On a Stability of Non-Stationary Discrete Schemes with Respect to Interpolation Errors
Abstract
:1. Introduction
2. Problem Formulation
3. Nonuniform Grids
3.1. The Time Steps Are Doubled at Some Grid Points
3.2. The Time Steps Are Halved at Some Grid Points
4. Parabolic Interpolation
4.1. Finite-Difference Scheme
4.2. Discontinuous Galerkin Method
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hundsdorfer, W.; Verwer, J. Numerical Solution of Time-Dependent Advection-Diffusion-Reaction Equations; Springer Series in Computational Mathematics; Springer: Berlin/Heidelberg, Germany; New York, NY, USA; Tokyo, Japan, 2003; Volume 33. [Google Scholar] [CrossRef]
- LeVeque, R.J. Finite Difference Methods for Ordinary and Partial Differential Equations: Steady-State and Time-Dependent Problems; SIAM: Philadelphia, PA, USA, 2007. [Google Scholar]
- Zunino, P. Discontinuous Galerkin methods based on weighted interior penalties for second order PDEs with non-smooth coefficients. J. Sci. Comput. 2009, 38, 99–126. [Google Scholar] [CrossRef]
- Neilan, M.; Salgado, A.J.; Zhang, W. Numerical analysis of strongly nonlinear PDEs. Acta Numer. 2017, 26, 137–303. [Google Scholar] [CrossRef]
- Hansbo, A. Strong stability and non-smooth data error estimates for discretizations of linear parabolic problems. Bit Numer. Math. 2002, 42, 351–379. [Google Scholar] [CrossRef]
- Ruzhansky, M.; Yessirkegenov, N. Very weak solutions to hypoelliptic wave equations. Differ. Equ. 2020, 268, 2063–2088. [Google Scholar] [CrossRef]
- Pileckas, K.; Ciegis, R. Existence of nonstationary Poiseuille-type solutions under minimal regularity assumptions. Z. Angew. Math. Phys. 2020, 71, 192. [Google Scholar] [CrossRef]
- Corallo, D.; Dörfler, W.; Wieners, C. Space-time discontinuous Galerkin methods for weak solutions of hyperbolic linear symmetric friedrichs systems. J. Sci. Comput. 2023, 94, 27. [Google Scholar] [CrossRef]
- Samarskii, A.A. The Theory of Difference Schemes; Marcel Dekker: New York, NY, USA, 2001. [Google Scholar]
- Knabner, P.; Angermann, L. Numerical Methods for Elliptic and Parabolic Partial Differential Equations; Springer Series Texts in Applied Mathematics; Springer: Berlin/Heidelberg, Germany, 2003; Volume 44. [Google Scholar]
- Kinash, N.; Janno, J. Inverse problems for generalized subdiffusion equation with final overdetermination. Math. Model. Anal. 2019, 24, 236–262. [Google Scholar] [CrossRef]
- Umbricht, G. Identification of the source for full parabolic equations. Math. Model. Anal. 2021, 26, 339–357. [Google Scholar] [CrossRef]
- Čiegis, R.; Panasenko, G.; Pileckas, K.; Šumskas, V. ADI scheme for partially dimension reduced heat conduction models. Comput. Math. Appl. 2020, 80, 1275–1286. [Google Scholar] [CrossRef]
- Amosov, A.; Panasenko, G. Partial decomposition of a domain containing thin tubes for solving the diffusion equation. J. Math. Sci. 2022, 264, 25–33. [Google Scholar] [CrossRef]
- Hofreither, C. An algorithm for best rational approximation based on barycentric rational interpolation. Numer. Algorithms 2021, 88, 365–388. [Google Scholar] [CrossRef]
- Čiegis, R.; Dapšys, I. On a framework for the stability and convergence analysis of discrete schemes for nonstationary nonlocal problems of parabolic type. Mathematics 2022, 10, 2155. [Google Scholar] [CrossRef]
- Samarskii, A.A.; Gulin, A.V. Stability of Finite Difference Schemes; Nauka: Moscow, Russia, 1973. (In Russian) [Google Scholar]
- Gulin, A.V.; Ionkin, N.I.; Morozova, V.A. Study of the norm in stability problems for nonlocal difference schemes. Differ. Equat. 2006, 42, 974–984. [Google Scholar] [CrossRef]
- Gulin, A.; Ionkin, N.; Morozova, V. Stability criterion of difference schemes for the heat conduction equation with nonlocal conditions. Comput. Meth. Appl. Math. 2006, 6, 31–55. [Google Scholar] [CrossRef]
- Eriksson, K.; Estep, D.; Hansbo, P.; Johnson, C. Computational Differential Equations; Cambridge University Press: Cambridge, UK, 1996. [Google Scholar]
- Bangerth, W.; Rannacher, R. Adaptive Finite Element Methods for Differential Equations; Birhauser Basel, Book Series Lectures in Mathematics; ETH Zürich: Zürich, Switzerland, 2003. [Google Scholar] [CrossRef]
- Zlotnik, A.; Čiegis, R. On construction and properties of compact 4th order finite-difference schemes for the variable coefficient wave equation. J. Sci. Comput. 2023, 95, 3. [Google Scholar] [CrossRef]
- Jiang, Y.; Ge, Y. An explicit high-order compact finite difference scheme for the three-dimensional acoustic wave equation with variable speed of sound. Int. J. Comp. Math. 2023, 100, 321–341. [Google Scholar] [CrossRef]
- Omella, Á.J.; Pardo, D. r-Adaptive deep learning method for solving partial differential equations. Comput. Math. Appl. 2024, 153, 33–42. [Google Scholar] [CrossRef]
- Vabishchevich, P.N. Three-level schemes with double change in the time step. Comput. Math. Math. Phys. 2023, 63, 1989–1995. [Google Scholar] [CrossRef]
- Thomee, V. Galerkin Finite Element Methods for Parabolic Problems; Springer Series in Computational Mathematics; Springer: Berlin/Heidelberg, Germany, 1997; Volume 25. [Google Scholar]
- Georgoulis, E.H.; Lakkis, O.; Wihler, T.P. A posteriori error bounds for fully-discrete hp-discontinuous Galerkin timestepping methods for parabolic problems. Numer. Math. 2021, 148, 363–386. [Google Scholar] [CrossRef]
- Bonito, A.; Pasciak, J.E. Numerical approximation of fractional powers of elliptic operators. Math. Comput. 2015, 84, 2083–2110. [Google Scholar] [CrossRef]
- Lee, H.G. A second-order operator splitting Fourier spectral method for fractional-in-space reaction–diffusion equations. J. Comput. Appl. Math. 2018, 333, 395–403. [Google Scholar] [CrossRef]
N | |||||
---|---|---|---|---|---|
20 | — | — | |||
40 | 2.067 | 1.974 | |||
80 | 2.038 | 1.988 | |||
160 | 2.020 | 1.999 | |||
320 | 2.010 | 2.000 |
N | ||||
---|---|---|---|---|
20 | — | — | ||
40 | 1.044 | 1.930 | ||
80 | 1.025 | 1.966 | ||
160 | 1.012 | 1.984 | ||
320 | 1.007 | 1.991 |
N | ||||
---|---|---|---|---|
20 | — | — | ||
40 | 0.142 | 2.099 | ||
80 | 0.056 | 1.969 | ||
160 | 0.011 | 1.986 | ||
320 | 0.010 | 1.994 |
J | ||||
---|---|---|---|---|
80 | 0.05 | — | ||
160 | 0.025 | 1.034 | ||
320 | 0.0125 | 1.016 | ||
640 | 0.00625 | 1.011 | ||
160 | — | |||
320 | 0.397 | |||
640 | 0.453 | |||
1280 | 0.481 | |||
80 | — | |||
160 | −0.156 | |||
320 | −0.040 | |||
640 | −0.009 |
J | ||||
---|---|---|---|---|
80 | 0.05 | — | ||
160 | 0.025 | 0.855 | ||
320 | 0.0125 | 0.993 | ||
640 | 0.00625 | 0.998 | ||
160 | — | |||
320 | 1.507 | |||
640 | 1.506 | |||
1280 | 1.503 | |||
80 | — | |||
160 | 2.00 | |||
320 | 2.00 | |||
640 | 2.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Čiegis, R.; Suboč, O.; Čiegis, R. On a Stability of Non-Stationary Discrete Schemes with Respect to Interpolation Errors. Axioms 2024, 13, 244. https://doi.org/10.3390/axioms13040244
Čiegis R, Suboč O, Čiegis R. On a Stability of Non-Stationary Discrete Schemes with Respect to Interpolation Errors. Axioms. 2024; 13(4):244. https://doi.org/10.3390/axioms13040244
Chicago/Turabian StyleČiegis, Raimondas, Olga Suboč, and Remigijus Čiegis. 2024. "On a Stability of Non-Stationary Discrete Schemes with Respect to Interpolation Errors" Axioms 13, no. 4: 244. https://doi.org/10.3390/axioms13040244
APA StyleČiegis, R., Suboč, O., & Čiegis, R. (2024). On a Stability of Non-Stationary Discrete Schemes with Respect to Interpolation Errors. Axioms, 13(4), 244. https://doi.org/10.3390/axioms13040244