A Comprehensive Study of Generalized Lambert, Generalized Stieltjes, and Stieltjes–Poisson Transforms
Abstract
:1. Introduction and Preliminaries
2. The Generalized Lambert Transform and the L-Transform over
2.1. The Generalized Lambert Transform over
- (i)
- , , valid for and .
- (ii)
- , , valid for and .
2.2. The L-Transform over
3. The Generalized Stieltjes Transform over
- (i)
- , , valid for and .
- (ii)
- , , valid for and .
4. The Stieltjes–Poisson Transform over
- (i)
- , , valid for and (when ), or and (when ).
- (ii)
- , , valid for and (when ), or and (when ).
5. Asymptotic Behaviours over
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Raina, R.K.; Srivastava, H.M. Certain results associated with the generalized Riemann zeta functions. Rev. Téc. Ing. Univ. Zulia 1995, 18, 301–304. [Google Scholar]
- Widder, D.V. An inversion of the Lambert transform. Math. Mag. 1950, 23, 171–182. [Google Scholar]
- Goldberg, R.R. Inversions of generalized Lambert transforms. Duke Math. J. 1958, 25, 459–476. [Google Scholar] [CrossRef]
- Negrín, E.R. The Lambert transform on E′(I). Portugal. Math. 1993, 50, 359–363. [Google Scholar]
- Zemanian, A.H. Generalized Integral Transformation, 2nd ed.; Dover: New York, NY, USA, 1987. [Google Scholar]
- Miller, E.L. Convergence properties and an inversion formula for the Lambert transform. Rev. Téc. Ing. Univ. Zulia 1979, 2, 77–94. [Google Scholar]
- Miller, E.L. Summability of power series using the Lambert transform. Rev. Univ. Nac. Tucumán 1978, 28, 89–106. [Google Scholar]
- Pennington, W.B. Widder’s inversion formula for the Lambert transform. Duke Math. 1960, 27, 561–568. [Google Scholar] [CrossRef]
- Carrasco, J.R. The Lambert transform and an inversion formula. Rev. Acad. Ci. Madrid 1959, 53, 727–736. [Google Scholar]
- Goyal, S.P.; Laddha, R.K. On the generalized Riemann zeta functions and the generalized Lambert transform. Ganita Sandesh 1997, 11, 99–108. [Google Scholar]
- Goldberg, R.R. An inversion of the Stieltjes transform. Pacific J. Math. 1958, 8, 213–217. [Google Scholar] [CrossRef]
- Goldberg, R.R.; Varga, R.S. Moebius inversion of Fourier transforms. Duke Math. J. 1956, 24, 553–559. [Google Scholar] [CrossRef]
- Raina, R.K.; Nahar, T.S. A note on a certain class of functions related to Hurwitz zeta function and Lambert transform. Tamkang J. Math. 2000, 31, 49–56. [Google Scholar] [CrossRef]
- Ferreira, C.; López, J. The Lambert transform for small and large values of the transformation parameter. Q. Appl. Math. 2006, 64, 515–527. [Google Scholar] [CrossRef]
- Maan, J.; González, B.J.; Negrín, E.R. On the Generalized Lambert Transform over Lebesgue and Boehmian Spaces. Int. J. Appl. Comput. Math 2023, 9, 103. [Google Scholar] [CrossRef]
- González, B.J.; Negrín, E.R. Approaching the Riemann hypothesis using Salem’s equivalence and inversion formulae of a Widder-Lambert-type transform. Integral Transforms Spec. Funct. 2024, 35, 291–297. [Google Scholar] [CrossRef]
- Stieltjes, T.S. Recherches sur les fractions continues. Ann. Fac. Sci. Toulouse 1894, 8, 1–123. [Google Scholar] [CrossRef]
- Pathak, R.S. Integral Transforms of Generalized Functions and Their Applications; Gordon and Breach Science Publishers: Amsterdam, The Netherlands, 1997. [Google Scholar]
- Karp, D.; Prilepkina, E. Generalized Stieltjes functions and their exact order. J. Class. Anal. 2012, 1, 53–74. [Google Scholar] [CrossRef]
- Yürekli, O. A theorem on the generalized Stieltjes transform and its application. J. Math. Anal. Appl. 1992, 168, 63–71. [Google Scholar] [CrossRef]
- Pathak, R.S.; Debnath, L. Recent developments on Stieltjes transform of generalized functions. Int. J. Math. Math. Sci. 1987, 10, 641–670. [Google Scholar] [CrossRef]
- Maan, J.; Negrín, E.R. On the generalized Stieltjes transform over weighted Lebesgue spaces and distributions of compact support. Rend. Circ. Mat. Palermo II Ser. 2023, 72, 3551–3561. [Google Scholar] [CrossRef]
- Widder, D.V. The Stieltjes transform. Trans. Am. Math. Soc. 1938, 43, 7–60. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Yürekli, O. A theorem on Widder’s potential transform and its applications. J. Math. Anal. Appl. 1991, 154, 585–593. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Singh, S.P. A note on the Widder transform related to the Poisson integral for a half-plane. Intenat. J. Math. Ed. Sci. Tech. 1985, 6, 675–677. [Google Scholar] [CrossRef]
- Widder, D.V. A transform related to the Poisson integral for a half-plane. Duke Math. J. 1966, 33, 355–362. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maan, J.; Negrín, E.R. A Comprehensive Study of Generalized Lambert, Generalized Stieltjes, and Stieltjes–Poisson Transforms. Axioms 2024, 13, 283. https://doi.org/10.3390/axioms13050283
Maan J, Negrín ER. A Comprehensive Study of Generalized Lambert, Generalized Stieltjes, and Stieltjes–Poisson Transforms. Axioms. 2024; 13(5):283. https://doi.org/10.3390/axioms13050283
Chicago/Turabian StyleMaan, Jeetendrasingh, and E. R. Negrín. 2024. "A Comprehensive Study of Generalized Lambert, Generalized Stieltjes, and Stieltjes–Poisson Transforms" Axioms 13, no. 5: 283. https://doi.org/10.3390/axioms13050283
APA StyleMaan, J., & Negrín, E. R. (2024). A Comprehensive Study of Generalized Lambert, Generalized Stieltjes, and Stieltjes–Poisson Transforms. Axioms, 13(5), 283. https://doi.org/10.3390/axioms13050283