Packing Spheres into a Minimum-Height Parabolic Container
Abstract
:1. Introduction
- A new problem of packing spheres into a minimum-height parabolic container in n-dimensional space;
- A new Φ-function for analytical description of the containment of a sphere into a parabolic container in n-dimensional space;
- An approach based on the feasible directions scheme considering the specific characteristics of the Φ-function.
- New benchmarks for various sphere radii and the parameters of the parabolic container in n-dimensional space for n = 2, 3, 4, 5.
2. Problem Statement
3. The Φ-Function for Containment Constraints
4. Mathematical Model
- Take a sufficiently large height of the container that guarantees a placement of spheres , fully inside ;
- Generate the sphere centers randomly so that , ;
- Apply the modification of the FDM to solve the problem (10), (11) for a set of feasible starting points.
- Select the best solution.
5. Solution Algorithm
- Step 1. Take a sufficiently large height of the container that guarantees a placement of spheres , fully inside .
- Step 2. Generate the sphere centers randomly so that .
- Step 3. Set , .
- Step 4. Define the functions (7).
- Step 5. Form the sets , .
- Step 6. Set .
- Step 7. Calculate (Problem (15), (16)).
- Step 8. If (there is no a feasible direction decreasing the objective ), then set and go to Step 5; otherwise (), go to Step 9.
- Step 9. Set (12).
- Step 10. If , then set and go to Step 9; otherwise, go to Step 11.
- Step 11. If , then stop algorithm; otherwise, set , and go to Step 4.
6. Computational Results
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Scheithauer, G. Introduction to Cutting and Packing Optimization. In International Series in Operations Research & Management Science; Springer: Cham, Switzerland, 2018; Volume 263, pp. 385–405. [Google Scholar] [CrossRef]
- Wäscher, G.; Haußner, H.; Schumann, H. An improved typology of cutting and packing problems. Eur. J. Oper. Res. 2007, 183, 1109–1130. [Google Scholar] [CrossRef]
- Castillo, I.; Kampas, F.J.; Pinter, J.D. Solving circle packing problems by global optimization: Numerical results and industrial applications. Eur. J. Oper. Res. 2008, 191, 786–802. [Google Scholar] [CrossRef]
- Kampas, F.J.; Castillo, I.; Pinter, J.D. Optimized ellipse packings in regular polygons. Optim. Lett. 2019, 13, 1583–1613. [Google Scholar] [CrossRef]
- Kallrath, J.; Rebennack, S. Cutting ellipses from area-minimizing rectangles. J. Glob. Optim. 2014, 59, 405–437. [Google Scholar] [CrossRef]
- Pankratov, A.; Romanova, T.; Litvinchev, I. Packing ellipses in an optimized rectangular container. Wirel. Netw. 2020, 26, 4869–4879. [Google Scholar] [CrossRef]
- Kampas, F.J.; Pintér, J.D.; Castillo, I. Packing ovals in optimized regular polygons. J. Glob. Optim. 2020, 77, 175–196. [Google Scholar] [CrossRef]
- Castillo, I.; Pintér, J.D.; Kampas, F.J. The boundary-to-boundary p-dispersion configuration problem with oval objects. J. Oper. Res. Soc. 2024, 1–11. [Google Scholar] [CrossRef]
- Elser, V. Packing spheres in high dimensions with moderate computational effort. Phys. Rev. E 2023, 108, 034117. [Google Scholar] [CrossRef] [PubMed]
- Litvinchev, I.; Fischer, A.; Romanova, T.; Stetsyuk, P. A new class of irregular packing problems reducible to sphere packing in arbitrary norms. Mathematics 2024, 12, 935. [Google Scholar] [CrossRef]
- Kallrath, J. Packing ellipsoids into volume-minimizing rectangular boxes. J. Glob. Optim. 2017, 67, 151–185. [Google Scholar] [CrossRef]
- Leao, A.A.S.; Toledo, F.M.B.; Oliveira, J.F.; Carravilla, M.A.; Alvarez-Valdes, R. Irregular packing problems: A review of mathematical models. Eur. J. Oper. Res. 2020, 282, 803–822. [Google Scholar] [CrossRef]
- Guo, B.; Zhang, Y.; Hu, J.; Li, J.; Wu, F.; Peng, Q.; Zhang, Q. Two-dimensional irregular packing problems: A review. Front. Mech. Eng. 2022, 8, 966691. [Google Scholar]
- Rao, Y.; Luo, Q. Intelligent algorithms for irregular packing problem. In Intelligent Algorithms for Packing and Cutting Problem; Engineering Applications of Computational Methods; Springer: Singapore, 2022; Volume 10. [Google Scholar] [CrossRef]
- Lamas-Fernandez, C.; Bennell, J.A.; Martinez-Sykora, A. Voxel-based solution Aapproaches to the three-dimensional irregular packing problem. Oper. Res. 2023, 71, 1298–1317. [Google Scholar] [CrossRef]
- Gil, M.; Patsuk, V. Phi-functions for objects bounded by the second-order curves and their application to packing problems. In Smart Technologies in Urban Engineering; Arsenyeva, O., Romanova, T., Sukhonos, M., Tsegelnyk, Y., Eds.; STUE 2022, Lecture Notes in Networks and Systems; Springer: Cham, Switzerland, 2023; Volume 536. [Google Scholar] [CrossRef]
- Santini, C.; Mangini, F.; Frezza, F. Apollonian Packing of Circles within Ellipses. Algorithms 2023, 16, 129. [Google Scholar] [CrossRef]
- Amore, P.; De la Cruz, D.; Hernandez, V.; Rincon, I.; Zarate, U. Circle packing in arbitrary domains featured. Phys. Fluids 2023, 35, 127112. [Google Scholar] [CrossRef]
- Kovalenko, A.A.; Romanova, T.E.; Stetsyuk, P.I. Balance Layout Problem for 3D-Objects: Mathematical Model and Solution Methods. Cybern. Syst. Anal. 2015, 51, 556–565. [Google Scholar] [CrossRef]
- Burtseva, L.; Pestryakov, A.; Romero, R.; Valdez, B. Petranovskii. Some aspects of computer approaches to simulation of bimodal sphere packing in material engineering. Adv. Mater. Res. 2014, 1040, 585–591. [Google Scholar] [CrossRef]
- Ungson, Y.; Burtseva, L.; Garcia-Curiel, E.R.; Valdez Salas, B.; Flores-Rios, B.L.; Werner, F.; Petranovskii, V. Filling of Irregular Channels with Round Cross-Section: Modeling Aspects to Study the Properties of Porous Materials. Materials 2018, 11, 1901. [Google Scholar] [CrossRef] [PubMed]
- Burtseva, L.; Valdez Salas, B.; Romero, R.; Werner, F. Recent advances on modelling of structures of multi-component mixtures using a sphere packing approach. Int. J. Nanotechnol. 2016, 13, 44–59. [Google Scholar] [CrossRef]
- Available online: https://olofly.com/product/huni-badger-parabolic-dish-container/ (accessed on 7 April 2023).
- Chernov, N.; Stoyan, Y.; Romanova, T. Mathematical model and efficient algorithms for object packing problem. Comput. Geom. Theory Appl. 2010, 43, 535–553. [Google Scholar] [CrossRef]
- Nocedal, J.; Wright, S.J. Numerical Optimization; Springer Series in Operations Research and Financial Engineering; Springer: New York, NY, USA, 2006. [Google Scholar]
- Kallrath, J. Business Optimization Using Mathematical Programming; Springer: London, UK, 2021; ISBN 978-3-030-73237-0. [Google Scholar]
- Chen, D. Sphere Packing Problem. In Encyclopedia of Algorithms; Kao, M.Y., Ed.; Springer: Boston, MA, USA, 2008. [Google Scholar] [CrossRef]
- Sahinidis, N. BARON User Manual v. 2024.5.8. Available online: https://minlp.com/downloads/docs/baron%20manual.pdf (accessed on 8 May 2024).
- IPOPT: Documentation. Available online: https://coin-or.github.io/Ipopt/ (accessed on 14 January 2023).
- Stoyan, Y.; Yaskov, G. Packing congruent hyperspheres into a hypersphere. J. Glob. Optim. 2012, 52, 855–868. [Google Scholar] [CrossRef]
- Romanova, T.; Stoyan, Y.; Pankratov, A.; Litvinchev, I.; Marmolejo, J.A. Decomposition algorithm for irregular placement problems. In Intelligent Computing and Optimization, Proceedings of the 2nd International Conference on Intelligent Computing and Optimization 2019 (ICO 2019), Koh Samui, Thailand, 3–4 October 2019; Intelligent Systems and Computing; Springer: Cham, Switzerland, 2019; Volume 1072, pp. 214–221. [Google Scholar]
- Animasaun, I.L.; Shah, N.A.; Wakif, A.; Mahanthesh, B.; Sivaraj, R.; Koriko, O.K. Ratio of Momentum Diffusivity to Thermal Diffusivity: Introduction, Meta-Analysis, and Scrutinization; Chapman and Hall/CRC: New York, NY, USA, 2022. [Google Scholar] [CrossRef]
- Litvinchev, I.S. Refinement of Lagrangian bounds in optimization problems. Comput. Math. Math. Phys. 2007, 47, 1101–1108. [Google Scholar] [CrossRef]
- Litvinchev, I.; Rangel, S.; Saucedo, J. A Lagrangian bound for many-to-many assignment problems. J. Comb. Optim. 2010, 19, 241–257. [Google Scholar] [CrossRef]
- Lai, X.; Yue, D.; Hao, J.K.; Glover, F.; Lü, Z. Iterated dynamic neighborhood search for packing equal circles on a sphere. Comput. Oper. Res. 2023, 151, 106121. [Google Scholar] [CrossRef]
- Asadi Jafari, M.H.; Zarastvand, M.; Zhou, J. Doubly curved truss core composite shell system for broadband diffuse acoustic insulation. J. Vib. Control 2023. [Google Scholar] [CrossRef]
- Bulat, A.; Kiseleva, E.; Hart, L.; Prytomanova, O. Generalized Models of Logistics Problems and Approaches to Their Solution Based on the Synthesis of the Theory of Optimal Partitioning and Neuro-Fuzzy Technologies. In System Analysis and Artificial Intelligence; Studies in Computational Intelligence; Zgurovsky, M., Pankratova, N., Eds.; Springer: Cham, Switzerland, 2023; Volume 1107, pp. 355–376. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stoyan, Y.; Yaskov, G.; Romanova, T.; Litvinchev, I.; Velarde Cantú, J.M.; Acosta, M.L. Packing Spheres into a Minimum-Height Parabolic Container. Axioms 2024, 13, 396. https://doi.org/10.3390/axioms13060396
Stoyan Y, Yaskov G, Romanova T, Litvinchev I, Velarde Cantú JM, Acosta ML. Packing Spheres into a Minimum-Height Parabolic Container. Axioms. 2024; 13(6):396. https://doi.org/10.3390/axioms13060396
Chicago/Turabian StyleStoyan, Yuriy, Georgiy Yaskov, Tetyana Romanova, Igor Litvinchev, José Manuel Velarde Cantú, and Mauricio López Acosta. 2024. "Packing Spheres into a Minimum-Height Parabolic Container" Axioms 13, no. 6: 396. https://doi.org/10.3390/axioms13060396
APA StyleStoyan, Y., Yaskov, G., Romanova, T., Litvinchev, I., Velarde Cantú, J. M., & Acosta, M. L. (2024). Packing Spheres into a Minimum-Height Parabolic Container. Axioms, 13(6), 396. https://doi.org/10.3390/axioms13060396