Monotonic Random Variables According to a Direction
Abstract
:1. Introduction
2. Preliminaries
- is left corner set decreasing, denoted by LCSD, if
- is right corner set increasing, denoted by RCSI, if
3. Monotonic Dependence According to a Direction
3.1. Definition
3.2. Relationships with Other Multivariate Dependence Concepts
- If for all , we have that
- If for all , we have
- Given , consider, without loss of generality, for and for . Then, we haveIt easily follows that the determinant D in (7) is non-positive.
3.3. Properties
- If , we have
- If , we haveWe consider two subcases:
- (a)
- If , then we have
- (b)
- If , then we have
3.4. Examples
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jogdeo, K. Concepts of dependence. In Encyclopedia of Statistical Sciences; Kotz, S., Johnson, N.L., Eds.; Wiley: New York, NY, USA, 1982; Volume 1, pp. 324–334. [Google Scholar]
- Colangelo, A.; Scarsini, M.; Shaked, M. Some notions of multivariate positive dependence. Insur. Math. Econ. 2005, 37, 13–26. [Google Scholar] [CrossRef]
- Barlow, R.E.; Proschan, F. Statistical Theory of Reability and Life Testing: Probability Models; To Begin With: Silver Spring, MD, USA, 1981. [Google Scholar]
- Block, H.W.; Ting, M.-L. Some concepts of multivariate dependence. Comm. Statist. A Theory Methods 1981, 10, 749–762. [Google Scholar] [CrossRef]
- Block, H.W.; Savits, T.H.; Shaked, M. Some concepts of negative dependence. Ann. Probab. 1982, 10, 765–772. [Google Scholar] [CrossRef]
- Colangelo, A.; Müller, A.; Scarsini, M. Positive dependence and weak convergence. J. Appl. Prob. 2006, 43, 48–59. [Google Scholar] [CrossRef]
- Joe, H. Multivariate Models and Dependence Concepts; Chapman & Hall: London, UK, 1997. [Google Scholar]
- Quesada-Molina, J.J.; Úbeda-Flores, M. Directional dependence of random vectors. Inf. Sci. 2012, 215, 67–74. [Google Scholar] [CrossRef]
- Kimeldorf, G.; Sampson, A.R. A framework for positive dependence. Ann. Inst. Statist. Math. 1989, 41, 31–45. [Google Scholar] [CrossRef]
- Lehmann, E.L. Some concepts of dependence. Ann. Math. Statist. 1966, 37, 1137–1153. [Google Scholar] [CrossRef]
- Shaked, M. A general theory of some positive dependence notions. J. Multivariate Anal. 1982, 12, 199–218. [Google Scholar] [CrossRef]
- Karlin, S.; Rinott, Y. Classes of orderings of measures and related correlation inequalities. I. Multivariate totally positive distributions. J. Multivariate Anal. 1980, 10, 467–498. [Google Scholar] [CrossRef]
- Harris, R. A multivariate definition for increasing hazard rate distribution functions. Ann. Math. Statist. 1970, 41, 713–717. [Google Scholar] [CrossRef]
- Popović, B.V.; Ristić, M.M.; Genç, A.İ. Dependence properties of multivariate distributions with proportional hazard rate marginals. Appl. Math. Model. 2020, 77, 182–198. [Google Scholar] [CrossRef]
- Quesada-Molina, J.J.; Úbeda-Flores, M. Monotonic in sequence random variables according to a direction. University of Almería: Almería, Spain, 2024; to be submitted. [Google Scholar]
- Nelsen, R.B. An Introduction to Copulas, 2nd ed.; Springer: New York, NY, USA, 2006. [Google Scholar]
- de Amo, E.; Quesada-Molina, J.J.; Úbeda-Flores, M. Total positivity and dependence of order statistics. AIMS Math. 2023, 8, 30717–30730. [Google Scholar] [CrossRef]
- Johnson, N.L.; Kotz, S. Distributions in Statistics: Continuous Multivariate Distributions; John Wiley & Sons: New York, NY, USA, 1972. [Google Scholar]
- Müller, A.; Scarsini, M. Archimedean copulae and positive dependence. J. Multivar. Anal. 2005, 93, 434–445. [Google Scholar] [CrossRef]
- Kingman, J.F.C. A convexity property of positive matrices. Quart. J. Math. Oxford 1961, 12, 283–284. [Google Scholar] [CrossRef]
- de Amo, E.; Rodríguez-Griñolo, M.R.; Úbeda-Flores, M. Directional dependence orders of random vectors. Mathematics 2024, 12, 419. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Quesada-Molina, J.J.; Úbeda-Flores, M. Monotonic Random Variables According to a Direction. Axioms 2024, 13, 275. https://doi.org/10.3390/axioms13040275
Quesada-Molina JJ, Úbeda-Flores M. Monotonic Random Variables According to a Direction. Axioms. 2024; 13(4):275. https://doi.org/10.3390/axioms13040275
Chicago/Turabian StyleQuesada-Molina, José Juan, and Manuel Úbeda-Flores. 2024. "Monotonic Random Variables According to a Direction" Axioms 13, no. 4: 275. https://doi.org/10.3390/axioms13040275
APA StyleQuesada-Molina, J. J., & Úbeda-Flores, M. (2024). Monotonic Random Variables According to a Direction. Axioms, 13(4), 275. https://doi.org/10.3390/axioms13040275