Stability of the Borell–Brascamp–Lieb Inequality for Multiple Power Concave Functions
Abstract
:1. Introduction
2. Preliminaries
2.1. Means of Non-Negative Numbers
2.2. Convex Body
2.3. Power Concave Function and -Convolution of Non-Negative Functions
- (1)
- is concave in for ;
- (2)
- log u is concave in for ;
- (3)
- is convex in for ;
- (4)
- u is quasi-concave, i.e., all its superlevel sets are convex, for ;
- (5)
- u is a non-negative constant in for .
3. Proofs of Theorems 2, 4 and 5
4. Examples of Theorems 2, 4 and 5
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fang, N.; Hu, J.; Zhao, L. From the Brunn-Minkowski inequality to a class of generalized Poincaré-type inequalities for torsional rigidity. J. Geom. Anal. 2024, 34, 114. [Google Scholar] [CrossRef]
- Li, W.; Zhu, B. The affine Convex Lorentz-Sobolev inequalities. J. Geom. Anal. 2024, 34, 30. [Google Scholar] [CrossRef]
- Ma, L.; Zeng, C.; Wang, Y. The log-Minkowski inequality of curvature entropy. Proc. Amer. Math. Soc. 2023, 151, 3587–3600. [Google Scholar]
- Shan, J.; Xu, W.; Yin, L. Lp Blaschke-Santaló and Petty projection inequalities in Gaussian space. Arch. Math. 2024, 122, 331–342. [Google Scholar] [CrossRef]
- Wu, D.; Bu, Z.-H. The measure-comparison problem for polar (p, μ)-centroid bodies. Adv. Appl. Math. 2022, 137, 102332. [Google Scholar] [CrossRef]
- Wu, D.; Guo, P.; Bu, Z.-H. Sylvester-Busemann type functionals with respect to Orlicz centroid bodies. J. Geom. Anal. 2023, 33, 197. [Google Scholar] [CrossRef]
- Groemer, H. Stability of geometric inequalities. In Handbook of Convex Geometry; Gruber, P.M., Wills, J.M., Eds.; Elsevier: Amsterdam, The Netherlands, 1993; pp. 125–150. [Google Scholar]
- Diskant, V.I. Stability of the solution of a Minkowski equation. Sib. Math. J. 1974, 14, 466–473. [Google Scholar]
- Groemer, H. On the Brunn-Minkowski theorem. Geom. Dedicata 1988, 27, 357–371. [Google Scholar] [CrossRef]
- Figalli, A.; Maggi, F.; Pratelli, A. A refined Brunn-Minkowski inequality for convex sets. Ann. Inst. Henri Poincaré 2009, 26, 2511–2519. [Google Scholar] [CrossRef]
- Figalli, A.; Maggi, F.; Pratelli, A. A mass transportation approach to quantitative isoperimetric inequality. Invent. Math. 2010, 182, 167–211. [Google Scholar] [CrossRef]
- Segal, A. Remark on stability of Brunn-Minkowski and isoperimetric inequalities for convex bodies. In Geometric Aspects of Functional Analysis, Lecture Notes in Math; Springer: Berlin/Heidelberg, Germany, 2012; Volume 2050, pp. 381–391. [Google Scholar]
- Kolesnikov, A.V.; Milman, E. Local Lp-Brunn-Minkowski inequalities for p < 1. Mem. Am. Math. Soc. 2022, 277, 78. [Google Scholar]
- Chen, Y. An almost constant lower bound of the isoperimetric coefficient in the KLS conjecture. Geom. Funct. Anal. 2021, 31, 34–61. [Google Scholar] [CrossRef]
- Saker, S.H.; Tunç, C.; Mahmoud, R.R. New Carlson-Bellman and Hardy-Littlewood dynamic inequalities. Math. Inequal. Appl. 2018, 21, 967–983. [Google Scholar] [CrossRef]
- Agarwal, R.P.; Mahmoud, R.R.; Saker, S.H.; Tunç, C. New generalizations of Németh-Mohapatra type inequalities on time scales. Acta Math. Hungar. 2017, 152, 383–403. [Google Scholar] [CrossRef]
- Ghilli, D.; Salani, P. Quantitative Borell-Brascamp-Lieb inequalities for power concave functions. J. Convex Anal. 2017, 24, 857–888. [Google Scholar]
- Henstock, R.; Macbeath, A.M. On the measure of sum sets. I. The theorems of Brunn, Minkowski and Lusternik. Proc. Lond. Math. Soc. 1953, 3, 182–194. [Google Scholar] [CrossRef]
- Dinghas, A. Über eine Klasse superadditiver Mengenfunktionale von Brunn-Minkowski-Lusternikschem Typus. Math. Z. 1957, 68, 111–125. [Google Scholar] [CrossRef]
- Brascamp, H.J.; Lieb, E.H. On extensions of the Brunn-Minkowski and Prékopa-Leindler theorems, including inequalities for log concave functions, and with an application to the diffusion equation. J. Funct. Anal. 1976, 22, 366–389. [Google Scholar] [CrossRef]
- Borell, C. Convex set functions in d-space. Period. Math. Hung. 1975, 6, 111–136. [Google Scholar] [CrossRef]
- Prékopa, A. Logarithmic concave measures with application to stochastic programming. Acta Sci. Math. 1971, 32, 301–316. [Google Scholar]
- Leindler, L. On a certain converse of Hölder’s inequality. II. Acta Sci. Math. 1972, 33, 217–223. [Google Scholar]
- Brascamp, H.J.; Lieb, E.H. Some inequalities for Gaussian measures and the long-range order of one-dimensional plasma. In Inequalities; Lieb, E.H., Ed.; Springer: Berlin/Heidelberg, Germany, 2002; pp. 403–416. [Google Scholar]
- Hardy, G.; Littlewood, J.E.; Pólya, G. Inequalities, 2nd ed.; Cambridge University Press: Cambridge, UK, 1989. [Google Scholar]
- Wu, D.; Qin, M.; Bu, Z.-H. Quantitative stability of Brunn-Minkowski inequalities for the p-torsional rigidity. 2024; submitted. [Google Scholar]
- Bu, Z.-H.; Qin, M.; Wu, D. The functional geometric inequality for the (p, α)-torsional rigidity and its extension in Orlicz spaces. 2024; submitted. [Google Scholar]
- Rockafellar, R.T. Convex Analysis; Princeton Mathematical Series 28; Princeton University Press: Princeton, NJ, USA, 1970. [Google Scholar]
- Strömberg, T. The operation of infimal convolution. Diss. Math. 1996, 352, 1–58. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qin, M.; Zhang, Z.; Luo, R.; Ren, M.; Wu, D. Stability of the Borell–Brascamp–Lieb Inequality for Multiple Power Concave Functions. Axioms 2024, 13, 320. https://doi.org/10.3390/axioms13050320
Qin M, Zhang Z, Luo R, Ren M, Wu D. Stability of the Borell–Brascamp–Lieb Inequality for Multiple Power Concave Functions. Axioms. 2024; 13(5):320. https://doi.org/10.3390/axioms13050320
Chicago/Turabian StyleQin, Meng, Zhuohua Zhang, Rui Luo, Mengjie Ren, and Denghui Wu. 2024. "Stability of the Borell–Brascamp–Lieb Inequality for Multiple Power Concave Functions" Axioms 13, no. 5: 320. https://doi.org/10.3390/axioms13050320
APA StyleQin, M., Zhang, Z., Luo, R., Ren, M., & Wu, D. (2024). Stability of the Borell–Brascamp–Lieb Inequality for Multiple Power Concave Functions. Axioms, 13(5), 320. https://doi.org/10.3390/axioms13050320