Next Article in Journal
Conditioning Theory for ML-Weighted Pseudoinverse and ML-Weighted Least Squares Problem
Next Article in Special Issue
A New Class of Coordinated Non-Convex Fuzzy-Number-Valued Mappings with Related Inequalities and Their Applications
Previous Article in Journal
Explicit Numerical Manifold Characteristic Galerkin Method for Solving Burgers’ Equation
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

The Estimation of Different Kinds of Integral Inequalities for a Generalized Class of Convex Mapping and a Harmonic Set via Fuzzy Inclusion Relations and Their Applications in Quadrature Theory

by
Ali Althobaiti
1,
Saad Althobaiti
2 and
Miguel Vivas Cortez
3,*
1
Department of Mathematics, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
2
Department of Sciences and Technology, Ranyah University Collage, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
3
Escuela de Ciencias Físicas y Matemáticas, Facultad de Ciencias Exactas y Naturales, Pontificia Universidad Católica del Ecuador, Av. 12 de Octubre 1076, Apartado, Quito 17-01-2184, Ecuador
*
Author to whom correspondence should be addressed.
Axioms 2024, 13(6), 344; https://doi.org/10.3390/axioms13060344
Submission received: 1 April 2024 / Revised: 12 May 2024 / Accepted: 13 May 2024 / Published: 22 May 2024
(This article belongs to the Special Issue Analysis of Mathematical Inequalities)

Abstract

:
The relationship between convexity and symmetry is widely recognized. In fuzzy theory, both concepts exhibit similar behavior. It is crucial to remember that real and interval-valued mappings are special instances of fuzzy-number-valued mappings ( F - N - V - M s ), as fuzzy theory relies on the unit interval, which is crucial to resolving problems with interval analysis and fuzzy number theory. In this paper, a new harmonic convexities class of fuzzy numbers has been introduced via up and down relation. We show several Hermite–Hadamard ( H H ) and Fejér-type inequalities by the implementation of fuzzy Aumann integrals using the newly defined class of convexities. Some nontrivial examples are also presented to validate the main outcomes.

1. Introduction

The theory of convexity is an active, compelling, and important topic of research that has significantly influenced a variety of different areas of study, including mathematical analysis, economics, optimization issues, finance, control theories, and game theory. Researchers have developed unifying numerical structures through the theory of convexity that may be utilized to solve a variety of issues in both pure and applied mathematics. In the past few decades, there have been significant advancements in convexity, like generalizations and expansions. The demand for fractional operators in several branches of mathematics has increased as a result of the study of fractional analysis. Numerous scholars have worked to create modified versions of inequalities by developing fractional operators using the non-singular special mappings as their kernel in order to satisfy this condition. One method for enhancing the fractional and Aumann integral inequalities for various convexities and pre-invexities, which have important applications in the field of analysis, is the employment of generalized fractional operators.
The generalization of classical calculus, known as fractional and interval Aumann calculus, is crucial to the study of pure, practical, and computational mathematics. Numerous fields, including biology, control operator theory, physics and computer structure optimizations, have greatly benefited from research in the field of fractional analysis [1,2,3,4,5]. The majority of scientists have spent the last few decades attempting to create generalized versions of well-known inequalities and discussing a vast array of applications in the areas of analysis and discrete optimization. Numerous authors have put a lot of effort into [4,5,6,7,8,9,10] and studied the extensions and refinements of various branches of mathematics. By utilizing their kernel in multi-dimension mappings, fractional operators have the potential to construct advanced inequalities analysis, opening up new avenues for research into how inequalities behave in various disciplines of mathematics. Fuzzy set theory, which deals with issues involving unclear, hazy, and imprecise information and decision making for either individual or group collaboration, has numerous important applications. This project expanded on Moore Ramon’s interval analysis concept from 1966 [11,12,13,14]. Due to its review of decision making, this topic is appealing to many scientists. The study of interval analysis has gained a lot of attention from professionals in recent years due to how useful it has been for global optimization and constraint solution algorithms for decision-makers. It has reduced the errors and increased the accuracy while also delivering useful and reliable findings. In order to achieve the intended outcomes, numerous scholars began their research on inequalities as a result of this motivation. The interval-valued mapping ( Ι - V - M ) was first introduced by Zhao et al. [15] and Khan et al. [16,17,18,19,20,21,22]. By using several integral operators, many mathematicians established a close correlation between inequalities and Ι - V - M s [23,24,25,26,27]. Fuzzy differential equations and fuzzy interval analysis have numerous applications that deal with various computer or mathematical modules [28,29,30,31,32,33]. Numerous inequalities, including the Hermite–Hadamard inequality, the Jensen inequality, trapezoid-type inequalities, the Mercer inequality, and the Schur inequality, have been presented in various research articles [34,35,36] with the aid of a fuzzy number-valued mapping. Qiang et al. [37], and Iscan et al. [38,39] presented the basic version of H H and Fejér-type inequalities via harmonic convexity. Similarly, Ion [40,41,42] developed a new version of H H -type inequalities for quasi convex mappings. After that, Noor et al. [43,44,45] generalized the ideas of harmonic convexity in terms of harmonic h-convexity. On the other hand, Moore [46] briefly discussed the basic concepts of interval theory, which play an important role in overcoming the uncertainty in computer programming. Stefanini and Bede [47], and Khan et al. [48,49,50,51,52] provided the definition of differentiability for interval-valued mappings. Diamond and Kloeden [53] and Goetschel and Voxman [54] proposed the basic properties of fuzzy numbers and defined the metric space over fuzzy number space. In one step forward, Kaleva [55,56,57,58] acquired the integrability concepts where the integrable mappings are F - N - V - M s . Costa and Román-Flores [59,60,61] provided the main directions in the field of integral inequalities via introducing different versions of relations. Therefore, some new modifications of Jensen’s inequalities are acquired. After that, Zhang et al. [62] provided a new version of the relation that is known as the up and down relation ( U D relation), and with the support of this relation, reported new refinements of Jensen’s inequalities and removed the mistakes of classical inequalities. Then, Khan et al. [63] obtained the H H and Fejér-type inequalities for Riemann integrals and fractional integrals via U D relation. To study more basic concepts related to fuzzy theory, see [64,65,66].

Inspiration

Convexity and generalized convexity are crucial ideas in fuzzy optimization because they characterize the optimality condition of convexity and produce fuzzy variational inequalities. Numerous mathematical issues relating to minimization theory and interval analysis were solved using powerful approaches developed from variational inequality and fuzzy set theory. F - N - V - M is another name for fuzzy mapping. Numerous fractional integrals have F - N - V - M s in both the lower and upper cases. The effective application of these forms of fractional integrals allows for the verification of the behavior of well-known inequalities. These studies show the significance of this method for converting real integral inequalities into fuzzy integral inequalities, both theoretically and practically. This study discusses the new class of harmonic convexity as well as types of inequalities for F - N - V - M s via the U D relation. Moreover, the validity of the main outcomes has been discussed with the support of nontrivial examples.

2. Preliminary Concepts

In this section, we will review the basic terms and concepts that help to make sense of the concepts underlying our new discoveries.
Let L C be the space of all the closed and bounded intervals of N and let Ѵ L C be defined by
Ѵ = Ѵ * , Ѵ * = б N | Ѵ * б Ѵ * , Ѵ * , Ѵ * N .
It is called a positive interval Ѵ * ,   Ѵ * if Ѵ * 0 . The definition of L C + , which represents the set of all the positive intervals, is
L C + = Ѵ * , Ѵ * : Ѵ * , Ѵ * L C   a n d   Ѵ * 0 .
Let τ N and τ Ѵ be defined by
τ Ѵ = τ Ѵ * , τ Ѵ *   i f   τ > 0 , 0   i f   τ = 0 , τ Ѵ * , τ Ѵ *   i f   τ < 0 .  
Then, the Minkowski “difference” Ϗ Ѵ , “addition” Ѵ + Ϗ , and “product” Ѵ × Ϗ for Ѵ , Ϗ L C are defined by
Ϗ * , Ϗ * Ѵ * , Ѵ * = Ϗ * Ѵ * , Ϗ * Ѵ * .
Ϗ * , Ϗ * + Ѵ * , Ѵ * = Ϗ * + Ѵ * , Ϗ * + Ѵ * ,
Ϗ * , Ϗ * × Ѵ * , Ѵ * = m i n Ϗ * Ѵ * , Ϗ * Ѵ * , Ϗ * Ѵ * , Ϗ * Ѵ * , m a x Ϗ * Ѵ * , Ϗ * Ѵ * , Ϗ * Ѵ * , Ϗ * Ѵ * ,
Remark 1.
(i) For the given Ϗ * ,   Ϗ * ,   Ѵ * ,   Ѵ * L C , the relation I defined on L C by Ѵ * ,   Ѵ * I Ϗ * ,   Ϗ * if and only if Ѵ * Ϗ * ,   Ϗ * Ѵ * for all the Ϗ * ,   Ϗ * ,   Ѵ * ,   Ѵ * L C is a partial interval inclusion relation. The relation Ѵ * ,   Ѵ * I Ϗ * ,   Ϗ * is coincident to Ѵ * ,   Ѵ * Ϗ * ,   Ϗ * on L C . It can easily be seen that “ I ” looks like “up and down” on the real line N , so we call I the “up and down” (or “ U D ” order, in short) [62]. For Ϗ * ,   Ϗ * ,   Ѵ * ,   Ѵ * L C , the Hausdorff–Pompeiu distance between intervals Ϗ * ,   Ϗ * and Ѵ * ,   Ѵ * is defined by
d H Ϗ * , Ϗ * , Ѵ * , Ѵ * = m a x Ϗ * Ѵ * , Ϗ * Ѵ * .
It is a familiar fact that L C , d H is a complete metric space [46,53,54].
We will merely go over some fundamental concepts concerning fuzzy sets and fuzzy numbers because we will be using the conventional definitions of a fuzzy set and a fuzzy number. Please note that we refer to L and L C as the set of all the fuzzy subsets and the fuzzy numbers of N , respectively.
Definition 1.
([53]). Given Ϗ ~ L C , the level sets or cut sets are given by Ϗ ~ ı = б N | Ϗ ~ б > ı for all ı [ 0 ,   1 ] and by Ϗ ~ 0 = б N | Ϗ ~ б > 0 . These sets are known as ı -level sets or ı -cut sets of Ϗ ~ .
Proposition 1.
([59]). Let Ϗ ~ , Ѵ ~ L C . Then, relation F is given on L C by Ϗ ~ F Ѵ ~ when and only when Ϗ ~ ı I Ѵ ~ ı , for every ı [ 0 ,   1 ] , which are left- and right-order relations.
Proposition 2.
([63]). Let Ϗ ~ , Ѵ ~ L C . Then, relation F is given on L C by Ϗ ~ F Ѵ ~ when and only when Ϗ ~ ı I Ѵ ~ ı for every ı [ 0 ,   1 ] , which is the U D -order relation on L C
Remember the approaching notions, which are offered in the literature. If Ϗ ~ , Ѵ ~ L C and ı N , then, for every ı 0 ,   1 , the arithmetic operations addition “ ”, multiplication “ ”, and scalar multiplication “ ” are defined by
Ϗ ~ Ѵ ~ ı = Ϗ ~ ı + Ѵ ~ ı ,
Ϗ ~ Ѵ ~ ı = Ϗ ~ ı ×   Ѵ ~ ı ,
𝓉 Ϗ ~ ı = 𝓉 Ϗ ~ ı ,
Equation (8) through (10) have immediate consequences for these outcomes.
Theorem 1.
([53,55]). If G : [ l , d ] N L C is an interval-valued mapping ( Ι - V - M ) satisfying G б = G * б ,   G * б , then G is an Aumann integrable (AI integrable) over [ l , d ] when and only when G * б and G * б both are integrable over l , d , such that
I A l d G б d б = l   d G * б d б , l d G * б d б .
The following conclusions can be drawn from the literature [54,59,62]:
Definition 2.
([59]). A fuzzy-interval-valued map G ~ : Λ N F 0 is called F - N - V - M . For each ı ( 0 ,   1 ] , its Ι - V - M s are classified according to their  ı -levels G ı : Λ N L C that are given by G ı б = G * б , ı ,   G * б , ı for all б Λ . Here, for each ı ( 0 ,   1 ] , the end-point real mappings G * . , ı ,   G * . , ı : Λ N are called the lower and upper mappings of G ~ ( б ) .
Definition 3.
Let G ~ : [ l , d ] N F 0 be an F - N - V - M . Then, the fuzzy integral of G ~ over l , d , denoted by F A l d G ~ б d б , is given level-wise by
F A l d G ~ б d б   ı = I A l d G ı б d б = l d G б , ı d б : G б , ı R l , d ,   ı ,
for all ı ( 0 ,   1 ] , where R l , d ,   ı denotes the collection of Riemannian integrable mappings of Ι - V - M s . The F - N - V - M   G ~ is F A -integrable over [ l , d ] if F A l d G ~ б d б F 0 . Note that, if G * б , ı ,   G * б , ı are Lebesgue-integrable, then G is fuzzy Aumann-integrable mapping over [ l , d ] , see [37].
Theorem 2.
([26]). Let G ~ : [ l , d ] N F 0 be an F - N - V - M , its Ι - V - M s are classified according to their ı -levels G ı : [ l , d ] N L C that are given by G ı б = G * б , ı ,   G * б , ı for all б [ l , d ] and for all ı ( 0 ,   1 ] . Then, G ~ is F A -integrable over [ l , d ] if and only if G * б , ı and G * б , ı are both A -integrable over [ l , d ] . Moreover, if G ~ is F A -integrable over l , d , then
F A l d G ~ б d б ı = A l d G * б , ı d б ,   A l d G * б , ı d б = I A l d G ı б d б ,
for all ı ( 0 ,   1 ] . For all ı 0 ,   1 ,   F R l , d ,   ı denotes the collection of all the F A -integrable F - N - V - M s over [ l , d ] .
Definition 4.
([38]). A set Λ = l , d N + = 0 , is said to be a harmonically ( H ) convex set, if, for all б ,   Λ ,   κ 0 ,   1 , we have
б κ б + 1 κ Λ .
Definition 5.
([38]). The relation G : l , d N + is called an H -convex mapping on l , d if
G   б κ б + 1 κ 1 κ G б + κ G ,
for all   б ,   l , d ,   κ 0 ,   1 , where G б 0 for all б l , d . If expression (14) is inverted, then G is called an H -concave F - N - V - M on l , d , such that
G   б κ б + 1 κ 1 κ G б + κ G .
Definition 6.
([43]). The positive real-valued mapping G : l , d N + is called an H - -convex mapping on l , d if
G   б κ б + 1 κ 1 κ G б + ( κ ) G ,
for all   б ,   l , d ,   κ 0 ,   1 , where G б 0 for all б l , d and : [ 0 ,   1 ] [ l , d ] N + such that 0 . If expression (16) is inverted, then G is called an H - -concave mapping on l , d , such that
G   б κ б + 1 κ 1 κ G б + κ G .
The set of all the H - -convex ( H - -concave) mappings is denoted by
H S X l , d ,   N + , H S V l , d ,   N + ,   .
Definition 7.
([29]). The F - N - V - M   G ~ : l , d F 0 is called an -convex F - N - V - M on l , d if
G ~   1 κ б + κ F 1 κ G ~ б κ G ~ ,
for all б ,   l , d ,   κ 0 ,   1 , where G ~ б 0 for all б l , d and : [ 0 ,   1 ] [ l , d ] N + , such that 0 . If expression (18) is inverted, then G ~ is called an -concave F - N - V - M on l , d . The set of all the -convex ( -concave) F - N - V - M is denoted by
F S X l , d ,   F 0 , F S V l , d ,   F 0 ,  
Definition 8.
([20]). The F - N - V - M   G ~ : l , d F 0 is called a U D -harmonically ( U - D - H ) convex F - N - V - M on l , d if
G ~   б κ б + 1 κ F 1 κ G ~ б κ G ~ ,
for all б ,   l , d ,   κ 0 ,   1 , where G ~ б F 0 ~ , for all б l , d . If expression (19) is inverted, then G ~ is called a U - D - H -concave F - N - V - M on l , d .
Definition 9. 
The F - N - V - M   G ~ : l , d F 0 is called a U - D - H   -convex F - N - V - M on l , d if
G ~ б κ б + 1 κ F 1 κ G ~ б κ G ~ ,
for all б , l , d , κ 0 , 1 , where G ~ б F 0 ~ , for all б l , d and : [ 0 , 1 ] l , d N + such that h 0 . If expression (20) is inverted, then G ~ is called a U - D - H -concave F - N - V - M on l , d . The set of all the U - D - H   -convex ( U - D - H   -concave) F - N - V - M is denoted by
U D H F S X l , d ,   F 0 ,   U D H F S V l , d ,   F 0 ,   .
Theorem 3. 
Let l , d be an H -convex set, and let G ~ : l , d F 0 be a U - D - H   - convex   F - N - V - M , its Ι - V - M s are classified according to their ı -levels G ı : l , d N L C + L C that are given by
G ı б = G * б , ı ,   G * б , ı ,     б l , d .
for all б l , d , ı 0 ,   1 . Then, G ~ U D H F S X l , d ,   F 0 ,   , if and only if, for all 0 ,   1 ,   G * б ,   ı H S X l , d ,   N + , , and G * б ,   ı H S V l , d ,   N + ,   .
Proof. 
The proof is similar to the proof of Theorem 2.12 (see [16]).  □
Example 1. 
We consider the F - N - V - M s   G ~ : 1 2 ,   1 F 0 defined by,
G ~ б = б 2 1 б 2   б 2 ,   1 , 5 e б 4 e б   1 ,   5 e б ,   0   otherwise .
Then, for each ı 0 ,   1 , we have G ı б = 1 ı б 2 + ı , 1 ı 5 e б + ı . We can easily see that G * б ,   ı H S X 1 2 ,   1 ,   N + , , G * б ,   ı H S V 1 2 ,   1 ,   N + , , with κ = κ , for each ı [ 0 ,   1 ] . Hence, G ~ U - D - H F S X 1 2 ,   1 ,   F 0 , .
Remark 2. 
If κ = κ , then Definition 9 cuts down Definition 8.
  • If G * б ,   ı = G * б ,   ı with ı = 1 , then the U - D - H   - convex   F - N - V - M cuts down classical H - -convex mapping (see [43]).
  • If G * б ,   ı = G * б ,   ı with ı = 1 and κ = κ s with s ( 0 ,   1 ) , then from U - D - H   - convex   F - N - V - M , one can obtain the H - s -convex mapping (see [43]).
  • If G * б ,   ı = G * б ,   ı with ı = 1 and κ = κ , then the U - D - H   - convex   F - N - V - M cuts down H - convex mappings (see [38]).
  • If G * б ,   ı = G * б ,   ı with ı = 1 and κ = 1 , then the H - -convex F - N - V - M cuts down H - P - convex mappings (see [39]).

3. Main Outcomes

The construction of generalized Aumann fuzzy integral inequalities for the U - D - H - convex   F - N - V - M is utilized to produce our key results, which are covered in this section.
Theorem 4. 
Let G ~ U - D - H F S X l , d ,   F 0 ,   , its Ι - V - M S are classified according to their ı -levels G ı : l , d N L C + that are given by G ı б = G * б , ı ,   G * б , ı for all б l , d , ı 0 ,   1 . If 1 2 0 and G ~ F R l , d ,   ı , so that
1 2 1 2 G ~ 2 l d l + d F   l d d l l d G ~ б б 2 d б F G ~ l G ~ d 0 1 κ d κ .
If G ~ U - D - H F S V l , d , F 0 , , then
1 2 1 2 G ~ 2 l d l + d F   l d d l l d G ~ б б 2 d б F G ~ l G ~ d 0 1 κ d κ
Proof. 
Let G ~ U - D - H F S X l , d ,   F 0 ,   . In this case, we could write a hypothesis
1 1 2 G ~ 2 l d l + d F G ~ l d κ l + 1 κ d G ~ l d 1 κ l + κ d .
Therefore, for each ı [ 0 ,   1 ] , we have
1 1 2 G * 2 l d l + d ,   ı G * l d κ l + 1 κ d ,   ı + G * l d 1 κ l + κ d ,   ı ,   1 1 2 G * 2 l d l + d ,   ı G * l d κ l + 1 κ d ,   ı + G * l d 1 κ l + κ d , ı .
Then
1 1 2 0 1 G * 2 l d l + d ,   ı d κ 0 1 G * l d κ l + 1 κ d , ı d κ + 0 1 G * l d 1 κ l + κ d ,   ı d κ , 1 1 2 0 1 G * 2 l d l + d , ı d κ 0 1 G * l d κ l + 1 κ d ,   ı d κ + 0 1 G * l d 1 κ l + κ d , ı d κ .
It follows that
1 2 1 2 G * 2 l d l + d ,   ı   l d d l l d G * б ,   ı б 2 d б , 1 2 1 2 G * 2 l d l + d ,   ı   l d d l l d G * б ,   ı б 2 d б .
that is
1 2 1 2 G * 2 l d l + d ,   ı ,   G * 2 l d l + d ,   ı I   l d d l l d G * б ,   ı б 2 d б ,   l d G * б ,   ı б 2 d б .
Thus,
1 2 1 2 G ~ 2 l d l + d F   l d d l   F A l d G ~ б б 2 d б
Similar to what was stated above, we have
  l d d l   F A l d G ~ б б 2 d б F G ~ l G ~ d 0 1 κ d κ .
Combining (24) and (25), we have
1 2 1 2 G ~ 2 l d l + d F   l d d l l d G ~ б б 2 d б F [ G ~ l G ~ d ] 0 1 κ d κ
This completes the proof.  □
Example 2. 
We consider κ = κ , for κ 0 ,   1 , and the F - N - V - M s   G ~ : [ 0 ,   2 ] F 0 , as in Example 1. Then, for each ı 0 ,   1 , we have G ı б = 1 ı б 2 + ı , 1 ı 5 e б + ı , which is a U - D - H   - convex   F - N - V - M . Since, G * б , ı = 1 ı б 2 + ı ,   G * б ,   ı = 1 ı 5 e б + ı . We now compute the following:
1 2 1 2   G * 2 l d l + d ,   ı   l d d l   l d G * б ,   ı б 2 d б G * l , ı + G * d , ı 0 1 κ d κ .
1 2 1 2   G * 2 l d l + d ,   ı = G * 2 3 ,   ı = 4 9 1 ı + ı ,
l d d l   l d G * б ,   ı б 2 d б = 1 2 1 1 ı б 2 + ı б 2 d б = 1 2 1 + ı ,  
G * l , ı + G * d , ı 0 1 κ d κ = 5 + 3 ı 8 ,
for all ı 0 ,   1 . This means
4 9 1 ı + ı 1 2 1 + ı 5 + 3 ı 8 .
Similar to what was stated above, we have
1 2 1 2   G * 2 l d l + d ,   ı   l d d l   l d G * б ,   ı б 2 d б G * l , ı + G * d , ı 0 1 κ d κ .
for all ı 0 ,   1 , such that
1 2 1 2   G * 2 l d l + d ,   ı = G * 2 3 ,   ı = 1 ı 5 e 2 3 + ı ,
  l d d l   l d G * б ,   ı б 2 d б = 1 2 1 1 ı 5 e б + ı б 2 d б 3 2 ı ,  
G * l , ı + G * d , ı 0 1 κ d κ = 10 1 ı e 1 ı e 1 2 8 ı 2 .
From which, we have
1 ı 5 e 2 3 + ı 3 2 ı 10 1 ı e 1 ı e 1 2 8 ı 2 ,
that is
4 9 1 ı + ı ,   1 ı 5 e 2 3 + ı I [ 1 2 1 + ı ,   3                                     2 ı ] I 5 + 3 ı 8 ,   10 1 ı e 1 ı e 1 2 8 ı 2
Hence,
1 2 1 2 G ~ 2 l d l + d F   l d d l l d G ~ б б 2 d б F G ~ l G ~ d 0 1 κ d κ .
Remark 3. 
If κ = κ s , where s ( 0,1 ) , the result for the U - D - H s - c o n v e x   F - N - V - M is then obtained by reducing Theorem 4 (see [22]):
2 s 1   G ~ 2 l d l + d F   l d d l F A l d G ~ б б 2 d б F 1 s + 1 G ~ l G ~ d .
If κ = κ , the result for the U - D - H c o n v e x   F - N - V - M is then obtained by reducing Theorem 4 (see [20]):
G ~ 2 l d l + d F   l d d l F A l d G ~ б б 2 d б F G ~ l G ~ d 2 .
If κ 1 , the result for the U - D - H P - F - N - V - M is then obtained by reducing Theorem 4 (see [22]):
1 2 G ~ 2 l d l + d F   l d d l F A l d G ~ б б 2 d б F G ~ l G ~ d .
If G * б ,   ı = G * б ,   ı with ı = 1 , the result for the H - - c o n v e x   F - N - V - M is then obtained by reducing Theorem 4 (see [43]):
1 2 1 2 G 2 l d l + d   l d d l   A l d G б б 2 d б G l + G d 0 1 κ d κ .
If G * б ,   ı = G * б ,   ı with ı = 1 and κ = κ s , the result for the H - s - c o n v e x   F - N - V - M is then obtained by reducing Theorem 4 (see [43]):
2 s 1 G 2 l d l + d   l d d l   A l d G б б 2 d б 1 s + 1 G l + G d .
If G * б ,   ı = G * б ,   ı with ı = 1 and κ = κ , the result for the H - c o n v e x   F - N - V - M is then obtained by reducing Theorem 4 (see [38]):
G 2 l d l + d   l d d l   A l d G б б 2 d б G l + G d 2 .
If G * б ,   ı = G * б ,   ı with ı = 1 and κ 1 , the result for the H - P - c o n v e x   F - N - V - M is then obtained by reducing Theorem 4 (see [43]):
1 2 G 2 l d l + d   l d d l   A l d G б б 2 d б G l + G d .
Theorem 5. 
Let G ~ U - D - H F S X l , d ,   F 0 ,   with 1 2 0 , its Ι - V - M s are classified according to their ı -levels G ı : l , d N L C + that are given by G ı б = G * б , ı ,   G * б , ı for all б l , d , ı 0 ,   1 . If G ~ F R l , d ,   ı , so that
1 4 1 2 2 G ~ 2 l d l + d F   2 F   l d d l F A l d G ~ б б 2 d б F 1 F G ~ l G ~ d 1 2 + 1 2 0 1 κ d κ ,
where
1 = G ~ l G ~ d 2 G ~ 2 l d l + d 0 1 κ d κ ,
2 = 1 4 1 2 G ~ 4 l d l + 3 d G ~ 4 l d 3 l + d ,
and 1 = 1 * ,   1 * , 2 = 2 * ,   2 * .
If G ~ U - D - H F S V l , d ,   F 0 ,   , Inequality (26) is then turned around.
Proof. 
Take l , 2 l d l + d , so that
1 1 2 G ~ l 4 l d l + d κ l + 1 κ 2 l d l + d + l 4 l d l + d ( 1 κ ) l + κ 2 l d l + d F G ~ l 2 l d l + d κ l + 1 κ 2 l d l + d   G ~ l 2 l d l + d ( 1 κ ) l + κ 2 l d l + d .
Therefore, for every ı [ 0 ,   1 ] , yields
1 1 2 G * l 4 l d l + d κ l + 1 κ 2 l d l + d + l 4 l d l + d ( 1 κ ) l + κ 2 l d l + d ,   ı G * l 2 l d l + d κ l + 1 κ 2 l d l + d ,   ı + G * l 2 l d l + d ( 1 κ ) l + κ 2 l d l + d ,   ı , 1 1 2 G * l 4 l d l + d κ l + 1 κ 2 l d l + d + l 4 l d l + d ( 1 κ ) l + κ 2 l d l + d ,   ı G * l 2 l d l + d κ l + 1 κ 2 l d l + d ,   ı + G * l 2 l d l + d κ 2 l d l + d , ı .
In consequence, we obtain
1 4 1 2 G * 4 l d l + 3 d ,   ı l d d l l 2 l d l + d G * б ,   ı б 2 d б , 1 4 1 2 G * 4 l d l + 3 d ,   ı l d d l l 2 l d l + d G * б ,   ı б 2 d б .
That is
1 4 1 2 G * 4 l d l + 3 d ,   ı ,   G * 4 l d l + 3 d ,   ı I l d d l l 2 l d l + d G * б ,   ı б 2 d б ,   l 2 l d l + d G * б ,   ı б 2 d б .
It follows that
1 4 1 2 G ~ 4 l d l + 3 d F l d d l l 2 l d l + d G ~ б б 2 d б .
Similar to what was stated above, we have
1 4 1 2 G ~ 4 l d 3 l + d F l d d l 2 l d l + d d G ~ б б 2 d б .
Combining (27) and (28), we can write
1 4 1 2 G ~ 4 l d l + 3 d G ~ 4 l d 3 l + d F l d d l l d G ~ б б 2 d б .
Therefore, for every ı [ 0 ,   1 ] , by using Theorem 4, we have
1 4 1 2 2 G * 2 l d l + d ,   ı 1 4 1 2 2 1 2 G * 4 l d l + 3 d ,   ı + 1 2 G * 4 l d 3 l + d ,   ı , 1 4 1 2 2 G * 2 l d l + d ,   ı 1 4 1 2 2 1 2 G * 4 l d l + 3 d ,   ı + 1 2 G * 4 l d 3 l + d ,   ı ,
= 2 * , = 2 * ,
  l d d l l   d G * б ,   ı б 2 d б ,     l d d l l d G * б ,   ı б 2 d б ,
G * l , ı + G * d , ı 2 + G * 2 l d l + d ,   ı 0 1 κ d κ ,   G * l , ı + G * d , ı 2 + G * 2 l d l + d ,   ı 0 1 κ d κ ,
= 1 * , = 1 * ,
G * l , ı + G * d , ı 2 + 1 2 G * l , ı + G * d , ı 0 1 κ d κ ,   G * l , ı + G * d , ı 2 + 1 2 G * l , ı + G * d , ı 0 1 κ d κ ,
= G * l , ı + G * d , ı 1 2 + 1 2 0 1 κ d κ ,   = G * l , ı + G * d , ı 1 2 + 1 2 0 1 κ d κ ,
that is
1 4 1 2 2 G ~ 2 l d l + d F   2 F   l d d l F A l d G ~ б б 2 d б F 1 F G ~ l G ~ d 1 2 + 1 2 0 1 κ d κ
The proof is completed.  □
In the upcoming results, we will discuss the Pachpatte-type inequalities with the help of a product of two U - D - H   -concave  F - N - V - M s .
Theorem 6.
Let G ~ U - D - H F S X l , d ,   F 0 ,   1 and T ~ U - D - H F S X l , d ,   F 0 ,   2 , whose ı -levels G ı ,   T ı : l , d N L C + are defined by G ı б = G * б , ı ,   G * б , ı and T ı б = T * б , ı ,   T * б , ı for all б l , d , ı 0 ,   1 , respectively. If G ~ T ~ F R l , d ,   ı , then
  l d d l F A l d G ~ б T ~ б б 2 d б F ~ l , d 0 1 1 κ 2 κ d κ ~ l , d 0 1 1 κ 2 1 κ d κ ,
where ~ l , d = G ~ l T ~ l G ~ d T ~ d ,   ~ l , d = G ~ l T ~ d G ~ d T ~ l , ı l , d = * l , d ,   ı ,   * l , d ,   ı and ı l , d = * l , d ,   ı ,   * l , d ,   ı .
Proof. 
Since G ~ and T ~ are U - D - H   1 and 2 -convex F - N - V - M s, for each ı 0 ,   1 we then have
G * l d 1 κ l + κ d ,   ı 1 κ G * l , ı + 1 1 κ G * d , ı ,   G * l d 1 κ l + κ d ,   ı 1 κ G * l , ı + 1 1 κ G * d , ı ,
and
T * l d 1 κ l + κ d ,   ı 2 κ T * l , ı + 2 1 κ T * d , ı , T * l d 1 κ l + κ d ,   ı 2 κ T * l , ı + 2 1 κ T * d , ı .
From the definition of the U - D - H   -convexity of the F - N - V - M s , it follows that G ~ б F 0 ~ and T ~ б F 0 ~ , so that
G * l d 1 κ l + κ d ,   ı × T * l d 1 κ l + κ d ,   ı 1 κ G * l , ı + 1 1 κ G * d , ı 2 κ T * l , ı + 2 1 κ T * d , ı   = G * l , ı × T * l , ı 1 κ 2 κ + G * d , ı × T * d , ı 1 1 κ 2 1 κ + G * l , ı T * d , ı 1 κ 2 κ + G * d , ı × T * l , ı 1 1 κ 2 κ , G * l d 1 κ l + κ d ,   ı × T * l d 1 κ l + κ d ,   ı 1 κ G * l , ı + 1 1 κ G * d , ı 2 κ T * l , ı + 2 1 κ T * d , ı   = G * l , ı × T * l , ı 1 κ 2 κ + G * d , ı × T * d , ı 1 1 κ 2 1 κ + G * l , ı × T * d , ı 1 κ 2 1 κ + G * d , ı × T * l , ı 1 1 κ 2 κ .
1 2 1 1 2 2 1 2 G ~ 2 l d l + d T ~ 2 l d l + d F   l d d l F A l d G ~ б T ~ б б 2 d б ~ l , d 0 1 1 κ 2 1 κ d κ ~ l , d 0 1 1 κ 2 κ d κ ,
The outcome of integrating the given inequality over [ 0,1 ] is
    0 1 G * l d 1 κ l + κ d ,   ı × T * l d 1 κ l + κ d ,   ı =   l d d l l d G * б ,   ı × T * б ,   ı б 2 d б                 G * l , ı × T * l , ı + G * d , ı × T * d , ı 0 1 1 κ 2 κ d κ         + G * l , ı × T * d , ı + G * d , ı × T * l , ı 0 1 1 κ 2 1 κ d κ ,   0 1 G * l d 1 κ l + κ d ,   ı × T * l d 1 κ l + κ d ,   ı =   l d d l l d G * б ,   ı × T * б ,   ı б 2 d б                       G * l , ı × T * l , ı + G * d , ı × T * d , ı 0 1 1 κ 2 κ d κ             + G * l , ı × T * d , ı + G * d , ı × T * l , ı 0 1 1 κ 2 1 κ d κ .
It follows that
      l d d l l d G * б ,   ı × T * б ,   ı d б * l , d ,   ı 0 1 1 κ 2 κ d κ                                                             + * l , d ,   ı 0 1 1 κ 2 1 κ d κ ,     l d d l l d G * б ,   ı × T * б ,   ı d б   * l , d ,   ı 0 1 1 κ 2 κ d κ                                                                 + * l , d ,   ı 0 1 1 κ 2 1 κ d κ ,
that is
  l d d l l d G * б ,   ı × T * б ,   ı d б ,   l d G * б ,   ı × T * б ,   ı d б
I * l , d ,   ı ,   * l , d ,   ı 0 1 1 κ 2 κ d κ
+ * l , d ,   ı ,   * l , d ,   ı 0 1 1 κ 2 1 κ d κ .
Thus,
  l d d l F A l d G ~ б T ~ б б 2 d б F ~ l , d 0 1 1 κ 2 κ d κ ~ l , d 0 1 1 κ 2 1 κ d κ .
The proof is completed.  □
Theorem 7.
Let  G ~ U - D - H F S X l , d ,   F 0 ,   1 , T ~ U - D - H F S X l , d ,   F 0 ,   2 , whose  ı -levels  G ı ,   T ı : l , d N L C +  are defined by  G ı б = G * б , ı ,   G * б , ı  and  T ı б = T * б , ı ,   T * б , ı  for all  б l , d , ı 0 ,   1 , respectively. If  1 1 2 2 1 2 0  and  G ~ T ~ F R l , d ,   ı , so that
1 2 1 1 2 2 1 2 G ~ 2 l d l + d T ~ 2 l d l + d   F   l d d l F A l d G ~ б T ~ б б 2 d б ~ l , d 0 1 1 κ 2 1 κ d κ ~ l , d 0 1 1 κ 2 κ d κ
where  ~ l , d = G ~ l T ~ l G ~ d T ~ d ,   ~ l , d = G ~ l T ~ d G ~ d T ~ l ,   ı l , d = * l , d ,   ı ,   * l , d ,   ı  and  ı l , d = * l , d ,   ı ,   * l , d ,   ı .
Proof. 
Theoretically, we have a value for each ı 0 ,   1 ,
G * 2 l d l + d , ı × J * 2 l d l + d , ı   G * 2 l d l + d , ı × J * 2 l d l + d , ı
1 1 2 2 1 2 G * l d κ l + 1 κ d ,   ı × J * l d κ l + 1 κ d ,   ı + G * l d κ l + 1 κ d ,   ı × J * l d κ l + 1 κ d ,   ı   + 1 1 2 2 1 2 G * l d 1 κ l + κ d ,   ı × J * l d κ l + 1 κ d ,   ı + G * l d κ l + 1 κ d ,   ı × J * l d 1 κ l + κ d ,   ı ,   1 1 2 2 1 2 G * l d κ l + 1 κ d ,   ı × J * l d κ l + 1 κ d ,   ı + G * l d κ l + 1 κ d ,   ı × J * l d κ l + 1 κ d ,   ı   + 1 1 2 2 1 2 G * l d 1 κ l + κ d ,   ı × J * l d κ l + 1 κ d ,   ı + G * l d κ l + 1 κ d ,   ı × J * l d 1 κ l + κ d ,   ı ,  
1 1 2 2 1 2 G * l d κ l + 1 κ d ,   ı × J * l d κ l + 1 κ d ,   ı + G * l d 1 κ l + κ d ,   ı × J * l d κ l + 1 κ d ,   ı   + 1 1 2 2 1 2 1 κ G * l , ı + 1 1 κ G * d , ı × 2 1 κ J * l , ı + 2 κ J * d , ı + 1 1 κ G * l , ı + 1 κ G * d , ı × 2 κ J * l , ı + 2 1 κ J * d , ı ,   1 1 2 2 1 2 G * l d κ l + 1 κ d ,   ı × J * l d κ l + 1 κ d ,   ı + G * l d κ l + 1 κ d   ı × J * l d κ l + 1 κ d ,   ı   + 1 1 2 2 1 2 1 κ G * l , ı + 1 1 κ G * d , ı × 2 1 κ J * l , ı + 2 κ J * d , ı + 1 1 κ G * l , ı + 1 κ G * d , ı × 2 κ J * l , ı + 2 1 κ J * d , ı ,  
= 1 1 2 2 1 2 G * l d κ l + 1 κ d ,   ı × J * l d κ l + 1 κ d ,   ı + G * l d κ l + 1 κ d ,   ı × J * l d κ l + 1 κ d ,   ı   + 1 1 2 2 1 2 1 κ 2 κ + 1 1 κ 2 1 κ * l , d ,   ı + 1 κ 2 1 κ + 1 1 κ 2 κ * l , d ,   ı ,   = 1 1 2 2 1 2 G * l d κ l + 1 κ d ,   ı × J * l d κ l + 1 κ d ,   ı + G * l d κ l + 1 κ d ,   ı × J * l d κ l + 1 κ d ,   ı   + 1 1 2 2 1 2 1 κ 2 κ + 1 1 κ 2 1 κ * l , d ,   ı + 1 κ 2 1 κ + 1 1 κ 2 κ * l , d ,   ı ,
Integrating over 0 ,   1 then gives
  1 2 1 1 2 2 1 2   G * 2 l d l + d , ı × J * 2 l d l + d , ı 1 d l   A l d G * б , ı × J * б , ı d б   + * l , d ,   ı 0 1 1 κ 2 1 κ d κ + * l , d ,   ı 0 1 1 κ 2 κ d κ , 1 2 1 1 2 2 1 2   G * 2 l d l + d , ı × J * 2 l d l + d , ı 1 d l   A l d G * б , ı × J * б , ı d б   + * l , d ,   ı 0 1 1 κ 2 1 κ d κ + * l , d ,   ı 0 1 1 κ 2 κ d κ ,  
that is
1 2 1 1 2 2 1 2 G ~ 2 l d l + d T ~ 2 l d l + d
F   l d d l F A l d G ~ б T ~ б б 2 d б ~ l , d 0 1 1 κ 2 1 κ d κ ~ l , d 0 1 1 κ 2 κ d κ
the desired result follows.  □
Fuzzy  H H  Fejér inequality
Theorems 8 and 9 are generalized by some of the findings in what follows. Start with the second H H fuzzy Fejér inequality.
Theorem 8.
Let  G ~ U - D - H F S X l , d ,   F 0 ,   , where its  Ι - V - M s are classified according to their  ı -levels  G ı : l , d N L C +  that are given by  G ı б = G * б , ı ,   G * б , ı  for all  б l , d , ı 0 ,   1 . If  G ~ F R l , d ,   ı  and  : l , d N , 1 1 l + 1 d 1 б = ( б ) 0 ,  then
l d d l F A l d G ~ б б 2 б d б F G ~ l G ~ d 0 1 κ l d κ l + 1 κ d d κ
If G ~ U - D - H F S V l , d ,   F 0 ,   . , Inequality (32) is then turned around such that
l d d l F A l d G ~ б б 2 б d б F G ~ l G ~ d 0 1 κ l d κ l + 1 κ d d κ ,
Proof. 
Let G be an -convex F - N - V - M . Then, for each ı 0 ,   1 , we have
  G * l d 1 κ l + κ d ,   ı l d 1 κ l + κ d     κ G * l , ı + 1 κ G * d , ı l d 1 κ l + κ d , G * l d 1 κ l + κ d ,   ı l d 1 κ l + κ d     κ G * l , ı + 1 κ G * d , ı l d 1 κ l + κ d .
Similar to what was stated above, we have
  G * l d κ l + 1 κ d ,   ı l d κ l + 1 κ d     1 κ G * l , ı + κ G * d , ı l d κ l + 1 κ d , G * l d κ l + 1 κ d ,   ı l d κ l + 1 κ d     1 κ G * l , ı + κ G * d , ı l d κ l + 1 κ d .
By combining (34) and (35), then integrating them over 0 ,   1 , we arrive at
  0 1 G * l d 1 κ l + κ d ,   ı l d 1 κ l + κ d d κ   + 0 1 G * l d κ l + 1 κ d ,   ı l d κ l + 1 κ d d κ     0 1 G * l , ı κ l d 1 κ l + κ d + 1 κ l d κ l + 1 κ d + G * d , ı 1 κ l d 1 κ l + κ d + κ l d κ l + 1 κ d d κ , 0 1 G * l d 1 κ l + κ d ,   ı l d 1 κ l + κ d d κ   + 0 1 G * l d κ l + 1 κ d ,   ı l d κ l + 1 κ d d κ     0 1 G * l , ı κ l d 1 κ l + κ d + 1 κ l d κ l + 1 κ d + G * d , ı 1 κ l d 1 κ l + κ d + κ l d κ l + 1 κ d d κ ,
  = 2 G * l , ı 0 1 κ l d 1 κ l + κ d d κ   + 2 G * d , ı 0 1 κ l d κ l + 1 κ d d κ , = 2 G * l , ı 0 1 κ l d 1 κ l + κ d d κ   + 2 G * d , ı 0 1 κ l d κ l + 1 κ d d κ .
Since is symmetric, then
  = 2 G * l , ı + G * d , ı 0 1 κ l d κ l + 1 κ d d κ , = 2 G * l , ı + G * d , ı 0 1 κ l d κ l + 1 κ d d κ .
Therefore, the results
  0 1 G * κ l + 1 κ d , ı l d 1 κ l + κ d d κ   = 0 1 G * 1 κ l + κ d , ı l d κ l + 1 κ d d κ = l d d l   l d G * б , ı ( б ) d б   0 1 G * 1 κ l + κ d , ı l d κ l + 1 κ d d κ   = 0 1 G * κ l + 1 κ d , ı l d κ l + 1 κ d d κ = l d d l   l d G * б ,   ı ( б ) d б .
From (36) and (37), we have
    l d d l l d G * б , ı б d б                                                                   G * l , ı + G * d , ı 0 1 κ l d κ l + 1 κ d d κ ,     l d d l l d G * б , ı б d б                                                                     G * l , ı + G * d , ı 0 1 κ l d κ l + 1 κ d d κ ,
that is
l d d l   l d G * б , ı б d б ,   l d d l   l d G * б , ı б d б I [ G * l , ı + G * d , ı ,   G * l , ı + G * d , ı ] 0 1 κ l d κ l + 1 κ d d κ ,
and hence
l d d l F A l d G ~ б б 2 б d б F G ~ l G ~ d 0 1 κ l d κ l + 1 κ d d κ .
The proof is completed.  □
Theorem 9.
(First fuzzy  H H   Fejér inequality) Let  G ~ U - D - H F S X l , d ,   F 0 ,   , where its  Ι - V - M s are classified according to their  ı -levels  G ı : l , d N L C +  that are given by  G ı б = G * б , ı ,   G * б , ı  for all  б l , d , ı 0 ,   1 . If  G ~ F R l , d ,   ı  and  : l , d N , 1 1 l + 1 d 1 б = ( б ) 0 ,  so that
1 2 ( 1 2 ) G ~ 2 l d l + d l d G ~ б б 2 d б F F A l d G ~ б б 2 ( б ) d б
If G ~ U - D - H F S V l , d ,   F 0 ,   , Inequality (38) is then turned around such that
1 2 ( 1 2 ) G ~ 2 l d l + d l d G ~ б б 2 d б F F A l d G ~ б б 2 ( б ) d б
Proof. 
Since G ~ is a U - D - H -   convex   F - N - V - M , then for ı 0 ,   1 , we have
G * 2 l d l + d ,   ı ( 1 2 ) G * l d 1 κ l + κ d ,   ı + G * l d κ l + 1 κ d ,   ı   G * 2 l d l + d ,   ı 1 2 G * l d 1 κ l + κ d ,   ı + G * l d κ l + 1 κ d ,   ı .    
By multiplying (40) by l d 1 κ l + κ d = l d κ l + 1 κ d and integrating it by κ over 0 ,   1 , we yield
  G * 2 l d l + d ,   ı 0 1 l d κ l + 1 κ d d κ     1 2 0 1 G * l d 1 κ l + κ d ,   ı l d κ l + 1 κ d d κ + 0 1 G * l d κ l + 1 κ d ,   ı l d κ l + 1 κ d d κ G * 2 l d l + d ,   ı 0 1 l d κ l + 1 κ d d κ     1 2 0 1 G * l d 1 κ l + κ d ,   ı l d κ l + 1 κ d d κ + 0 1 G * l d κ l + 1 κ d ,   ı l d κ l + 1 κ d d κ
Therefore, the results
  0 1 G * l d 1 κ l + κ d ,   ı l d 1 κ l + κ d d κ   = 0 1 G * l d κ l + 1 κ d ,   ı l d κ l + 1 κ d d κ , = l d d l   l d G * б , ı ( б ) d б ,   0 1 G * l d κ l + 1 κ d ,   ı l d κ l + 1 κ d d κ   = 0 1 G * l d 1 κ l + κ d ,   ı l d 1 κ l + κ d d κ , = l d d l   l d G * б , ı ( б ) d б .
From (41) and (42), the results
G * 2 l d l + d ,   ı 2 1 2 l d б d б l d G * б , ı б d б , G * 2 l d l + d ,   ı 2 1 2 l d б d б l d G * б , ı б d б ,
from which, we have
G * 2 l d l + d ,   ı ,   G * 2 l d l + d ,   ı I 2 1 2 l d б d б   l d G * б , ı б d б ,   l d G * б , ı б d б ,
that is
1 2 1 2 G ~ 2 l d l + d l d G ~ б б 2 d б F F A l d G ~ б б 2 ( б ) d б ,
This completes the proof.  □
Remark 4.
Let  б = .  Then, one can achieve the correct from of Inequality (22).
  • If κ = κ , then with Theorems 8 and 9, we obtain the results for the U - D - H   convex   F - N - V - M s (see [20]).
  • If G * б , ı = G * б ,   ı with ı = 1 and κ = κ , then we achieve the first and second classical H⋅H Fejér inequality for the classical U - D - H   convex mapping.

4. Conclusions

Several mathematical inequalities are based on a mapping’s convexity. It should be highlighted that in order to achieve answers that are pertinent to novel convexity-related situations, a general understanding of convex mapping is necessary. One of these overviews is the idea of the U - D - H   convex   F - N - V - M s , which is best explained by comparing the differences between the left and middle terms and the right and middle terms of the famous Fejér inequality, one of the many inequalities connected to convex mappings. Additionally, for U - D - H   convex   F - N - V - M s , we created several new analogues of Hermite–Hadamard–Fejér-type inequalities. This publication is anticipated to inspire additional study in this area.

Author Contributions

Conceptualization, A.A.; validation, S.A.; formal analysis, S.A.; investigation, A.A. and M.V.C.; resources, A.A. and M.V.C.; writing—original draft, A.A. and M.V.C.; writing—review and editing, A.A. and S.A.; visualization, M.V.C. and A.A.; supervision, M.V.C. and A.A.; project administration, M.V.C. and A.A. All authors have read and agreed to the published version of the manuscript.

Funding

The authors extend their appreciation to Taif University, Saudi Arabia, for supporting this work through a project number (TU-DSPP-2024-87).

Data Availability Statement

There is no data availability statement to be declared.

Conflicts of Interest

The authors have no conflicts of interest.

References

  1. Abdeljawad, T.; Baleanu, D. Monotonicity results for fractional difference operators with discrete exponential kernels. Adv. Differ. Equ. 2017, 2017, 78. [Google Scholar] [CrossRef]
  2. Agarwal, R.; Purohit, D.S. A mathematical fractional model with nonsingular kernel for thrombin receptor activation in calcium signalling. Math. Methods Appl. Sci. 2019, 42, 7160–7171. [Google Scholar] [CrossRef]
  3. Agarwal, R.; Yadav, M.P.; Baleanu, D.; Purohit, S. Existence and Uniqueness of Miscible Flow Equation through Porous Media with a Non Singular Fractional Derivative. AIMS Math. 2020, 5, 1062–1073. [Google Scholar] [CrossRef]
  4. Jiang, X.; Wang, Y.; Zhao, D.; Shi, L. Online Pareto optimal control of mean-field stochastic multi-player systems using policy iteration. Sci. China Inf. Sci. 2024, 67, 140202. [Google Scholar] [CrossRef]
  5. Jia, G.; Luo, J.; Cui, C.; Kou, R.; Tian, Y.; Schubert, M. Valley quantum interference modulated by hyperbolic shear polaritons. Phys. Rev. B 2023, 109, 155417. [Google Scholar] [CrossRef]
  6. Khan, M.A.; Begum, S.; Khurshid, Y.; Chu, M.Y. Ostrowski type inequalities involving conformable fractional integrals. J. Inequalities Appl. 2018, 2018, 70. [Google Scholar] [CrossRef] [PubMed]
  7. Khan, M.A.; Chu, M.Y.; Kashuri, A.; Liko, R.; Ali, G. Conformable fractional integrals versions of Hermite-Hadamard inequalities and their generalizations. J. Funct. Spaces 2018, 2018, 6928130. [Google Scholar]
  8. Fejér, L. Uber die fourierreihen About the Fourier Series, II. Math. Naturwiss. Anz. Ungar. Akad. Wiss. 1906, 24, 369–390. [Google Scholar]
  9. Tian, F.; Liu, Z.; Zhou, J.; Chen, L.; Feng, X.T. Quantifying Post-peak Behavior of Rocks with Type-I, Type-II, and Mixed Fractures by Developing a Quasi-State-Based Peridynamics. Rock Mech. Rock Eng. 2024, 1–37. [Google Scholar] [CrossRef]
  10. Guo, S.; Zuo, X.; Wu, W.; Yang, X.; Zhang, J.; Li, Y.; Huang, C.; Bu, J.; Zhu, S. Mitigation of tropospheric delay induced errors in TS-InSAR ground deformation monitoring. Int. J. Digit. Earth 2024, 17, 2316107. [Google Scholar] [CrossRef]
  11. Moore, E.R.; Kearfott, R.B.; Michael, J.C. Introduction to Interval Analysis; Society for Industrial and Applied Mathematics: Philadelphia, PA, USA, 2009. [Google Scholar]
  12. Guo, J.; Liu, Y.; Zou, Q.; Ye, L.; Zhu, S.; Zhang, H. Study on optimization and combination strategy of multiple daily runoff prediction models coupled with physical mechanism and LSTM. J. Hydrol. 2023, 624, 129969. [Google Scholar] [CrossRef]
  13. Chang, X.; Guo, J.; Qin, H.; Huang, J.; Wang, X.; Ren, P. Single-Objective and Multi-Objective Flood Interval Forecasting Considering Interval Fitting Coefficients. Water Resour. Manag. 2024, 1–20. [Google Scholar] [CrossRef]
  14. Wang, Y.; Wu, W.; Christelle, M.; Sun, M.; Wen, Z.; Lin, Y.; Xu, J. Automated localization of mandibular landmarks in the construction of mandibular median sagittal plane. Eur. J. Med. Res. 2024, 29, 84. [Google Scholar] [CrossRef] [PubMed]
  15. Zhao, D.; An, T.; Ye, G.; Liu, W. New Jensen and Hermite-Hadamard type inequalities for h-convex interval-valued functions. J. Inequalities Appl. 2018, 2018, 302. [Google Scholar] [CrossRef]
  16. Khan, M.B.; Noor, M.A.; Noor, K.I.; Chu, Y.M. New Hermite-Hadamard type inequalities for (h1, h2)-convex fuzzy-interval-valued functions. Adv. Differ. Equ. 2021, 2021, 6–20. [Google Scholar] [CrossRef]
  17. Khan, M.B.; Santos-García, G.; Treanțǎ, S.; Soliman, M.S. New Class Up and Down Pre-Invex Fuzzy Number Valued Mappings and Related Inequalities via Fuzzy Riemann Integrals. Symmetry 2022, 14, 2322. [Google Scholar] [CrossRef]
  18. Sana, G.; Khan, M.B.; Noor, M.A.; Mohammed, P.O.; Chu, Y.M. Harmonically convex fuzzy-interval-valued functions and fuzzy-interval Riemann–Liouville fractional integral inequalities. Int. J. Comput. Intell. Syst. 2021, 14, 1809–1822. [Google Scholar] [CrossRef]
  19. Khan, M.B.; Macías-Díaz, J.E.; Soliman, M.S.; Noor, M.A. Some New Integral Inequalities for Generalized Preinvex Functions in Interval-Valued Settings. Axioms 2022, 11, 622. [Google Scholar] [CrossRef]
  20. Khan, M.B.; Rahman, A.U.; Maash, A.A.; Treanțǎ, S.; Soliman, M.S. Some New Estimates of Fuzzy Integral Inequalities for Harmonically Convex Fuzzy-Number-Valued Mappings via up and down Fuzzy Relation. Axioms 2023, 12, 365. [Google Scholar] [CrossRef]
  21. Khan, M.B.; Zaini, H.G.; Santos-García, G.; Noor, M.A.; Soliman, M.S. New Class Up and Down λ-Convex Fuzzy-Number Valued Mappings and Related Fuzzy Fractional Inequalities. Fractal Fract. 2022, 6, 679. [Google Scholar] [CrossRef]
  22. Khan, M.B.; Stević, Ž.; Maash, A.A.; Noor, M.A.; Soliman, M.S. Properties of Convex Fuzzy-Number-Valued Functions on Harmonic Convex Set in the Second Sense and Related Inequalities via up and down Fuzzy Relation. Axioms 2023, 12, 399. [Google Scholar] [CrossRef]
  23. Zhang, T.; Deng, F.; Shi, P. Non-fragile finite-time stabilization for discrete mean-field stochastic systems. IEEE Trans. Autom. Control 2023, 68, 6423–6430. [Google Scholar] [CrossRef]
  24. Chuai, Y.; Dai, B.; Liu, X.; Hu, M.; Wang, Y.; Zhang, H. Association of vitamin K, fibre intake and progression of periodontal attachment loss in American adults. BMC Oral Health 2023, 23, 303. [Google Scholar] [CrossRef] [PubMed]
  25. Liu, X.; Dai, B.; Chuai, Y.; Hu, M.; Zhang, H. Associations between vitamin D levels and periodontal attachment loss. Clin. Oral Investig. 2023, 27, 4727–4733. [Google Scholar] [CrossRef] [PubMed]
  26. Costa, T. Jensen’s inequality type integral for fuzzy-interval-valued functions. Fuzzy Sets Syst. 2017, 327, 31–47. [Google Scholar] [CrossRef]
  27. Chalco-Cano, Y.; Flores-Franulic, A.; Romn-Flores, H. Ostrowski type inequalities for interval-valued functions using generalized Hukuhara derivative. Comput. Appl. Math. 2012, 31, 457–472. [Google Scholar]
  28. Diamond, P.; Kloeden, P. Metric spaces of fuzzy sets. Fuzzy Sets Syst. 1990, 35, 241–249. [Google Scholar] [CrossRef]
  29. Nanda, S.; Kar, K. Convex fuzzy mappings. Fuzzy Sets Syst. 1992, 48, 129–132. [Google Scholar] [CrossRef]
  30. Bede, B.; Gal, S.G. Generalizations of the differentiability of fuzzy-number-valued functions with applications to fuzzy differential equations. Fuzzy Sets Syst. 2005, 151, 581–599. [Google Scholar] [CrossRef]
  31. Zhao, Y.; Yan, Y.; Jiang, Y.; Cao, Y.; Wang, Z.; Li, J.; Zhao, G. Release Pattern of Light Aromatic Hydrocarbons during the Biomass Roasting Process. Molecules 2024, 29, 1188. [Google Scholar] [CrossRef]
  32. Zhang, W.; Zhang, Y.; Jin, C.; Fang, R.; Hua, R.; Zang, X.; Zhang, H. The indicative role of inflammatory index in the progression of periodontal attachment loss. Eur. J. Med. Res. 2023, 28, 287. [Google Scholar] [CrossRef]
  33. Wang, Z.; Sun, W.; Hua, R.; Wang, Y.; Li, Y.; Zhang, H. Promising dawn in tumor microenvironment therapy: Engineering oral bacteria. Int. J. Oral Sci. 2024, 16, 24. [Google Scholar] [CrossRef]
  34. Khan, M.B.; Noor, M.A.; Shah, N.A.; Abualnaja, K.M.; Botmart, T. Some New Versions of Hermite-Hadamard Integral Inequalities in Fuzzy Fractional Calculus for Generalized Pre-Invex Functions via Fuzzy-Interval-Valued Settings. Fractal Fract. 2022, 6, 83. [Google Scholar] [CrossRef]
  35. Khan, M.B.; Othman, H.A.; Voskoglou, M.G.; Abdullah, L.; Alzubaidi, A.M. Some Certain Fuzzy Aumann Integral Inequalities for Generalized Convexity via Fuzzy Number Valued Mappings. Mathematics 2023, 11, 550. [Google Scholar] [CrossRef]
  36. Khan, M.B.; Santos-García, G.; Treanțǎ, S.; Noor, M.A.; Soliman, M.S. Perturbed Mixed Variational-Like Inequalities and Auxiliary Principle Pertaining to a Fuzzy Environment. Symmetry 2022, 14, 2503. [Google Scholar] [CrossRef]
  37. Qiang, X.; Farid, G.; Yussouf, M.; Khan, K.A.; Rahman, A.U. New generalized fractional versions of Hadamard and Fejér inequalities for harmonically convex functions. J. Inequalities Appl. 2020, 2020, 191. [Google Scholar] [CrossRef]
  38. Iscan, I. Hermite-Hadamard type inequalities for harmonically convex functions. Hacet. J. Math. Stat. 2014, 43, 935–942. [Google Scholar] [CrossRef]
  39. Iscan, I.; Wu, S. Hermite-Hadamard type inequalities for harmonically convex functions via fractional integrals. Appl. Math. Comput. 2014, 238, 237–244. [Google Scholar]
  40. Chen, D.; Zhao, T.; Han, L.; Feng, Z. Single-Stage Multi-Input Buck Type High-Frequency Link's Inverters With Series and Simultaneous Power Supply. IEEE Trans. Power Electron. 2021, 37, 7411–7421. [Google Scholar] [CrossRef]
  41. Chen, D.; Zhao, T.; Xu, S. Single-stage multi-input buck type high-frequency link's inverters with multiwinding and time-sharing power supply. IEEE Trans. Power Electron. 2022, 37, 12763–12773. [Google Scholar] [CrossRef]
  42. Ion, D.A. Some estimates on the Hermite-Hadamard inequality through quasi-convex functions. Ann. Univ. Craiova-Math. Comput. Sci. Ser. 2007, 34, 82–87. [Google Scholar]
  43. Noor, M.A.; Noor, K.I.; Awan, M.U.; Costache, S. Some integral inequalities for harmonically h-convex functions. Politehn. Univ. Buchar. Sci. Bull. Ser. A Appl. Math. Phys. 2015, 77, 5–16. [Google Scholar]
  44. Chen, D.; Zhao, J.; Qin, S. SVM strategy and analysis of a three-phase quasi-Z-source inverter with high voltage transmission ratio. Sci. China Technol. Sci. 2023, 66, 2996–3010. [Google Scholar] [CrossRef]
  45. Meng, S.; Meng, F.; Chi, H.; Chen, H.; Pang, A. A robust observer based on the nonlinear descriptor systems application to estimate the state of charge of lithium-ion batteries. J. Frankl. Inst. 2023, 360, 11397–11413. [Google Scholar] [CrossRef]
  46. Moore, R.E. Interval Analysis; Prentice Hall: Englewood Cliffs, NJ, USA, 1966. [Google Scholar]
  47. Stefanini, L.; Bede, B. Generalized Hukuhara differentiability of interval-valued functions and interval differential equations. Nonlinear Anal. Theory Methods Appl. 2009, 71, 1311–1328. [Google Scholar] [CrossRef]
  48. Khan, M.B.; Noor, M.A.; Al-Shomrani, M.M.; Abdullah, L. Some novel inequalities for LR-h-convex interval-valued functions by means of pseudo-order relation. Math. Methods Appl. Sci. 2022, 45, 1310–1340. [Google Scholar] [CrossRef]
  49. Ullah, N.; Khan, M.B.; Aloraini, N.; Treanțǎ, S. Some New Estimates of Fixed Point Results under Multi-Valued Mappings in G-Metric Spaces with Application. Symmetry 2023, 15, 517. [Google Scholar] [CrossRef]
  50. Dou, J.; Liu, J.; Wang, Y.; Zhi, L.; Shen, J.; Wang, G. Surface activity, wetting, and aggregation of a perfluoropolyether quaternary ammonium salt surfactant with a hydroxyethyl group. Molecules 2023, 28, 7151. [Google Scholar] [CrossRef]
  51. Han, D.; Zhou, H.; Weng, T.H.; Wu, Z.; Han, B.; Li, K.C.; Pathan, A.S.K. LMCA: A lightweight anomaly network traffic detection model integrating adjusted mobilenet and coordinate attention mechanism for IoT. Telecommun. Syst. 2023, 84, 549–564. [Google Scholar] [CrossRef]
  52. Wang, H.; Han, D.; Cui, M.; Chen, C. NAS-YOLOX: A SAR ship detection using neural architecture search and multi-scale attention. Connect. Sci. 2023, 35, 1–32. [Google Scholar] [CrossRef]
  53. Diamond, P.; Kloeden, P. Metric Spaces of Fuzzy Sets: Theory and Applications; World Scientific: Singapore, 1994. [Google Scholar] [CrossRef]
  54. Goetschel, R., Jr.; Voxman, W. Elementary fuzzy calculus. Fuzzy Sets Syst. 1986, 18, 31–43. [Google Scholar] [CrossRef]
  55. Kaleva, O. Fuzzy Differential Equations. Fuzzy Sets Syst. 1987, 24, 301–317. [Google Scholar] [CrossRef]
  56. Shi, S.; Han, D.; Cui, M. A multimodal hybrid parallel network intrusion detection model. Connect. Sci. 2023, 35, 2227780. [Google Scholar] [CrossRef]
  57. Chen, C.; Han, D.; Shen, X. CLVIN: Complete language-vision interaction network for visual question answering. Knowl.-Based Syst. 2023, 275, 110706. [Google Scholar] [CrossRef]
  58. Chen, C.; Han, D.; Chang, C.C. MPCCT: Multimodal vision-language learning paradigm with context-based compact Transformer. Pattern Recognit. 2024, 147, 110084. [Google Scholar] [CrossRef]
  59. Costa, T.; Román-Flores, H. Some integral inequalities for fuzzy-interval-valued functions. Inf. Sci. 2017, 420, 110–125. [Google Scholar] [CrossRef]
  60. Zhang, G.; Li, W.; Yu, M.; Huang, H.; Wang, Y.; Han, Z.; Xiao, M. Electric-Field-Driven Printed 3D Highly Ordered Microstructure with Cell Feature Size Promotes the Maturation of Engineered Cardiac Tissues. Adv. Sci. 2023, 10, 2206264. [Google Scholar] [CrossRef] [PubMed]
  61. Fei, R.; Guo, Y.; Li, J.; Hu, B.; Yang, L. An improved BPNN method based on probability density for indoor location. IEICE TRANSACTIONS Inf. Syst. 2023, 106, 773–785. [Google Scholar] [CrossRef]
  62. Zhang, D.; Guo, C.; Chen, D.; Wang, G. Jensen’s inequalities for set-valued and fuzzy set-valued functions. Fuzzy Sets Syst. 2020, 404, 178–204. [Google Scholar] [CrossRef]
  63. Khan, M.B.; Santos-García, G.; Noor, M.A.; Soliman, M.S. Some new concepts related to fuzzy fractional calculus for up and down convex fuzzy-number valued functions and inequalities. Chaos Solitons Fractals 2022, 164, 112692. [Google Scholar] [CrossRef]
  64. Khan, M.B.; Othman, H.A.; Santos-García, G.; Saeed, T.; Soliman, M.S. On fuzzy fractional integral operators having exponential kernels and related certain inequalities for exponential trigonometric convex fuzzy-number valued mappings. Chaos Solitons Fractals 2023, 169, 113274. [Google Scholar] [CrossRef]
  65. Khan, M.B.; Guiro, J.L.G. Riemann Liouville fractional-like integral operators, convex-like real-valued mappings and their applications over fuzzy domain. Chaos Solitons Fractals 2023, 177, 114196. [Google Scholar] [CrossRef]
  66. Bede, B. Mathematics of Fuzzy Sets and Fuzzy Logic; Volume 295 of Studies in Fuzziness and Soft Computing; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Althobaiti, A.; Althobaiti, S.; Vivas Cortez, M. The Estimation of Different Kinds of Integral Inequalities for a Generalized Class of Convex Mapping and a Harmonic Set via Fuzzy Inclusion Relations and Their Applications in Quadrature Theory. Axioms 2024, 13, 344. https://doi.org/10.3390/axioms13060344

AMA Style

Althobaiti A, Althobaiti S, Vivas Cortez M. The Estimation of Different Kinds of Integral Inequalities for a Generalized Class of Convex Mapping and a Harmonic Set via Fuzzy Inclusion Relations and Their Applications in Quadrature Theory. Axioms. 2024; 13(6):344. https://doi.org/10.3390/axioms13060344

Chicago/Turabian Style

Althobaiti, Ali, Saad Althobaiti, and Miguel Vivas Cortez. 2024. "The Estimation of Different Kinds of Integral Inequalities for a Generalized Class of Convex Mapping and a Harmonic Set via Fuzzy Inclusion Relations and Their Applications in Quadrature Theory" Axioms 13, no. 6: 344. https://doi.org/10.3390/axioms13060344

APA Style

Althobaiti, A., Althobaiti, S., & Vivas Cortez, M. (2024). The Estimation of Different Kinds of Integral Inequalities for a Generalized Class of Convex Mapping and a Harmonic Set via Fuzzy Inclusion Relations and Their Applications in Quadrature Theory. Axioms, 13(6), 344. https://doi.org/10.3390/axioms13060344

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop