statistic |
ECDF | Empirical cumulative distribution function |
TTT | Total time on test |
K-M | Kaplan–Meier |
References
- Sherrick, B.J.; Garcia, P.; Tirupattur, V. Recovering probabilistic information from option markets: Tests of distributional assumptions. J. Futures Mark. 1996, 16, 545–560. [Google Scholar] [CrossRef]
- Lindsay, S.; Wood, G.; Woollons, R. Modelling the diameter distribution of forest stands using the Burr distribution. J. Appl. Stat. 1996, 23, 609–620. [Google Scholar] [CrossRef]
- Al-Dayian, G.R. Burr type III distribution: Properties and Estimation. Egypt. Stat. J. 1999, 43, 102–116. [Google Scholar]
- Gove, J.H.; Ducey, M.J.; Leak, W.B.; Zhang, L. Rotated sigmoid structures in managed uneven-aged northern hardwood stands: A look at the Burr Type III distribution. Forestry 2008, 81, 161–176. [Google Scholar] [CrossRef]
- Burr, I.W. Cumulative frequency functions. Ann. Math. Stat. 1942, 13, 215–232. [Google Scholar] [CrossRef]
- Jamal, F.; Abuzaid, A.H.; Tahir, M.H.; Nasir, M.A.; Khan, S.; Mashwani, W.K. New modified burr iii distribution, properties and applications. Math. Comput. Appl. 2021, 26, 82. [Google Scholar] [CrossRef]
- Ishaq, A.I.; Suleiman, A.A.; Usman, A.; Daud, H.; Sokkalingam, R. Transformed Log-Burr III Distribution: Structural Features and Application to Milk Production. Eng. Proc. 2023, 56, 322. [Google Scholar] [CrossRef]
- Cordeiro, G.M.; Gomes, A.E.; da Silva, C.Q.; Ortega, E.M. A useful extension of the Burr III distribution. J. Stat. Distrib. Appl. 2017, 4, 1–15. [Google Scholar] [CrossRef]
- Tsiatis, A.A.; Davidian, M.; Holloway, S.T. Estimation of the odds ratio in a proportional odds model with censored time-lagged outcome in a randomized clinical trial. Biometrics 2023, 79, 975–987. [Google Scholar] [CrossRef]
- VanderWeele, T.J. Optimal approximate conversions of odds ratios and hazard ratios to risk ratios. Biometrics 2020, 76, 746–752. [Google Scholar] [CrossRef]
- Penner, C.G.; Gerardy, B.; Ryan, R.; Williams, M. The Odds Ratio Product (An Objective Sleep Depth Measure): Normal Values, Repeatability, and Change with CPAP in Patients with OSA: The Odds Ratio Product. J. Clin. Sleep Med. 2019, 15, 1155–1163. [Google Scholar] [CrossRef] [PubMed]
- Cooray, K. Generalization of the Weibull distribution: The odd Weibull family. Stat. Model. 2006, 6, 265–277. [Google Scholar] [CrossRef]
- Bourguignon, M.; Silva, R.B.; Cordeiro, G.M. The Weibull-G family of probability distributions. J. Data Sci. 2014, 12, 53–68. [Google Scholar] [CrossRef]
- Pu, S.; Oluyede, B.O.; Qiu, Y.; Linder, D. A Generalized Class of Exponentiated Modified Weibull Distribution with Applications. J. Data Sci. 2016, 14, 585–613. [Google Scholar] [CrossRef]
- Oluyede, B.; Pu, S.; Makubate, B.; Qiu, Y. The gamma-Weibull-G Family of distributions with applications. Austrian J. Stat. 2018, 47, 45–76. [Google Scholar] [CrossRef]
- Roy, S.S.; Knehr, H.; McGurk, D.; Chen, X.; Cohen, A.; Pu, S. The Lomax-Exponentiated Odds Ratio–G Distribution and Its Applications. Mathematics 2024, 12, 1578. [Google Scholar] [CrossRef]
- Reyes, J.; Iriarte, Y.A. A New Family of Modified Slash Distributions with Applications. Mathematics 2023, 11, 3018. [Google Scholar] [CrossRef]
- Alshawarbeh, E. A New Modified-X family of distributions with applications in modeling biomedical data. Alex. Eng. J. 2024, 93, 189–206. [Google Scholar] [CrossRef]
- Sindhu, T.N.; Shafiq, A.; Riaz, M.B.; Abushal, T.A.; Ahmad, H.; Almetwally, E.M.; Askar, S. Introducing the new arcsine-generator distribution family: An in-depth exploration with an illustrative example of the inverse weibull distribution for analyzing healthcare industry data. J. Radiat. Res. Appl. Sci. 2024, 17, 100879. [Google Scholar] [CrossRef]
- Shama, M.S.; Alharthi, A.S.; Almulhim, F.A.; Gemeay, A.M.; Meraou, M.A.; Mustafa, M.S.; Hussam, E.; Aljohani, H.M. Modified generalized Weibull distribution: Theory and applications. Sci. Rep. 2023, 13, 12828. [Google Scholar] [CrossRef]
- Sayibu, S.B.; Luguterah, A.; Nasiru, S. McDonald Generalized Power Weibull Distribution: Properties, and Applications. J. Stat. Appl. Probab 2024, 13, 297–322. [Google Scholar]
- Alomair, A.M.; Ahmed, M.; Tariq, S.; Ahsan-ul Haq, M.; Talib, J. An exponentiated XLindley distribution with properties, inference and applications. Heliyon 2024, 10, e25472. [Google Scholar] [CrossRef] [PubMed]
- Elshahhat, A.; El-Sherpieny, E.S.A.; Hassan, A.S. The Pareto–Poisson Distribution: Characteristics, Estimations and Engineering Applications. Sankhya A 2023, 85, 1058–1099. [Google Scholar] [CrossRef]
- Ogunde, A.A.; Chukwu, A.U.; Oseghale, I.O. The Kumaraswamy Generalized Inverse Lomax distribution and applications to reliability and survival data. Sci. Afr. 2023, 19, e01483. [Google Scholar] [CrossRef]
- Chen, X.; Xie, Y.; Cohen, A.; Pu, S. Advancing Continuous Distribution Generation: An Exponentiated Odds Ratio Generator Approach. arXiv 2024. [Google Scholar] [CrossRef]
- Mustafa, A.; El-Desouky, B.S.; AL-Garash, S. Weibull generalized exponential distribution. arXiv 2016, arXiv:1606.07378. [Google Scholar]
- Kim, H.C. A Comparison of Reliability Factors of Software Reliability Model Following Lindley and Type-2 Gumbel Lifetime Distribution. Int. Inf. Inst. (Tokyo) Inf. 2018, 21, 1077–1084. [Google Scholar]
- Adeyemi, A.O.; Adeleke, I.A.; Akarawak, E.E. Lomax gumbel type two distributions with applications to lifetime data. Int. J. Stat. Appl. Math. 2022, 7, 36–45. [Google Scholar] [CrossRef]
- Ogunde, A.; Fayose, S.; Ajayi, B.; Omosigho, D. Extended gumbel type-2 distribution: Properties and applications. J. Appl. Math. 2020, 2020, 2798327. [Google Scholar] [CrossRef]
- Pu, S.; Moakofi, T.; Oluyede, B. The Ristić–Balakrishnan–Topp–Leone–Gompertz-G Family of Distributions with Applications. J. Stat. Theory Appl. 2023, 22, 116–150. [Google Scholar] [CrossRef]
- Oluyede, B.; Tlhaloganyang, B.P.; Sengweni, W. The Topp-Leone Odd Burr XG Family of Distributions: Properties and Applications. Stat. Optim. Inf. Comput. 2024, 12, 109–132. [Google Scholar] [CrossRef]
- Suleiman, A.A.; Daud, H.; Singh, N.S.S.; Othman, M.; Ishaq, A.I.; Sokkalingam, R. A novel odd beta prime-logistic distribution: Desirable mathematical properties and applications to engineering and environmental data. Sustainability 2023, 15, 10239. [Google Scholar] [CrossRef]
- Shaked, M.; Shanthikumar, J.G. Stochastic Orders and Their Applications; Academic Press: Cambridge, MA, USA, 1994. [Google Scholar]
- Aldahlan, M.A.; Rabie, A.M.; Abdelhamid, M.; Ahmed, A.H.; Afify, A.Z. The Marshall–Olkin Pareto Type-I Distribution: Properties, Inference under Complete and Censored Samples with Application to Breast Cancer Data. Pak. J. Stat. Oper. Res. 2023, 19, 603. [Google Scholar] [CrossRef]
- Cheng, R.C.H.; Amin, N.A.K. Estimating Parameters in Continuous Univariate Distributions with a Shifted Origin. J. R. Stat. Soc. Ser. B (Methodol.) 1983, 45, 394–403. [Google Scholar] [CrossRef]
- Akaike, H. A new look at the statistical model identification. IEEE Trans. Autom. Control 1974, 19, 716–723. [Google Scholar] [CrossRef]
- Cramér, H. On the composition of elementary errors. Scand. Actuar. J. 1928, 1928, 141–180. [Google Scholar] [CrossRef]
- Anderson, T.W.; Darling, D.A. Asymptotic theory of certain ‘goodness-of-fit’ criteria based on stochastic processes. Ann. Math. Stat. 1952, 23, 193–212. [Google Scholar] [CrossRef]
- Schwarz, G. Estimating the dimension of a model. Ann. Stat. 1978, 6, 461–464. [Google Scholar] [CrossRef]
- Bozdogan, H. Model selection and Akaike’s Information Criterion (AIC): The general theory and its analytical extensions. Psychometrika 1987, 52, 345–370. [Google Scholar] [CrossRef]
- Hannan, E.J.; Quinn, B.G. The determination of the order of an autoregression. J. R. Stat. Soc. Ser. B 1979, 41, 190–195. [Google Scholar] [CrossRef]
- Massey, F.J.J. The Kolmogorov–Smirnov Test for Goodness of Fit. J. Am. Stat. Assoc. 1951, 46, 68–78. [Google Scholar] [CrossRef]
- Aarset, M.V. How to identify a bathtub hazard rate. IEEE Trans. Reliab. 1987, 36, 106–108. [Google Scholar] [CrossRef]
- William, Q.M.; Escobar, L.A. Statistical Methods for Reliability Data; A. Wiley Interscience Publications: Hoboken, NJ, USA, 1998; p. 639. [Google Scholar]
- Lee, E.T. Statistical Methods for Survival Data Analysis. IEEE Trans. Reliab. 1994, 35, 123. [Google Scholar] [CrossRef]
B-SIOR-U | Gexp | Gamma | Log-Logistic | Weibull | BurrIII | LGT | EGG2 | T2G | WGE | |
---|---|---|---|---|---|---|---|---|---|---|
Parameters | ||||||||||
- | - | - | - | - | - | |||||
- | - | - | - | - | - | - | ||||
367.622 | 479.990 | 480.380 | 502.204 | 482.004 | 521.3494 | 491.9342 | 490.0044 | 530.0282 | 451.237 | |
AIC | 375.622 | 483.990 | 484.380 | 506.204 | 486.004 | 525.3494 | 499.9343 | 498.0044 | 534.0281 | 457.2371 |
CAIC | 379.554 | 484.246 | 484.636 | 506.460 | 486.259 | 525.6047 | 500.8232 | 498.8933 | 534.2835 | 457.7588 |
BIC | 383.270 | 487.814 | 488.205 | 510.028 | 489.828 | 529.1735 | 507.5824 | 505.6525 | 537.8522 | 462.9731 |
HQIC | 378.535 | 485.447 | 485.837 | 507.661 | 487.460 | 526.8056 | 502.8467 | 500.9169 | 535.4844 | 459.4214 |
0.3358 | 0.4854 | 0.4892 | 0.6968 | 0.4964 | 0.9466 | 0.6163 | 0.6087 | 1.0407 | 0.2120 | |
2.2924 | 2.9495 | 2.9700 | 4.0403 | 3.0078 | 5.1821 | 3.6145 | 3.5478 | 5.5694 | 1.4796 | |
K-S | 0.1604 | 0.2044 | 0.2022 | 0.2411 | 0.1933 | 0.2656 | 0.2160 | 0.2507 | 0.2855 | 0.1288 |
p-value | 0.1524 | 0.0307 | 0.0335 | 0.0060 | 0.0477 | 0.0017 | 0.0189 | 0.0037 | 0.0006 | 0.3778 |
B-SIOR-U | Gexp | Gamma | Log-Logistic | Weibull | BurrIII | LGT | EGG2 | T2G | WGE | |
---|---|---|---|---|---|---|---|---|---|---|
Parameters | ||||||||||
- | - | - | - | - | - | |||||
- | - | - | - | - | - | - | ||||
90.707 | 370.225 | 370.042 | 380.155 | 368.630 | 394.980 | 374.428 | 373.864 | 396.894 | 354.323 | |
AIC | 98.708 | 374.225 | 374.042 | 384.155 | 372.630 | 398.980 | 382.428 | 381.864 | 400.894 | 360.323 |
CAIC | 102.141 | 374.670 | 374.486 | 384.599 | 373.074 | 399.424 | 384.028 | 383.464 | 401.338 | 361.246 |
BIC | 104.312 | 377.028 | 376.844 | 386.957 | 375.432 | 401.782 | 388.033 | 387.469 | 403.696 | 364.527 |
HQIC | 100.500 | 375.122 | 374.938 | 385.051 | 373.526 | 399.877 | 384.221 | 383.657 | 401.790 | 361.668 |
0.2427 | 0.3227 | 0.3212 | 0.4060 | 0.3035 | 0.5388 | 0.3612 | 0.3549 | 0.5541 | 0.1936 | |
1.6235 | 1.9116 | 1.9044 | 2.3105 | 1.8207 | 2.9373 | 2.0865 | 2.0488 | 3.0254 | 1.2996 | |
K-S | 0.1894 | 0.2178 | 0.2172 | 0.2382 | 0.2220 | 0.2871 | 0.2143 | 0.2376 | 0.2898 | 0.1739 |
p-value | 0.2319 | 0.1161 | 0.1179 | 0.0665 | 0.1038 | 0.0142 | 0.1272 | 0.0676 | 0.0129 | 0.3246 |
B-SIOR-E | BurrIII | LGT | EGG2 | T2G | WGE | Log-Logistic | Gexp | Gamma | Weibull | |
---|---|---|---|---|---|---|---|---|---|---|
Parameters | ||||||||||
- | - | - | - | - | - | |||||
- | - | - | - | - | - | - | ||||
3018.43 | 3198.062 | 3031.812 | 3036.104 | 3203.548 | 3055.304 | 3048.010 | 3025.677 | 3023.581 | 3019.255 | |
AIC | 3026.429 | 3202.063 | 3039.812 | 3044.104 | 3207.547 | 3061.304 | 3052.010 | 3029.677 | 3027.581 | 3023.255 |
CAIC | 3026.609 | 3202.116 | 3039.991 | 3044.283 | 3207.601 | 3061.411 | 3052.064 | 3029.731 | 3027.634 | 3023.309 |
BIC | 3040.147 | 3208.921 | 3053.529 | 3057.821 | 3214.406 | 3071.592 | 3058.869 | 3036.536 | 3034.440 | 3030.114 |
HQIC | 3031.964 | 3204.83 | 3045.346 | 3049.638 | 3210.315 | 3065.455 | 3054.778 | 3032.444 | 3030.348 | 3026.023 |
0.1426 | 2.3468 | 0.2156 | 0.2744 | 2.4476 | 0.7439 | 0.3448 | 0.1589 | 0.1457 | 0.1407 | |
0.8171 | 13.9395 | 1.5244 | 1.8856 | 14.4798 | 4.0040 | 2.4640 | 1.1183 | 1.0022 | 0.8471 | |
K-S | 0.0535 | 0.1892 | 0.0866 | 0.1045 | 0.1935 | 0.1233 | 0.0740 | 0.0804 | 0.0777 | 0.0644 |
p-value | 0.5323 | 1.635 | 0.0653 | 0.0138 | 7.735 | 0.0019 | 0.1640 | 0.1049 | 0.1272 | 0.3005 |
B-SIOR-E | BurrIII | LGT | EGG2 | T2G | WGE | Log-Logistic | Gexp | Gamma | Weibull | |
---|---|---|---|---|---|---|---|---|---|---|
- | - | - | - | - | - | |||||
- | - | - | - | - | - | - | ||||
818.9182 | 853.3728 | 821.868 | 824.6328 | 888.0016 | 831.6094 | 822.915 | 826.155 | 826.736 | 828.174 | |
AIC | 826.9181 | 857.3729 | 829.868 | 832.6327 | 892.0015 | 837.6094 | 826.915 | 830.155 | 830.736 | 832.174 |
CAIC | 827.2433 | 857.4689 | 830.1932 | 832.9579 | 892.0975 | 837.803 | 827.011 | 830.251 | 830.832 | 832.270 |
BIC | 838.3262 | 863.0769 | 841.2761 | 844.0408 | 897.7056 | 846.1655 | 832.619 | 835.859 | 836.440 | 837.878 |
HQIC | 831.5533 | 859.6905 | 834.5032 | 837.2679 | 894.3191 | 841.0858 | 829.233 | 832.473 | 833.053 | 834.491 |
0.0174 | 0.3856 | 0.0472 | 0.0661 | 0.7443 | 0.1604 | 0.0430 | 0.1122 | 0.1199 | 0.1314 | |
0.1138 | 2.4543 | 0.3154 | 0.4572 | 4.5464 | 0.9599 | 0.3111 | 0.6741 | 0.7193 | 0.7865 | |
K-S | 0.0339 | 0.1018 | 0.0487 | 0.0548 | 0.1408 | 0.0775 | 0.0399 | 0.0725 | 0.0733 | 0.0700 |
p-value | 0.9985 | 0.1411 | 0.922 | 0.8366 | 0.0125 | 0.425 | 0.9870 | 0.5113 | 0.4973 | 0.5570 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, H.; Huang, M.; Chen, X.; He, Z.; Pu, S. Enhanced Real-Life Data Modeling with the Modified Burr III Odds Ratio–G Distribution. Axioms 2024, 13, 401. https://doi.org/10.3390/axioms13060401
Yang H, Huang M, Chen X, He Z, Pu S. Enhanced Real-Life Data Modeling with the Modified Burr III Odds Ratio–G Distribution. Axioms. 2024; 13(6):401. https://doi.org/10.3390/axioms13060401
Chicago/Turabian StyleYang, Haochong, Mingfang Huang, Xinyu Chen, Ziyan He, and Shusen Pu. 2024. "Enhanced Real-Life Data Modeling with the Modified Burr III Odds Ratio–G Distribution" Axioms 13, no. 6: 401. https://doi.org/10.3390/axioms13060401
APA StyleYang, H., Huang, M., Chen, X., He, Z., & Pu, S. (2024). Enhanced Real-Life Data Modeling with the Modified Burr III Odds Ratio–G Distribution. Axioms, 13(6), 401. https://doi.org/10.3390/axioms13060401