Local Influence for the Thin-Plate Spline Generalized Linear Model
Abstract
:1. Introduction
2. The Thin-Plate Spline Generalized Linear Model (TPS-GLM)
2.1. Statistical Model
2.2. Penalized Function
3. Estimation and Inference
3.1. Penalized Score Function
3.2. Penalized Hessian Matrix
3.3. Penalized Expected Information Matrix
3.4. Derivation of the Iterative Process
3.5. Estimation of Surface
3.6. Approximate Standard Errors
3.7. On Degrees of Freedom and Smoothing Parameter
4. Local Influence
4.1. Local Influence Analysis
4.2. Derivation of the Normal Curvature
5. Applications
5.1. Wypych Data
- Soya: average of soybean yield (t/ha).
- Height: average height (cm)of plants at the end of the production process.
- Pods: average number of pods.
- Lat: latitude (UTM).
- Long: longitude (UTM).
5.1.1. Fitting the TPS-GLM
5.1.2. Diagnostic Analysis
5.1.3. Confirmatory Analysis
5.2. Ozone Concentration Data
- O3: daily maximum one-hour average ozone concentration in Upland, CA, measured in parts per million (ppm).
- Temp: Sandburg Air Base temperature, in Celsius.
- Vis: visibility, in miles.
- Day: calendar day.
5.2.1. Diagnostic Analysis
5.2.2. Confirmatory Analysis
6. Concluding Remarks and Future Research
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- McCullagh, P.; Nelder, J.A. Generalized Linear Models, 2nd ed.; Chapman and Hall: London, UK, 1989. [Google Scholar]
- Duchon, J. Interpolation des fonctions de deux variables suivant le principe de la flexion des plaques minces. RAIRO Anal. Numér. 1976, 10, 5–12. [Google Scholar] [CrossRef]
- Duchon, J. Splines minimizing rotation-invariant semi-norms in Sobolev spaces. Lect. Notes Math. 1977, 57, 85–100. [Google Scholar]
- Bookstein, F.L. Principal warps: Thin-plate splines and decomposition of deformations. IEEE Trans. Pattern Anal. Mach. Intell. 1989, 11, 567–585. [Google Scholar] [CrossRef]
- Chen, C.; Li, Y.; Yan, C.; Dai, H.; Liu, G. A Thin Plate Spline-Based Feature-Preserving Method for Reducing Elevation Points Derived from LiDAR. Remote Sens. 2015, 7, 11344–11371. [Google Scholar] [CrossRef]
- Wahba, G. Spline Models for Observational Data; SIAM: Philadelphia, PA, USA, 1990. [Google Scholar]
- Green, P.J.; Silverman, B.W. Nonparametric Regression and Generalized Linear Models; Chapman and Hall: Boca Raton, FL, USA, 1994. [Google Scholar]
- Wood, S.N. Thin plate regression splines. J. R. Stat. Soc. Ser. B (Methodol.) 2003, 65, 95–114. [Google Scholar] [CrossRef]
- Moraga, M.S.; Ibacache-Pulgar, G.; Nicolis, O. On an elliptical thin-plate spline partially varying-coefficient model. Chil. J. Stat. 2021, 12, 205–228. [Google Scholar]
- Cook, R.D. Assessment of Local Influence. J. R. Stat. Soc. Ser. B (Methodol.) 1986, 48, 133–169. [Google Scholar] [CrossRef]
- Thomas, W.; Cook, R.D. Assessing influence on regression coefficients in generalized linear models. Biometrika 1989, 76, 741–749. [Google Scholar] [CrossRef]
- Ouwens, M.N.M.; Tan, F.E.S.; Berger, M.P.F. Local influence to detect influential data structures for generalized linear mixed models. Biometrics 2001, 57, 1166–1172. [Google Scholar] [CrossRef]
- Zhu, H.; Lee, S. Local influence for incomplete-data models. J. R. Stat. Soc. Ser. B 2001, 63, 111–126. [Google Scholar] [CrossRef]
- Zhu, H.; Lee, S. Local influence for generalized linear mixed models. Can. J. Stat. 2003, 31, 293–309. [Google Scholar] [CrossRef]
- Espinheira, P.L.; Ferrari, P.L.; Cribari-Neto, F. Influence diagnostics in beta regression. Comput. Stat. Data Anal. 2008, 52, 4417–4431. [Google Scholar] [CrossRef]
- Rocha, A.; Simas, A. Influence diagnostics in a general class of beta regression models. TEST 2001, 20, 95–119. [Google Scholar] [CrossRef]
- Ferrari, S.; Spinheira, P.; Cribari-Neto, F. Diagnostic tools in beta regression with varying dispersion. Stat. Neerl. 2011, 65, 337–351. [Google Scholar] [CrossRef]
- Ferreira, C.S.; Paula, G.A. Estimation and diagnostic for skew-normal partially linear models. J. Appl. Stat. 2017, 44, 3033–3053. [Google Scholar] [CrossRef]
- Emami, H. Local influence for Liu estimators in semiparametric linear models. Stat. Pap. 2018, 59, 529–544. [Google Scholar] [CrossRef]
- Liu, Y.; Mao, G.; Leiva, V.; Liu, S.; Tapia, A. Diagnostic Analytics for an Autoregressive Model under the Skew-Normal Distribution. Mathematics 2020, 8, 693. [Google Scholar] [CrossRef]
- Thomas, W. Influence diagnostics for the cross-validated smoothing parameter in spline smoothing. J. Am. Stat. Assoc. 1991, 9, 693–698. [Google Scholar] [CrossRef]
- Ibacache, G.; Paula, G.A. Local Influence for student-t partially linear models. Comput. Stat. Data Anal. 2011, 55, 1462–1478. [Google Scholar] [CrossRef]
- Ibacache-Pulgar, G.; Paula, G.A.; Galea, M. Influence diagnostics for elliptical semiparametric mixed models. Stat. Model. 2012, 12, 165–193. [Google Scholar] [CrossRef]
- Ibacache, G.; Paula, G.A.; Cysneiros, F. Semiparametric additive models under symmetric distributions. Test 2013, 22, 103–121. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, X.; Ma, H.; Zhiya, C. Local influence analysis of varying coefficient linear model. J. Interdiscip. Math. 2015, 3, 293–306. [Google Scholar] [CrossRef]
- Ibacache-Pulgar, G.; Reyes, S. Local influence for elliptical partially varying coefficient model. Stat. Model. 2018, 18, 149–174. [Google Scholar] [CrossRef]
- Ibacache-Pulgar, G.; Figueroa-Zuñiga, J.; Marchant, C. Semiparametric additive beta regression models: Inference and local influence diagnostics. REVSTAT-Stat. J. 2019, 19, 255–274. [Google Scholar]
- Cavieres, J.; Ibacache-Pulgar, G.; Contreras-Reyes, J. Thin plate spline model under skew-normal random errors: Estimation and diagnostic analysis for spatial data. J. Stat. Comput. Simul. 2023, 93, 25–45. [Google Scholar] [CrossRef]
- Jeldes, N.; Ibacache-Pulgar, G.; Marchant, C.; López-Gonzales, J.L. Modeling Air Pollution Using Partially Varying Coefficient Models with Heavy Tails. Mathematics 2022, 10, 3677. [Google Scholar] [CrossRef]
- Saavedra-Nievas, J.C.; Nicolis, O.; Galea, M.; Ibacache-Pulgar, G. Influence diagnostics in Gaussian spatial—Temporal linear models with separable covariance. Environ. Ecol. Stat. 2023, 30, 131–155. [Google Scholar] [CrossRef]
- Sánchez, L.; Ibacache-Pulgar, G.; Marchant, C.; Riquelme, M. Modeling Environmental Pollution Using Varying-Coefficients Quantile Regression Models under Log-Symmetric Distributions. Axioms 2023, 12, 976. [Google Scholar] [CrossRef]
- Green, P.J. Penalized Likelihood for General Semi-Parametric Regression Models. Int. Stat. Rev. 1987, 55, 245–259. [Google Scholar] [CrossRef]
- Nelder, J.A.; Wedderburn, R.W.M. Generalized Linear Models. J. R. Stat. Soc. Ser. A (Gen.) 1972, 135, 370–384. [Google Scholar] [CrossRef]
- Wood, S.N. Generalized Additive Models: An Introduction with R, 2nd ed.; Chapman and Hall/CRC: Boca Raton, FL, USA, 2017. [Google Scholar]
- Akaike, H. Information theory as an extension of the maximum likelihood principle. In Proceedings of the Second International Symposium on Information Theory; Petrov, B.N., Csaki, F., Eds.; Academiai Kiado: Budapest, Hungary, 1973. [Google Scholar]
- Escobar, L.A.; Meeker, W.Q. Assessing Influence in Regression Analysis with Censored Data. Biometrics 1992, 48, 507–528. [Google Scholar] [CrossRef] [PubMed]
- Billor, N.; Loynes, R.M. Local influence: A new approach. Comm. Statist. Theory Meth. 1993, 22, 1595–1611. [Google Scholar] [CrossRef]
- MathWorks Inc. MATLAB Version: 9.13.0 (R2022b); The MathWorks Inc.: Natick, MA, USA, 2022; Available online: https://www.mathworks.com (accessed on 10 October 2022).
- Uribe-Opazo, M.A.; Borssoi, J.A.; Galea, M. Influence diagnostics in Gaussian spatial linear models. J. Appl. Stat. 2012, 3, 615–630. [Google Scholar] [CrossRef]
- Breiman, L.; Friedman, J.H. Estimating optimal transformations for multiple regression and correlation. J. Am. Stat. Assoc. 1985, 80, 580–598. [Google Scholar] [CrossRef]
- Ibacache-Pulgar, G.; Lira, V.; Villegas, C. Assessing Influence on Partially Varying-coefficient Generalized Linear Model. REVSTAT-Stat. J. 2022. Available online: https://revstat.ine.pt/index.php/REVSTAT/article/view/507 (accessed on 10 October 2022).
Model | ||
---|---|---|
Parameters | Gaussian Linear | TPS-GLM |
1.1921 (0.672) | 0.497 (0.751) | |
0.0116 (0.0128) | 0.032 (0.015) | |
0.0339 (0.0079) | 0.030 (0.008) | |
AIC | 149.99 | 139.9992 |
R2(Adj) | 0.168 | 0.315 |
Parameters and Relatives Changes | ||||||||
---|---|---|---|---|---|---|---|---|
Dropped Obs. | AIC | R2(Adj) | ||||||
6 | 1.696 | 0.009 | 0.023 | 122.59 | 63.93 | 27.52 | 125.50 | 0.267 |
61 | 0.987 | 0.022 | 0.027 | 29.47 | 15.19 | 12.23 | 131.96 | 0.356 |
69 | 0.432 | 0.035 | 0.028 | 43.33 | 35.04 | 10.85 | 138.07 | 0.326 |
6-61 | 1.996 | 0.002 | 0.022 | 161.89 | 92.06 | 27.65 | 116.20 | 0.218 |
6-69 | 1.481 | 0.014 | 0.023 | 94.35 | 45.61 | 26.09 | 124.52 | 0.268 |
61-69 | 0.704 | 0.029 | 0.028 | 7.59 | 9.58 | 10.93 | 131.03 | 0.358 |
6-61-69 | 1.868 | 0.005 | 0.023 | 145.16 | 81.03 | 26.90 | 115.83 | 0.310 |
Parameters and Relatives Changes | ||||||||
---|---|---|---|---|---|---|---|---|
Dropped Obs. | AIC | R2(Adj) | ||||||
32 | 0.701 | 0.027 | 0.029 | 8.000 | 4.62 | 5.23 | 138.73 | 0.319 |
69 | 0.432 | 0.034 | 0.027 | 43.33 | 29.0 | 12.22 | 138.07 | 0.326 |
75 | 0.760 | 0.028 | 0.027 | 0.24 | 6.22 | 12.65 | 139.44 | 0.307 |
80 | 0.699 | 0.028 | 0.029 | 8.21 | 7.86 | 8.16 | 139.01 | 0.311 |
32-69 | 0.382 | 0.035 | 0.030 | 49.87 | 32.82 | 4.00 | 136.81 | 0.33 |
32-75 | 0.700 | 0.027 | 0.030 | 8.17 | 4.12 | 4.90 | 138.11 | 0.319 |
32-80 | 0.621 | 0.028 | 0.031 | 18.49 | 6.34 | 0.16 | 137.63 | 0.316 |
69-75 | 0.430 | 0.035 | 0.028 | 43.61 | 34.96 | 10.96 | 137.53 | 0.318 |
69-80 | 0.333 | 0.036 | 0.029 | 56.33 | 38.32 | 5.39 | 136.99 | 0.322 |
75-80 | 0.695 | 0.028 | 0.029 | 8.85 | 7.25 | 7.90 | 138.39 | 0.302 |
32-69-75 | 0.381 | 0.035 | 0.030 | 49.98 | 32.33 | 3.74 | 136.22 | 0.322 |
32-75-80 | 0.621 | 0.028 | 0.031 | 18.54 | 5.23 | 0.96 | 136.93 | 0.308 |
69-75-80 | 0.333 | 0.036 | 0.029 | 56.26 | 37.40 | 5.09 | 136.42 | 0.314 |
32-69-75-80 | 0.271 | 0.035 | 0.032 | 64.47 | 30.15 | 3.22 | 134.96 | 0.320 |
Model | |
---|---|
I | |
II | |
III | |
IV |
Parameters | I | II | III | IV |
---|---|---|---|---|
0.577 (0.104) | 0.478 (0.142) | 0.787 (0.198) | 2.507 (0.040) | |
−0.002 (0.0003) | −0.002 (0.0003) | −0.002 (0.0003) | −0.002 (0.0003) | |
0.035 (0.001) | 0.033 (0.002) | 0.032 (0.003) | - | |
−0.001 (0.002) | - | −0.002 (0.001) | - | |
- | - | 0.00002 (0.00002) | - | |
AIC | 1887.312 | 1806.837 | 1887.757 | 1789.92 |
R2(Adj) | 0.673 | 0.715 | 0.670 | 0.728 |
Dropped Obs. | AIC | R2(Adj) | ||||
---|---|---|---|---|---|---|
167 | 2.513 | −0.002 | 0.231 | 0.378 | 1777.07 | 0.737 |
175 | 2.506 | −0.002 | 0.051 | 1.673 | 1784.58 | 0.724 |
219 | 2.540 | −0.002 | 1.334 | 7.105 | 1784.44 | 0.725 |
220 | 2.507 | −0.002 | 0.012 | 0.263 | 1777.87 | 0.728 |
167-175 | 2.511 | −0.002 | 0.169 | 1.052 | 1771.76 | 0.734 |
167-219 | 2.538 | −0.002 | 1.242 | 6.853 | 1771.58 | 0.735 |
167-220 | 2.511 | −0.002 | 0.179 | 0.884 | 1765.08 | 0.738 |
175-219 | 2.538 | −0.002 | 1.248 | 7.368 | 1779.10 | 0.722 |
175-220 | 2.504 | −0.002 | 0.104 | 0.684 | 1772.55 | 0.725 |
219-220 | 2.507 | −0.002 | 0.007 | 0.289 | 1772.807 | 0.725 |
167-175-219 | 2.536 | −0.002 | 1.155 | 7.136 | 1766.269 | 0.732 |
167-175-220 | 2.512 | −0.002 | 0.215 | 3.415 | 1759.79 | 0.735 |
175-219-220 | 2.504 | −0.002 | 0.098 | 0.678 | 1767.484 | 0.721 |
167-175-219-220 | 2.534 | −0.002 | 1.072 | 7.800 | 1754.761 | 0.731 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ibacache-Pulgar, G.; Pacheco, P.; Nicolis, O.; Uribe-Opazo, M.A. Local Influence for the Thin-Plate Spline Generalized Linear Model. Axioms 2024, 13, 346. https://doi.org/10.3390/axioms13060346
Ibacache-Pulgar G, Pacheco P, Nicolis O, Uribe-Opazo MA. Local Influence for the Thin-Plate Spline Generalized Linear Model. Axioms. 2024; 13(6):346. https://doi.org/10.3390/axioms13060346
Chicago/Turabian StyleIbacache-Pulgar, Germán, Pablo Pacheco, Orietta Nicolis, and Miguel Angel Uribe-Opazo. 2024. "Local Influence for the Thin-Plate Spline Generalized Linear Model" Axioms 13, no. 6: 346. https://doi.org/10.3390/axioms13060346
APA StyleIbacache-Pulgar, G., Pacheco, P., Nicolis, O., & Uribe-Opazo, M. A. (2024). Local Influence for the Thin-Plate Spline Generalized Linear Model. Axioms, 13(6), 346. https://doi.org/10.3390/axioms13060346