Next Article in Journal
Generalized Limit Theorem for Mellin Transform of the Riemann Zeta-Function
Previous Article in Journal
Operator Smith Algorithm for Coupled Stein Equations from Jump Control Systems
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

The Enumeration of (⊙,∨)-Multiderivations on a Finite MV-Chain

1
School of Mathematical Sciences, Shahe Campus, Beihang University, Beijing 102206, China
2
School of Mathematics and Statistics, Jiangxi Normal University, Nanchang 330022, China
*
Author to whom correspondence should be addressed.
Axioms 2024, 13(4), 250; https://doi.org/10.3390/axioms13040250
Submission received: 21 February 2024 / Revised: 27 March 2024 / Accepted: 29 March 2024 / Published: 10 April 2024

Abstract

:
In this paper,  ( , ) -multiderivations on an MV-algebra A are introduced, the relations between  ( , ) -multiderivations and  ( , ) -derivations are discussed. The set  MD ( A )  of  ( , ) -multiderivations on A can be equipped with a preorder, and  ( MD ( A ) / , )  can be made into a partially ordered set with respect to some equivalence relation ∼. In particular, for any finite MV-chain  L n ( MD ( L n ) / , )  becomes a complete lattice. Finally, a counting principle is built to obtain the enumeration of  MD ( L n ) .
MSC:
3G20; 06D35; 06B10; 08B26

1. Introduction

The concept of derivation originating from analysis has been delineated for a variety of algebraic structures which come in analogy with the Leibniz rule
d d x ( f g ) = d d x ( f ) g + f d d x ( g ) .
Posner [1] introduced the derivation on prime rings  ( R , + , · )  as a mapping d from R to R such that for all  x , y R :
( 1 ) d ( x · y ) = d ( x ) · y + x · d ( y ) , ( 2 ) d ( x + y ) = d ( x ) + d ( y ) .
It implies that
( 3 ) d ( 1 ) = 0 , ( 4 ) d ( 0 ) = 0 ,
which are the 0-ary version of  ( 1 )  and  ( 2 ) , respectively.
The derivations on lattices  ( L , , )  were defined in [2] by Szász and were developed in [3] by Ferrari as a map d from L to L such that for all elements  x , y  in L:
( i ) d ( x y ) = ( d ( x ) y ) ( x d ( y ) ) , ( i i ) d ( x y ) = d ( x ) d ( y ) .
Xin et al. [4,5] investigated the derivations on a lattice satisfying only condition (i). In fact, a derivation d on L with both the Leibniz rule (i) and the linearity (ii) implies that  d ( x ) = x u  for some  u L  [6] (Proposition 2.5). If u is the maximum of a lattice, then such a derivation is actually the identity. It seems that this is an important reason for the derivations on, for instance, BCI-algebra [7], residuated lattices [8], basic algebra [9], L-algebra [10], and differential lattices [6], which are defined with the unique requirement of the Leibniz rule (i) (for the discussion in detail, cf. Section 2).
The derivation on an MV-algebra (A, ⊕,*, 0) was firstly introduced by Alshehri [11] as a mapping d from A to A satisfying an ( , )-condition:  x , y A ,
d ( x y ) = ( d ( x ) y ) ( x d ( y ) ) ,
where  x y  is defined to be  ( x y ) . Then, several derivations on MV-algebras have been considered in [12,13,14,15]. However, the interplay of the ring operations · and + is more similar to the interplay between the MV-operations ⊙ and ∨ rather than that between the MV-operations ⊙ and ⊕. In fact, the main interplay between · and + in rings is the distributivity of · over +. In MV-algebras, ⊙ distributes over ∨, as in rings, while it is not true that ⊙ distributes over ⊕. It is also true that ⊙ distributes over ∧, but ∨ is preferable because the identity element of ∨ is absorbing for ⊙, that is,  0 x = 0  for any element x in an MV-algebra A, as in rings, while the same is not true for ∧. Therefore, the (⊙, ∨)-derivation on MV-algebras [16] is a nature improvement of Alshehri’s celebrated work [11] of the (⊙, ⊕)-derivation (cf. Section 2 for more discussion).
Let E and F be nonempty sets. A multifunction f E Δ ( F )  is a map (or function) from E into  Δ ( F ) , the collection of nonempty subsets of F. The multifunction [17] is also known as set-valued function [18]. Significantly, multifunctions have many diverse and interesting applications in control problems [19,20] and mathematical economics [21,22]. Motivated by the role played by derivations on MV-algebras and the work of multiderivations on lattices [23], it is imperative to undertake a systematic study of the corresponding algebraic structure for derivations on MV-algebras.
This article is a continuation of work on  ( , ) -multiderivations based on the nature (⊙, ∨)-derivation on MV-algebras [16], that is, a set-valued generalization of point-valued  ( , ) -derivations. Section 2 starts with a review of the  ( , ) -derivations on an MV-algebra A. In Section 3, we first define a natural preorder on  Δ ( A )  that  M N  iff for every  m M  there exists  n N  such that  m n . Then, we introduce  ( , ) -multiderivations on MV-algebras. The relations between  ( , ) -derivations and  ( , ) -multiderivations on an MV-algebra are given (Propositions 5–7). In Section 4, we investigate the set of  ( , ) -multiderivations  MD ( A )  on an MV-algebra A. Let  σ , σ MD ( A ) . Define  σ σ  if  σ ( x ) σ ( x )  for any  x A , and an equivalence relation ∼ on  MD ( A )  by  σ σ  iff  σ σ  and  σ σ . Then,  ( MD ( A ) / , )  is a poset. For an n-element MV-chain  L n , we show that  ( MD ( L n ) / , )  is isomorphic to the complete lattice  Der ( L n ) , the underlying set of  ( , ) -derivations on  L n  (Theorem 1), so we deduce that  | MD ( L n ) / | = | Der ( L n ) | , then [16] (Theorem 3.11) can be applied. Moreover, we define an equivalence relation ∼ on  Δ ( A ) , and present the fact that the poset  Δ ( L n × L 2 ) /  is isomorphic to the complete lattice  Der ( L n + 1 )  (Proposition 11). However, the cardinalities of different equivalence classes with respect to the equivalence relation ∼ are different in general (Example 5). In Section 5, by building a counting principle (Theorem 3) for  ( , ) -multiderivations on an n-element MV-chain  L n , we finally obtain the enumeration of  MD ( L n ) ( 7 · 3 n 1 2 n + 2 + 1 ) / 2 .
Notation. Throughout this paper, A denotes an MV-algebra;  | X |  denotes the cardinality of a set X Δ ( X )  denotes the set of nonempty subsets of a set X; ⊔ means disjoint union;  N  denotes the set of natural numbers; “iff” is the abbreviation for “if and only if”.

2. Preliminaries

Definition 1 
([24]). An algebra (A, ⊕, *, 0) is an MV-algebra if the following axioms are satisfied:
(MV1) (associativity)  x ( y z ) = ( x y ) z .
(MV2) (commutativity)  x y = y x .
(MV3) (existence of the unit 0)  x 0 = x .
(MV4) (involution)  x = x .
(MV5) (maximal element  0 x 0 = 0 .
(MV6) (Łukasiewicz axiom)  ( x y ) y = ( y x ) x .
Define  1 = 0  and the natural order on A as follows:  y x  iff  x y = 0 . Then, the interval  [ a , b ] = { r A a r b }  for any  a , b A  and  a b . Note that A is a bounded distributive lattice with respect to the natural order [24] (Proposition 1.5.1) with 0, 1, and
x y = ( x y ) y , x y = x ( x y ) .
An MV-chain is an MV-algebra which is linearly ordered with respect to the natural order.
Example 1 
([24]). Let  L = [ 0 , 1 ]  be the real unit interval. Define
x y = min { 1 , x + y }   a n d   x   =   1       f o r   a n y   x , y     L .
Then (L,⊕, *, 0) is an MV-chain. Note that  x y = max { 0 , x + y 1 } .
Example 2. 
For every  2 n N + , let
L n = 0 , 1 n 1 , 2 n 1 , , n 2 n 1 , 1 .
Then the n-element subset  L n  is an MV-subalgebra of L.
Lemma 1. 
([24,25]). If A is an MV-algebra, then the following statements are true  x , y , z A :
1
x y x y x x y x y .
2
x y = 0  iff  x = y = 0 x y = 1  iff  x = y = 1 .
3
If  y x , then  y z x z y z x z .
4
If  y x , then  y z x z y z x z .
5
y x  iff  x y .
6
x ( y z ) = ( x y ) ( x z ) .
7
x ( y z ) = ( x y ) ( x z ) .
8
x y z  iff  x y z .
Let  Ω  be an index set. The direct product  i Ω A i  [24] of a family of MV-algebras  A i i Ω  is the MV-algebra with cartesian product of the family and pointwise MV-operations. We denote  A 1 × A 2 × × A n  when  Ω  is a positive integer n. We call  a A  idempotent if  a a = a . Let  B ( A )  be the set of idempotent elements of A and  B 2 n  be the  2 n -element Boolean algebra. Note that  B 4  is actually  L 2 × L 2  [24].
Lemma 2 
([24], Proposition 3.5.3). Let A be a subalgebra of  [ 0 , 1 ] . Let  A + = { x A x > 0 }  and  a = inf A +  be the infimum of  A + . If  a = 0 , then A is a dense subchain of  [ 0 , 1 ] . If  a > 0 , then  A = L n  for some  n 2 .
Defintion 2 
([16]). If A is an MV-algebra, then a map d from A to A is an ( , ) -derivation on A if  x , y A ,
d ( x y ) = ( d ( x ) y ) ( x d ( y ) ) .
Let  Der ( A )  be the set of  ( , ) -derivations on A. For  X = { x 1 , x 2 , , x n }  and a map  d : X X , we shall write d as
x 1 x 2 x n d ( x 1 ) d ( x 2 ) d ( x n ) .
The mappings  I d A  and  0 A , defined by  I d A ( x ) = x  and  0 A ( x ) = 0 ( x A ) , respectively, are  ( , ) -derivations on A. For  u A , the operator  χ ( u ) ( x ) : = u , if x = 1 x . otherwise Der ( A ) . More examples are given in [16].
Proposition 1 
([16]). If A is an MV-algebra and  d Der ( A ) , then the followings hold for all  x , y A :
1
0 = d ( 0 ) .
2
x d ( x ) .
3
If  d ( x ) = x , then  d ( y ) = y  for  y x .
Remark 1. 
Now let us give some explanations of the naturality of an  ( , ) -derivation in Definition 2. The interplay of the ring operations · and + is more similar to the interplay between the MV-operationsandrather than that between the MV-operationsand ⊕.
Next we discuss why we include only Equation (2). Recall that  d ( 0 ) = 0  is the 0-ary version of  d ( x + y ) = d ( x ) + d ( y )  in derivations on a ring. For MV-algebras,  d ( 0 ) = 0  is the 0-ary version of (a); see Proposition 1 (1).  d ( 1 ) = 0  is the 0-ary version of  d ( x · y ) = d ( x ) · d ( y )  in derivations on a ring. Hence, it seems that the most faithful and natural derivation notion on A as a translation of the ring-theoretic notion of derivation (cf. Introduction) would include:
(a) 
d ( x y ) = ( d ( x ) y ) ( x d ( y ) ) ,
(b) 
d ( 1 ) = 0 ,
(c) 
d ( x y ) = d ( x ) d ( y ) ,
(d) 
d ( 0 ) = 0 .
However, (b) and (c) imply that d is trivial (note that (a) is automatically assumed).
Lemma 3. 
If A is an MV-algebra and  d : A A  is a map satisfying (a), (b) and (c) for any  x , y A . Then,  d = 0 A .
Proof. 
Assume  x y , it follows from (c) that  d ( y ) = d ( x y ) = d ( x ) d ( y )  and thus  d ( x ) d ( y ) . Together with (b)  d ( 1 ) = 0 , we have  d ( x ) = 0  for any  x A  since  x 1 . Hence,  d = 0 A . □
Next, we consider what will happen if the condition (b′)  d ( 1 ) = 1  replaces (b)  d ( 1 ) = 0 .
Lemma 4. 
If  d : A A  is a mapping from an MV-algebra A to A with (a) and (b′) for any  x , y A , then,  d = I d A .
Proof. 
Assume d satisfies (a) and (b′). We obtain that d satisfies Proposition 1 (3) since d satisfies (a). Both with (b′)  d ( 1 ) = 1 , we obtain  d ( x ) = x  for any  x A . Therefore,  d = I d A . □
Recall that for a given  a A , a principal  ( , ) -derivation  d a  on A [16] is defined by  d a ( x ) : = a x  for all  x A . An  ( , ) -derivation d is isotone [16] if  x , y A , y x  implies that  d ( y ) d ( x ) . Note that  0 A  and  I d A  are both principal and isotone. More generally, we obtain the following.
Proposition 2 
([16] (Proposition 3.19)). Let A be an MV-algebra and d be a map satisfying (a) and (b”). Then, the followings are equivalent:
1
d is isotone;
2
d ( 1 ) x = d ( x )  for all  x A ;
3
d ( x ) d ( y ) = d ( x y ) .
If d satisfies (b), then the principal derivations on MV-algebra A will not be included, expect  0 A . Even identity derivations  I d A  will not be within our scope of consideration. Hence, the scope of the study will be significantly narrowed.
Remark 2. 
Note that d is isotone if d satisfies (c). In fact, if  x y , then  d ( y ) = d ( x y ) = d ( x ) d ( y )  and thus  d ( x ) d ( y ) . The isotone case is a special case of d, thus the scope of research will be narrowed. This case has been partially studied in [16], Section 3.3.
Therefore, we use the derivation meaning from Definition 2 in our series papers since [16] on.

3.  ( , ) -Multiderivations on an MV-Algebra

Let X and Y be two nonempty sets. Recall that a set-valued function or multivalued function (for short, multifunction) F between X and Y is a map  F : X Δ ( Y ) . The set  F ( x )  is called the image of x under F (cf. [26], Appendix A).
Definition 3. 
Let A be an MV-algebra and  M , N Δ ( A ) . We define four binary operations  , , ,  and an unary operation * on  Δ ( A )  by:
M N = { m n m M ,   n N } and M = { m m M }
where  { , , , } .
Remark 3. 
1
Note that  M N  means the pointwise  m n  operation from Equation (1) of sets, which is different from the supremum of M and N.  M N  has a similar meaning.
2
We abbreviate  M { x }  and  { x }  by  M x  and  x , respectively. But if  { x }  appears by itself such as  M { x } , we still use  { x } .
We define a binary relation  M N  iff for every  m M  there exists  n N  such that  m n . Denote  M N  if  M N  and  M N .
Then, ⪯ is a preorder on  Δ ( A ) . In fact, the reflexivity and transitivity of ⪯ are clear. However, ⪯ does not satisfy antisymmetry in general. In fact, ⪯ satisfies antisymmetry iff the MV-algebra A is trivial: If A is trivial, we have  Δ ( A ) = { { 0 } }  and  { 0 } { 0 } . Hence, ⪯ satisfies antisymmetry. Conversely, suppose A is nontrivial, we have  A { 1 } , but  { 1 } A  and  A { 1 } , a contradiction.
Lemma 5. 
Let A be an MV-algebra and  x , a , b , c , e , f A . Then, the followings hold:
1
If  x b c , then there exists  t A  such that  t b  and  x = t c .
2
If  x b c , then there exist  t , s A  such that  t b , s c  and  x = t s .
3
[ a , b ] c = [ a c , b c ] .
4
[ a , b ] [ e , f ] = [ a e , b f ] .
Proof. 
( 1 )  Assume  x b c , then
x = ( b c ) x = ( b c ) ( ( b c ) x ) = b ( ( b c ) x ) c .
Thus, we may choose  t = b ( ( b c ) x ) .
( 2 )  Assume  x b c . Recall that A is a distributive lattice. So
x = ( b c ) x = ( b x ) ( c x ) .
Hence, we can obtain  x = t s  by taking  t = b x , s = c x .
( 3 )  For each  x [ a , b ] , we obtain  a c x c b c  by Lemma 1 (4). Thus,  [ a , b ] c [ a c , b c ] . It suffices to prove that  [ a c , b c ] [ a , b ] c . For any  a c x b c , by (1) there is  t = b ( ( b c ) x ) b  such that  x = t c . If we can prove  a t , then the result follows immediately. Note that
t = b ( ( b c ) x ) = b ( b c x ) = b ( c x ) .
Since  a c x , we have  a c x  by Lemma 1 (8). Together with  a b , we obtain  a b ( c x ) = t . Thus, we conclude that  [ a , b ] c = [ a c , b c ] .
( 4 )  For any  t [ a , b ] , s [ e , f ] , we have  a e t s b f  by Lemma 1 (3). Thus,  [ a , b ] [ e , f ] [ a e , b f ] . It is enough to prove that  [ a e , b f ] [ a , b ] [ e , f ] . For any  a e x b f , there exist  t , s A  such that
t = b x b , s = f x f and x = t s
by (2). If we can prove  a t  and  e s , then the result follows. Note that since  a b  and  a a e x , we have  a b x = t . Similarly,  e s . Therefore,  [ a e , b f ] = [ a , b ] [ e , f ] . □
The following result holds for any MV-algebra A since it is a distributive lattice under the natural order.
Lemma 6 
([23] (Lemma 2.1)). Let L be a lattice and  M , N , P , Q Δ ( L ) . Then, the following statements hold:
1
M N M M N .
2
If  M N  and  P Q , then  M P N Q  and  M P N Q . In particular,  M N  implies  M P N P .
3
M M M , M M M . If M is a sublattice of L, then  M = M M .
4
M N = N M .
5
( M N ) P = M ( N P ) .
6
If  M N M , then  N M .
7
If L is distributive, then  ( M N ) P ( M P ) ( N P ) .
Remark 4. 
1
Note that the converse inclusion of Lemma 6 (3), i.e.,  M M M  and  M M M , does not hold in general. For example, consider the Boolean lattice  B 4 = { 0 , a , b , 1 }  (see Figure 1),  M = { a , b } B 4 , then  0 = a b M M  and  1 = a b M M , but  0 , 1 M .
2
The converse of Lemma 6 (6), i.e.,  N M  implies  M N M  may not hold. For example, in  L 3 , let  N = { 0 , 1 2 } , M = { 0 , 1 } . We have  N M  but  M N = { 0 , 1 2 , 1 } M .
3
The converse inclusion of Lemma 6 (7) holds if P is a singleton but need not hold in general. This is slightly different from [23]. For example, let  B 8 = { 0 , a , b , c , u , v , w , 1 }  be the 8-element Boolean lattice as Figure 2 M = { u } , N = { w }  and  P = { a , b , c } . We can check that  u = a b = ( u a ) ( w b ) ( M P ) ( N P )  but  u P = ( M N ) P .
According to Lemma 1, one obtains
Lemma 7. 
Assume that A is an MV-algebra,  M , N , P , Q Δ ( A ) , and  m M . Then, the following statements hold:
1
If  M N  and  P Q , then  M P N Q  and  M P N Q . In particular,  M N  implies  M P N P  and  M P N P .
2
m ( P Q ) = ( m P ) ( m Q ) .
3
m ( P Q ) = ( m P ) ( m Q ) .
4
M N M N M M N M N .
5
If  M N M , then  N M .
Proof. 
( 1 )  Suppose  M N  and  P Q . For any  x = m p M P , there are  n N  and  q Q  such that  m n  and  p q . It follows from Lemma 1 (4) that  m p m q n q , where  n q N Q . Thus,  M P N Q . Similarly, we have  M P N Q . In particular, we obtain  M P N P  and  M P N P .
( 2 )  For any  p P  and  q Q , we have  m ( p q ) = ( m p ) ( m q ) ( m P ) ( m Q )  by Lemma 1 (7). Thus,  m ( P Q ) ( m P ) ( m Q ) . The reverse inclusion can be verified similarly. Therefore,  m ( P Q ) = ( m P ) ( m Q ) .
(3) We have  x m ( P Q ) , iff there is  y P Q  such that  x = m y , iff there is  y P  or  y Q  such that  x = m y , iff  x m P  or  x m Q , iff  x ( m P ) ( m Q ) . Hence,  m ( P Q ) = ( m P ) ( m Q ) .
( 4 )  For any  m M  and  n N , we know  m n m n m m n m n  by Lemma 1 (1). The result follows immediately.
( 5 )  Assume  M N M , then for any  n N , there exists  m M  such that  m n M . So by Lemma 1 (1) we obtain  n m n . Therefore,  N M . □
To study whether (Δ(A), ⊕, *, {0}) is an MV-algebra, we first give
Lemma 8. 
If A is an MV-algebra, then, for any  M , N , P Δ ( A ) , the followings hold:
1
( M N ) P = M ( N P ) .
2
M N = N M .
3
M 0 = M .
4
M = M .
5
M 0 = { 0 } .
Proof. 
(1)–(5) follow from (MV1)–(MV5), respectively. □
Remark 5. 
Since (MV1)–(MV5) are satisfied on  Δ ( A ) , it is natural to consider whether (MV6)  ( M N ) N = ( N M ) M  holds on  Δ ( A ) . The answer is no. For example, let  M = { 1 2 }  and  N = { 0 , 1 }  on three-element MV-chain  L 3 . It is easy to see that  ( 1 2 { 0 , 1 } ) { 0 , 1 } = { 0 , 1 2 } { 0 , 1 } = { 0 , 1 2 , 1 } { 1 2 , 1 } = ( { 0 , 1 } 1 2 ) 1 2 . That is,  ( M N ) N ( N M ) M .
If A is a nontrivial MV-algebra, and  φ : A Δ ( A )  is a multifunction on A φ  is called additive and negative, if  φ ( x y ) = φ ( x ) φ ( y )  and  φ ( x ) = ( φ ( x ) )  for all  x , y A , respectively.
Proposition 3. 
Let A be an MV-algebra and  φ : A Δ ( A )  be a multifunction on A. If φ is additive and negative, then (φ(A), ⊕, *, φ(0)) is an MV-algebra, where  φ ( A ) = { φ ( x ) x A } .
Proof. 
It is sufficient to prove (MV3), (MV5) and (MV6), since we know that (φ(A), ⊕, *, φ(0)) satisfies (MV1), (MV2) and (MV4) by Lemma 8. Since  φ  is additive and negative, it follows that  φ ( x ) φ ( 0 ) = φ ( x 0 ) = φ ( x )  and  φ ( x ) φ ( 0 ) = φ ( x 0 ) = φ ( 0 ) = φ ( 0 ) . Furthermore,  ( φ ( x ) φ ( y ) ) φ ( y ) = φ ( x y ) φ ( y ) = φ ( ( x y ) y ) = φ ( ( y x ) x ) = φ ( y x ) φ ( x ) = ( φ ( y ) φ ( x ) ) φ ( x )  for any  x , y A . Thus, (φ(A), ⊕, *, φ(0)) is an MV-algebra. □
Now let us define the  ( , ) -multiderivation.
Definition 4. 
If A is an MV-algebra, a multifunction  σ : A Δ ( A )  is called an ( , ) -multiderivation on A if
σ ( x y ) = ( σ ( x ) y ) ( x σ ( y ) )
for all  x , y A . Denote the set of  ( , ) -multiderivations on A by  MD ( A ) .
Example 3. (i) Consider the MV-chain  L 4 . We define a multifunction σ on  L 4  by  σ ( 0 ) = { 0 } σ ( 1 3 ) = { 0 , 1 3 } σ ( 2 3 ) = { 0 , 2 3 } , σ ( 1 ) = { 0 , 1 } . Then, we can check σ is an  ( , ) -multiderivation on  L 4 . In fact,  σ = β 1  (see Corollary 1).
(ii) Consider the standard MV-algebra  L = [ 0 , 1 ] . We define a multifunction  σ : L Δ ( L )  by  σ ( x ) = [ 0 , x ]  for all  x L . Then, we can verify that σ is an  ( , ) -multiderivation on L (see Proposition 6).
(iii) Let A be an MV-algebra and  S A  be a subalgebra of A. Define a multifunction  σ S  on A by  σ S ( x ) = x S x A , then  σ S MD ( A ) , which is called aprincipal  ( , ) -multiderivation. In fact, for any  x , y A , since the subalgebra S must be a sublattice of A, it follows that  S = S S  by Lemma 6 (3). According to Lemma 7 (2), we immediately have  σ S ( x y ) = x y S = x y ( S S ) = ( x y S ) ( x y S ) = ( σ S ( x ) y ) ( x σ S ( y ) ) .
Proposition 4. 
If A is an MV-algebra and  σ MD ( A ) . Then, the followings hold for all  x , y A ,
1
σ ( 0 ) = { 0 } .
2
σ ( x ) { x } .
3
σ ( x ) σ ( y ) σ ( x y ) σ ( x ) σ ( y ) .
4
x σ ( 1 ) σ ( x ) .
5
If I is a lower set of A, then  σ ( x ) I  holds for any  x I .
6
Let  1 σ ( 1 ) . Then,  x σ ( x ) .
Proof. 
(1) Taking  x = y = 0  in Equation (3), we obtain  σ ( 0 ) = σ ( 0 0 ) = ( σ ( 0 ) 0 ) ( 0 σ ( 0 ) ) = { 0 } .
(2) Since  x x = 0 , we know that  { 0 } = σ ( 0 ) = σ ( x x ) = ( σ ( x ) x ) ( x σ ( x ) )  by  ( 1 ) . So  σ ( x ) x = { 0 }  and we obtain  σ ( x ) { x } .
(3) By Lemma 6 (3), we have  σ ( x ) σ ( y ) ( σ ( x ) σ ( y ) ) ( σ ( x ) σ ( y ) ) . Moreover,  σ ( x ) σ ( y ) σ ( x ) y  and  σ ( x ) σ ( y ) x σ ( y )  by (2) and Lemma 7 (1). Thus,
σ ( x ) σ ( y ) ( σ ( x ) σ ( y ) ) ( σ ( x ) σ ( y ) ) ( σ ( x ) y ) ( x σ ( y ) ) = σ ( x y )
by Lemma 6 (2). Moreover, by Lemma 7 (1) and Lemma 6 (2) we have
σ ( x y ) = ( σ ( x ) y ) ( x σ ( y ) ) σ ( x ) σ ( y ) .
(4) Since  x = 1 x , it follows that  σ ( x ) = σ ( 1 x ) = σ ( x ) ( x σ ( 1 ) )  by Equation (3). Then, we can obtain  x σ ( 1 ) σ ( x )  by Lemma 6 (6).
(5) For any  x I , we know  σ ( x ) { x }  by (2). It induces that  y x  holds for any  y σ ( x ) . Then,  y I  since I is a lower set. Thus,  σ ( x ) I .
(6) Since  1 σ ( 1 ) , there must exist  y σ ( x )  such that  x = x 1 y  by (4). Moreover, by (2) we know  y x  always holds for y. Hence, we obtain  x = y  and  x σ ( x ) . □
Now, let us explore the relations between  ( , ) -derivation d and  ( , ) -multiderivation  σ  on A.
On the one hand, given an  ( , ) -derivation d on A, how can we construct an  ( , ) -multiderivation on A? We get started with a direct construction. Assume  d Der ( A ) . Define a multifunction  α : A Δ ( A )  as follows:
α ( x ) = { d ( x ) } for any x A .
Then,  α MD ( A ) .
Proposition 5. 
If A is an MV-algebra and  d Der ( A ) , define a multifunction  β : A Δ ( A )  on A as follows
β ( x ) : = { 0 , d ( x ) } .
Then,  β MD ( A )  iff  d ( x ) y = x d ( y )  holds for any  x , y A  with  d ( x ) y > 0  and  x d ( y ) > 0 .
Proof. 
Assuming  β MD ( A ) , it follows that
{ 0 , d ( x y ) } = β ( x y ) = ( β ( x ) y ) ( x β ( y ) ) = ( { 0 , d ( x ) } y ) ( x { 0 , d ( y ) } ) = { 0 , d ( x ) y } { 0 , x d ( y ) } = { 0 , d ( x ) y , x d ( y ) , d ( x y ) }
for any  x , y A . From the chain of equalities, we know that  d ( x ) y , x d ( y ) { 0 , d ( x y ) } . If both  d ( x ) y > 0  and  x d ( y ) > 0 , then  d ( x ) y = d ( x y ) = x d ( y ) .
Conversely, let  x , y A .
Then,
β ( x y ) = { 0 , d ( x y ) }
and
( β ( x ) y ) ( x β ( y ) ) = { 0 , d ( x ) y , x d ( y ) , d ( x y ) } .
There are only two cases:
If  d ( x ) y = 0  or  x d ( y ) = 0 , without loss of generality, assume that  d ( x ) y = 0 . Then,
d ( x y ) = 0 ( x d ( y ) ) = x d ( y ) .
Thus,  ( β ( x ) y ) ( x β ( y ) ) = { 0 , d ( x y ) } = β ( x y ) .
If  d ( x ) y = x d ( y ) , then
d ( x y ) = d ( x ) y = x d ( y ) .
Thus,  ( β ( x ) y ) ( x β ( y ) ) = { 0 , d ( x y ) } = β ( x y ) .
Consequently, we infer  β MD ( A ) . □
Corollary 1. 
If A is an MV-algebra, and  a A , a multifunction  β a : A Δ ( A )  on A is defined as follows
β a ( x ) : = { 0 , d a ( x ) } .
Then  β a MD ( A ) .
Proof. 
If  d = d a  in Proposition 5, then for any  x , y A , we know  d ( x ) y = a x y = x d ( y ) . Hence, we infer that  β a MD ( A )  by Proposition 5. □
Remark 6. 
The conclusion is not necessarily true for general  ( , ) -derivations. For example,  d = 0 1 3 2 3 1 0 1 3 2 3 2 3  is an  ( , ) -derivation on  L 4 . But  β ( 2 3 1 ) = { 0 , 2 3 } { 0 , 1 3 , 2 3 } = { 0 , 2 3 } { 0 , 1 3 } = ( { 0 , 2 3 } 1 ) ( 2 3 { 0 , 2 3 } ) = ( β ( 2 3 ) 1 ) ( 2 3 β ( 1 ) ) .
Proposition 6. 
Let A be an MV-algebra and  d Der ( A ) . Define a multifunction  γ : A Δ ( A )  on A as follows
γ ( x ) : = [ 0 , d ( x ) ] .
Then  γ MD ( A ) .
Proof. 
Since  d Der ( A ) , we obtain  γ ( x y ) = [ 0 , d ( x y ) ] = [ 0 , ( d ( x ) y ) ( x d ( y ) ) ] . Moreover, we have
( γ ( x ) y ) ( x γ ( y ) ) = ( [ 0 , d ( x ) ] y ) ( x [ 0 , d ( y ) ] ) ( Definition   3 ) = [ 0 , d ( x ) y ] [ 0 , x d ( y ) ] ( Lemma   5 ( 3 ) ) = [ 0 , ( d ( x ) y ) ( x d ( y ) ) ] . ( Lemma   5 ( 4 ) )
Hence, we conclude that  γ MD ( A ) . □
On the other hand, if there is a given  ( , ) -multiderivation  σ  on A, then we can construct a corresponding  ( , ) -derivation d from  σ . We need the following lemma to prepare.
Lemma 9. 
If A is an MV-algebra, and  M , N Δ ( A ) , if both  sup ( M )  and  sup ( N )  exist, then
1
sup ( M N )  exists and  sup ( M N ) = sup ( M ) sup ( N ) .
2
sup ( M N )  exists and  sup ( M N ) = sup ( M ) sup ( N ) .
Proof. 
Denote  m 0 = sup ( M )  and  n 0 = sup ( N ) .
(1) Firstly, we prove that  m 0 n 0  is an upper bound of  M N . For any  m M  and  n N , we immediately have  m n m 0 n 0  by Lemma 1 (4). Hence, it is enough to show that  m 0 n 0  is the least upper bound. Assume that  m n x  for all  m M , n N . It tells us that  m n x  and so  m 0 n x  by Lemma 1 (8) and the definition of least upper bound. Then, we have  m 0 n x . Similarly, we obtain  n m 0 x  and  n 0 m 0 x . Thus, we can prove that  m 0 n 0 x . Finally,  sup ( M N ) = sup ( M ) sup ( N )  holds.
(2) For any  m M  and  n N , we have  m m 0  and  n n 0 . So,  m n m 0 n 0  and  sup ( M N ) sup ( M ) sup ( N ) . Conversely, since  M N M , N , it implies that  sup ( M N ) sup ( M ) , sup ( N )  and thus  sup ( M N ) sup ( M ) sup ( N ) . Therefore,  sup ( M N ) = sup ( M ) sup ( N ) . □
Proposition 7. 
If A is an MV-algebra,  σ MD ( A ) , and  sup ( σ ( x ) )  exists for any  x A , define  sup σ : A A  by  ( sup σ ) ( x ) = sup ( σ ( x ) ) . Then,  sup σ Der ( A ) .
Proof. 
For any  x , y A , we have
( sup σ ) ( x y ) = sup ( σ ( x y ) ) ( Definition of sup σ ) = sup ( ( σ ( x ) y ) ( x σ ( y ) ) ) ( Equation ( 3 ) ) = sup ( σ ( x ) y ) sup ( x σ ( y ) ) ( Lemma   9 ( 2 ) ) = ( sup ( σ ( x ) ) sup { y } ) ( sup { x } sup ( σ ( y ) ) ) ( Lemma   9 ( 1 ) ) = ( ( sup σ ) ( x ) y ) ( x ( sup σ ) ( y ) ) . ( Definition of sup σ )
Hence,  sup σ Der ( A ) . □
Remark 7. 
( 1 )  If MV-algebra A is complete, then  sup σ  is always an  ( , ) -derivation on A for an arbitrary  ( , ) -multiderivation σ on A.
( 2 )  If  σ MD ( A )  and the image  σ ( x )  is finite for any  x A , then  sup σ  is always an  ( , ) -derivation on A.
Next, we construct  ( , ) -multiderivations on subalgebras and direct products of MV-algebras from a given  ( , ) -multiderivation.
Proposition 8. 
Let A be an MV-algebra and  σ MD ( A ) . If S is a subalgebra of A and  σ ( x ) S  for any  x S , then  σ | S MD ( S ) .
Proof. 
For any  x , y S , we know that  σ ( x ) , σ ( y ) S  and so  σ ( x ) y , x σ ( y ) S . Then,
σ | S ( x y ) = ( σ ( x ) y ) ( x σ ( y ) ) = ( σ | S ( x ) y ) ( x σ | S ( y ) ) S S = S
by Lemma 6 (3). Thus,  σ | S MD ( S ) . □
Definition 5. 
If  Ω  is a nonempty set, for each  i Ω , let  σ i  be a multifunction on  A i .  The direct product of  { σ i } i Ω i Ω σ i : i Ω A i Δ ( i Ω A i )  is defined by
i Ω σ i ( g ) = i Ω σ i ( g ( i ) ) = { ( x i ) i Ω x i σ i ( g ( i ) ) }
for all  g i Ω A i .
Lemma 10. 
Let Ω be a nonempty set,  A i i Ω  be a family of MV-algebras, and  M i , N i Δ ( A i ) . Then,  i Ω ( M i N i ) = i Ω M i i Ω N i .
Proof. 
We first show that  i Ω ( M i N i ) i Ω M i i Ω N i . For any  x i Ω ( M i N i ) , there are  m i M i , n i N i  for any  i Ω  such that  x = ( m i n i ) i Ω . Denote  m = ( m i ) i Ω , n = ( n i ) i Ω , we have  x = ( m i n i ) i Ω = ( m i ) i Ω ( n i ) i Ω = m n i Ω M i i Ω N i . And vice versa. Therefore,  i Ω ( M i N i ) = i Ω M i i Ω N i . □
Proposition 9. 
Assume that Ω is a nonempty set and  A i i Ω  is a family of MV-algebras. Then,  σ i MD ( A i )  for any  i Ω  iff  i Ω σ i MD ( i Ω A i ) .
Proof. 
Denote  A = i Ω A i  and  σ = i Ω σ i . For all  x = ( x i ) i Ω , y = ( y i ) i Ω A , we have
σ ( x y ) = σ ( ( x i ) i Ω ( y i ) i Ω ) = i Ω σ i ( x i y i ) ,
( σ ( x ) y ) ( x σ ( y ) ) = i Ω σ i ( x i ) ( y i ) i Ω ( x i ) i Ω i Ω σ i ( y i ) = i Ω ( σ i ( x i ) y i ) i Ω ( x i σ i ( y i ) ) = i Ω ( ( σ i ( x i ) y i ) ( x i σ i ( y i ) ) ) . ( Lemma   10 )
We can immediately obtain  σ i MD ( A i )  for all  i Ω  iff  σ ( x y ) = ( σ ( x ) y ) ( x σ ( y ) )  by Equation (3). □
Finally, we investigate the condition when an  ( , ) -multiderivation  σ  is isotone.
Definition 6. 
If A is an MV-algebra, and  σ MD ( A ) , we say σ is isotone if  σ ( x ) σ ( y )  whenever  x y .
Proposition 10. 
If A is an MV-algebra, and  σ MD ( A ) , then σ is isotone iff  σ ( x y ) σ ( x ) y  for all  x , y A .
Proof. 
Assume  σ  is isotone, then,
σ ( x y ) σ ( x y ) σ ( x y ) σ ( x ) σ ( y ) σ ( x ) y
by Lemma 6 (3) and (2). Conversely, assume that  σ ( x y ) σ ( y ) x  for all  x , y A . Let  x , y A  with  x y . Then,  σ ( x ) = σ ( y x ) σ ( y ) x . Thus, for every  a σ ( x )  there is  b σ ( y )  such that  a b x . Hence,  a b  and so  σ ( x ) σ ( y ) . □
Corollary 2. 
If A is an MV-algebra, and  S A  is a subalgebra of A, then the principal  ( , ) -multiderivation  σ S  is isotone.
Proof. 
Method 1: Let  x , y A  and  x y . For any  s S , Lemma 1 (4) implies  x s y s . Thus,  σ S ( x ) σ S ( y ) .
Method 2: It is enough to verify that  σ S ( x y ) σ S ( x ) y  for all  x , y A  by Proposition 10. For any  s S , Lemma 1 (6) implies
( x y ) s = ( x s ) ( y s ) ( x s ) y .
Thus,  σ S ( x y ) = ( x y ) S ( x S ) y = σ S ( x ) y . □

4. The Order Structure of  ( , ) -Multiderivations on a Finite MV-Chain

Let  MF ( A )  be the set of multifunctions on an MV-algebra A. Define ≼ on  MF ( A )  by:
( σ , σ MF ( A ) ) σ σ   if   σ ( x ) σ ( x ) , x A .
Then, ≼ is a preorder on  MF ( A )  and  0 MF ( A ) σ 1 MF ( A )  for any  σ MF ( A ) , where  0 MF ( A )  and  1 MF ( A )  are defined by  0 MF ( A ) ( x ) : = { 0 }  and  1 MF ( A ) ( x ) : = { 1 }  for any  x A , respectively. For any  σ MD ( A ) , we have  0 MF ( A ) σ I d MF ( A ) , where  I d MF ( A ) ( x ) = { x } , and it is plain that  { 0 } σ ( x ) { x } x A .
For  σ , σ MF ( A ) , set
σ σ ( x ) : = σ ( x ) σ ( x ) ,
for any  x A  and  { , , , } .
Remark 8. 
1
Note that  σ ( x ) σ ( x )  is meant in the sense of Definition 3, rather than the supremum of  σ ( x )  and  σ ( x ) .
2
Note that  σ σ  is an upper bound of σ and  σ  by Lemma 6 (1) but is not necessarily a least upper bound. For example, define  σ MF ( B 4 )  by  σ ( a ) = σ ( b ) = { a , b } σ ( 0 ) = { 0 } , σ ( 1 ) = { 1 } . Then,
( σ σ ) ( a ) = ( σ σ ) ( b ) = { a , b , 1 } .
It is clear that both σ and  σ σ  are upper bounds of σ and σ, but  σ σ σ . In a word,  σ σ  is not a least upper bound of σ and σ.
More generally, let A be an MV-algebra which is not an MV-chain with two incomparable elements  a , b . Define  σ MF ( A )  as  σ ( a ) = σ ( b ) = { a , b } σ ( x ) = { x }  for  x A { a , b } σ σ  is not a least upper bound of σ and σ.
In the sense of category theory, a preordered set P is called complete [27] (Section 8.5) if for every subset S of P both  sup S  and  inf S  exist (in P). Note that  sup S  and  inf S  need not be unique. For example, let  P = { a , b }  and define a preorder ⪯ as follows:  a b b a . Take  S = { a , b } . Then, both a and b are  sup S , also  inf S . Therefore, we use “a” rather than “the” concerning  sup S  and  inf S  in the following.
Let  { σ i } i Ω  be a nonempty family of multifunctions on an MV-algebra A. Define a multifunction  i Ω σ i  on A, by
i Ω σ i ( x ) : = i Ω σ i ( x ) ,
for any  x A .
Analogue to [28] (Theorem I.4.2), we have the following.
Lemma 11. 
If A is an MV-algebra, then  ( MF ( A ) , , 0 MF ( A ) , 1 MF ( A ) )  is a complete bounded preordered set, where  i Ω σ i  is a least upper bound of  { σ i } i Ω , and  σ σ  is a greatest lower bound of σ and  σ , respectively.
Proof. 
Note that  0 MF ( A ) σ 1 MF ( A )  for any  σ MF ( A ) .
Let  { σ i } i Ω  be a nonempty family of  MF ( A ) . Then,  σ i i Ω σ i . Now we will prove that  i Ω σ i  is a least upper bound of  { σ i } i Ω . Assume that  σ i η  for every  i Ω . For any  y ( i Ω σ i ) ( x )  where  x A , there exists  k Ω  such that  y σ k ( x ) . Since  σ k ( x ) η ( x ) , there is  z η ( x )  such that  y z , which shows  i Ω σ i η . Therefore,  i Ω σ i  is a least upper bound of  { σ i } i Ω .
Let
X = { λ MF ( A ) λ σ i , i Ω }
be the set of lower bounds of  { σ i } i Ω  in  MF ( A ) . Next, we verify that  λ X λ  is indeed a greatest lower bound of  { σ i } i Ω . For any  i Ω  and  λ X , we have  λ σ i . Thus,  λ X λ σ i  and  λ X λ X . Hence,  λ X λ  is a greatest lower bound of  { σ i } i Ω . Therefore,  MF ( A )  is complete.
For any  σ , σ MF ( A ) , since  σ σ σ , σ , it follows that  σ σ  is a lower bound of  σ  and  σ . To verify that  σ σ  is a greatest lower bound, let  η σ , σ . Then, for any  y η ( x ) ( x A ) , there are  z σ ( x )  and  w σ ( x )  such that  y z  and  y w  by  η ( x ) σ ( x ) , σ ( x ) . Hence,
y z w σ ( x ) σ ( x ) .
Therefore,  η ( x ) σ ( x ) σ ( x ) . Thus,  η σ σ . □
As already mentioned, ⪯ is not always a partial order on  Δ ( A ) , where  M N  iff for each  m M  there exists  n N  such that  m n . The binary relation ∼ on  Δ ( A )  defined by  M N  iff  M N  and  N M  is an equivalence relation. Given  M Δ ( A ) , the equivalence class of M with respect to ∼ will be denoted by  M ¯ . If  M = { x }  is a singleton, then we abbreviate  { x } ¯  by  x ¯ . Thus, we can obtain a partial order ⪯ on  Δ ( A ) /  defined by  M ¯ N ¯  iff  M N . We claim that ⪯ is well defined. In fact, if  M M , N N  and  M N , then  M M N N .
Recall that for a subset M of A, the lower set generated by M [29] is the set
M = { x A there exists m M such that x m } .
Lemma 12. 
Let  M , N Δ ( A ) . Then,  M ¯ = N ¯  iff  M = N .
Proof. 
It is sufficient to show that  M N  iff  M N .
Let  M N . For every  x M , there is  m M  such that  x m . Then,  M N  gives  m n  for some  n N . Hence,  x n  and  x N . Therefore,  M N .
Conversely, assume that  M N . For any  m M , we have  m M N . Thus, there exists  n N  such that  m n . Hence,  M N .
Similarly,  N M  iff  N M . □
Corollary 3. 
In general, let A be an MV-algebra,  M Δ ( A ) , and  a A . Then,  M ¯ = a ¯  iff  sup M  exists and  sup M = a M .
Assume  M ¯ = a ¯ . Then a is an upper bound of M since  M { a } . To prove a is a least upper bound of M, let b be an upper bound of M. Since  { a } M , there exists  m M  such that  a m . Hence,  a m b , which shows  sup M = a M .
Conversely, let  sup M = a M . It suffices to verify that  M = a  by Lemma 12. If  x M , then there is  m M  such that  x m a . It follows that  x a  and  M a . If  x a , then  x a M . Thus,  x M  and  a M . Therefore,  M = a .
Corollary 4. 
Let  L n  with  n 2  and  M Δ ( L n ) . Then,  M ¯ = sup M ¯ .
Proof. 
Observe that  sup M  is exactly  i n 1  for a certain  0 i n 1 . It suffices to verify that  M = sup M  by Lemma 12. Suppose  x M , there is  m M  such that  x m . Since  m sup M , it follows that  x sup M . Hence,  x sup M . Conversely, assume  x sup M , which means  x sup M = i n 1 . Since  sup M M , it follows that  x M . Therefore,  M = sup M  and  M ¯ = sup M ¯ . □
Note that the family of all lower sets of a poset A is a complete lattice by [30] (Example O-2.8). We will prove that the family of all nonempty lower sets of A is also a complete lattice, denoted by  ( L 0 ( A ) , ) .
Corollary 5. 
Let A be an MV-algebra, then  Δ ( A ) /  is isomorphic to the complete lattice  ( L 0 ( A ) , ) .
Proof. 
Since A has a least element 0, the intersection of a family of nonempty lower sets of A is still a nonempty lower set. Therefore,  L 0 ( A )  is a complete lattice.
Define  φ : Δ ( A ) / L 0 ( A )  by  M ¯ M . Lemma 12 shows that  φ  is well defined and injective, and  φ  is also surjective since  M = M  if  M L 0 ( A ) . As discussed in the proof of Lemma 12,  M ¯ N ¯  iff  M N  for all M N Δ ( A ) , which gives both  φ  and  φ 1  are order preserving. Hence,  φ  is an isomorphism. □
Next, we study the order structure on  Δ ( L n ) / . First, we need
Lemma 13. 
Let A be an MV-chain,  M , N Δ ( A ) , and  sup M , sup N  exist.
1
If  M ¯ N ¯ , then  sup M sup N .
2
If  sup M < sup N , then  M ¯ N ¯ .
3
M ¯ = N ¯  iff the following conditions hold:
(a) 
sup M = sup N .
(b) 
sup M M sup N N .
In particular, if A is a finite MV-chain, then  M ¯ = N ¯  iff (a) holds.
Proof. 
(1) Suppose  M ¯ N ¯ , then  M N . For any  m M  there is  n N  such that  m n sup N . According to the definition of  sup M , we have  sup M sup N .
(2) Let  sup M < sup N . Assume on the contrary  M N . Then, there is  m M  such that  m > n  for any  n N . The definition of  sup N  implies  m sup N . Thus,  sup N m sup M , which contradicts the fact that  sup M < sup N .
(3) Assume that  M ¯ = N ¯ . (a) follows from (1).
To prove that  sup M M sup N N , we assume  sup M M . Then, there exists  n 0 N  such that  sup M n 0  by  M N . Since  N M , we have  n 0 sup M . Hence,  n 0 = sup M . Therefore,  sup N = sup M = n 0 N  by (a). Symmetrically,  sup N N sup M M .
Conversely, assume that (a) and (b) hold, it suffices to show that  M = N  by Lemma 12. Assume that  M N ; without loss of generality, there is  y M  but  y N . That is to say, for arbitrary  n N  we have  n < y . So,  sup N N  implies  sup N < y . Since  y M , there is  m M  such that  y m . It follows  sup N < y m < sup M  by the definition of  sup N , which is contrary to  sup M = sup N . Thus,  M ¯ = N ¯ .
Assume A is a finite MV-chain, and (b) always holds. Hence,  M ¯ = N ¯  iff (a) holds. □
Remark 9. 
Note that  sup M = sup N  may not imply  M ¯ N ¯ . For example, let  A = [ 0 , 1 ]  be the standard MV-algebra and  1 2 A . Define  M = 1 2  and  N = { a A 0 a < 1 2 } . Then,  sup M = sup N = 1 2 , but  M ¯ N ¯ , since  1 2 M , there is no  y N  such that  1 2 y .
Example 4. 
Consider the MV-chain  L n  with  n 2 . Then,  Δ ( L n ) /  is order isomorphic to  L n .
Proof. 
Define  f : L n Δ ( L n ) /  by  f ( x ) = x ¯  for any  x L n . If  x ¯ = y ¯ , then  x = sup { x } = sup { y } = y  by Lemma 13 (3). Thus, f is injective. To prove f is surjective, assume  M ¯ Δ ( L n ) / , then  f ( sup M ) = sup M ¯ = M ¯  by Corollary 4.
It is enough to verify that f and  f 1  are order preserving. If  x y , then  f ( x ) = x ¯ y ¯ = f ( y )  since  { x } { y }  and Corollary 4. Conversely, suppose  x ¯ y ¯ , we have  x = sup { x } sup { y } = y  by Lemma 13 (1). Therefore, f is an isomorphism. □
We next investigate the preorder on the set of  ( , ) -multiderivations.
Similar to  Δ ( A ) , we can define an equivalence relation on  MD ( A )  by  σ σ  iff  σ σ  and  σ σ , and define  σ ¯ σ ¯  in  MD ( A ) /  iff  σ σ . Observe that ≼ in  MD ( A ) /  is a well-defined partial order by the hereditary order of ⪯. Clearly,  ( MD ( A ) / , )  is a poset. By the definition of ⪯, we know  σ ¯ = σ ¯  iff  σ ( x ) ¯ = σ ( x ) ¯  for any  x A .
For any  σ MD ( A ) σ : A Δ ( A )  is defined as  ( σ ) ( x ) = σ ( x ) . We claim that  σ ¯ = σ ¯ . In fact,  σ σ  is trivial. For any  y σ ( x ) , there exists  z σ ( x )  such that  y z  by the definition of  σ ( x ) . Therefore,  σ ( x ) σ ( x )  for any  x A  and  σ σ .
Lemma 14. 
If A is an MV-algebra, then:
1
σ σ MD ( A )  for all  σ , σ MD ( A ) .
2
σ MD ( A )  for any  σ MD ( A ) .
Proof. 
(1) Let  σ , σ MD ( A )  and  x , y A . Then, we have
( σ σ ) ( x y ) = σ ( x y ) σ ( x y ) ( Definition of σ σ ) = ( ( σ ( x ) y ) ( x σ ( y ) ) ) ( ( σ ( x ) y ) ( x σ ( y ) ) ) ( σ , σ MD ( A ) ) = ( ( σ ( x ) y ) ( σ ( x ) y ) ) ( ( x σ ( y ) ) ( x σ ( y ) ) ) ( Lemma   6 ( 4 ) and ( 5 ) ) = ( ( σ ( x ) σ ( x ) ) y ) ( x ( σ ( y ) σ ( y ) ) ) ( Lemma   7 ( 2 ) ) = ( ( σ σ ) ( x ) y ) ( x ( σ σ ) ( y ) ) ( Definition of σ σ )
and so  σ σ MD ( A ) .
(2) Assume  σ MD ( A ) . Let  a ( σ ) ( x y ) = σ ( x y ) = ( ( σ ( x ) y ) ( x σ ( y ) ) ) . There exist  x 1 σ ( x )  and  y 1 σ ( y )  such that  a ( x 1 y ) ( x y 1 ) . It follows that
a = a ( ( x 1 y ) ( x y 1 ) ) = ( a ( x 1 y ) ) ( a ( x y 1 ) ) ( Distributivity of A ) = ( b y ) ( x c ) , ( Lemma   5 ( 1 ) )
where  b x 1  and  c y 1 . Hence,  a ( ( σ ) ( x ) y ) ( x ( σ ) ( y ) ) .
Conversely, let  a ( ( σ ) ( x ) y ) ( x ( σ ) ( y ) ) . There exist  x 1 σ ( x )  and  y 1 σ ( y )  such that
a = ( b y ) ( x c ) ( x 1 y ) ( x y 1 ) ,
where  b x 1  and  c y 1 . Thus,  a ( σ ) ( x y ) .
Therefore,  σ MD ( A ) . □
Remark 10. 
When A is an MV-chain,  σ σ MD ( A )  is a least upper bound of σ and  σ  in  MD ( A ) . We know  σ σ  is a least upper bound of σ and  σ  in  MF ( A ) . Note that  MD ( A ) MF ( A )  and the preordered on  MF ( A ) . It suffices to verify that  σ σ σ σ . For all  x A ( σ σ ) ( x ) ( σ σ ) ( x )  is trivial. For any  y ( σ σ ) ( x ) , there exist  z σ ( x )  and  z σ ( x )  such that  y = z z . Since A is an MV-chain,  y = z  or  y = z . Hence,  y ( σ σ ) ( x ) , which implies  ( σ σ ) ( x ) ( σ σ ) ( x ) . Therefore,  ( σ σ ) ( x ) ( σ σ ) ( x )  for all  x A , and hence,  σ σ MD ( A )  is a least upper bound of σ and  σ  in  MD ( A ) .
At the end of this section, we characterize the lattice  MD ( L n ) / ( n 2 ) .
Theorem 1. 
If  L n  is the n-element MV-chain with  n 2 , then the lattices  MD ( L n ) /  and  Der ( L n )  are isomorphic.
Proof. 
Define a map  f : MD ( L n ) / Der ( L n )  by
f ( σ ¯ ) = sup σ .
By Proposition 7 we know  sup σ Der ( L n ) . The order ≦ on  Der ( L n )  is defined as  d d  iff  d ( x ) d ( x ) x L n .
Firstly, we prove that f is well defined. Suppose  σ ¯ = σ ¯ , that is,  σ ( x ) ¯ = σ ( x ) ¯  for any  x L n . We get
( sup σ ) ( x ) = sup ( σ ( x ) ) = sup ( σ ( x ) ) = ( sup σ ) ( x )
for any  x L n  by Lemma 13 (3). Thus,  f ( σ ¯ ) = sup ( σ ) = sup ( σ ) = f ( σ ¯ ) .
If  f ( σ ¯ ) = f ( σ ¯ ) , that is,  sup ( σ ) = sup ( σ ) , then  sup ( σ ( x ) ) = sup ( σ ( x ) )  for any  x L n . Lemma 13 (3) implies  σ ( x ) ¯ = σ ( x ) ¯  for any  x L n  and thus  σ ¯ = σ ¯ . Hence, f is injective. For any  d Der ( L n ) , there is  γ d MD ( L n )  where  γ d ( x ) : = [ 0 , d ( x ) ]  such that
f ( γ d ¯ ) ( x ) = ( sup γ d ) ( x ) = sup ( γ d ( x ) ) = sup [ 0 , d ( x ) ] = d ( x )
for all  x L n  by Propositions 6 and 7. Thus,  f ( γ d ¯ ) = d  and f is surjective.
To prove that f is an order-isomorphism, let  σ ¯ σ ¯ , that is, for any  x L n σ ( x ) ¯ σ ( x ) ¯ . Corollary 4 implies that  σ ( x ) ¯ = sup ( σ ( x ) ) ¯  for any  x L n . It follows that
( sup σ ) ( x ) ¯ = sup ( σ ( x ) ) ¯ sup ( σ ( x ) ) ¯ = ( sup σ ) ( x ) ¯
and thus  ( sup σ ) ( x ) ( sup σ ) ( x )  for any  x L n  since  ( sup σ ) ( x )  is a singleton. Hence,  f ( σ ¯ ) = sup σ sup σ = f ( σ ¯ ) . Conversely, assume  d , d Der ( L n )  and  d d , which means  d ( x ) d ( x )  for all  x L n . Now the construction in Proposition 6 gives  γ d = f 1 : A Δ ( A ) , where  γ d ( x ) = [ 0 , d ( x ) ] . Furthermore, we have
γ d ( x ) = [ 0 , d ( x ) ] [ 0 , d ( x ) ] = γ d ( x )
for any  x L n  by the definition of ⪯. Thus,  γ d γ d  and  f 1 ( d ) = γ d ¯ γ d ¯ = f 1 ( d ) . □
Proposition 11. 
If  L n  is the n-element MV-chain with  n 2 , then the lattices  Δ ( L n × L 2 ) /  and  Der ( L n + 1 )  are isomorphic.
Proof. 
Recall that  Der ( L n + 1 )  is isomorphic to the lattice  ( A ( L n + 1 ) , )  where  A ( L n + 1 ) = { ( x , y ) L n + 1 × L n + 1 y x } { ( 0 , 0 ) }  [16], Theorem 5.6 and ≦ is defined by: for any  ( x 1 , y 1 ) , ( x 2 , y 2 ) L n + 1 × L n + 1 ( x 1 , y 1 ) ( x 2 , y 2 )  iff  x 1 x 2  and  y 1 y 2 . Moreover,  Δ ( L n × L 2 ) /  is isomorphic to the lattice  L 0 ( L n × L 2 )  by Corollary 5.
Define a map  f : A ( L n + 1 ) L 0 ( L n × L 2 )  by:
f k n , n = ( k 1 n 1 , 0 ) , if = 0 ; ( k 1 n 1 , 0 ) ( 1 n 1 , 1 ) , if > 0 ,
where  0 k , n 1 . It is easy to see that f is injective. Now we show that f is surjective. For any  M L 0 ( L n × L 2 ) , we claim M has at most two maximal elements. By way of contradiction, assume M has three different maximal elements denoted by  ( a n , b n ) n = 1 , 2 , 3 ; then, there exist  1 i < j 3  such that  b i = b j  since  b n L 2 . Thus,  ( a i , b i )  and  ( a j , b j )  are comparable, which contradicts the fact that  ( a i , b i )  and  ( a j , b j )  are different maximal elements. If M has only one maximal element denoted by  ( k n 1 , a ) , then
M = ( k n 1 , a ) = f k + 1 n , 0 , if a = 0 ; f k + 1 n , k + 1 n , if a = 1 .
If M has exactly two maximal elements denoted by  ( k n 1 , 0 )  and  ( n 1 , 1 ) , then
M = ( k n 1 , 0 ) ( n 1 , 1 ) = f k + 1 n , + 1 n .
Therefore, f is surjective.
Since a bijection with supremum preserving is an order isomorphism, it suffices to verify that f preserves the supremum, that is,
f ( k n , n ) ( p n , q n ) = f k n , n f p n , q n
for all  ( k n , n ) , ( p n , q n ) A ( L n + 1 ) .
Case 1. If  = q = 0 , then
f k n , 0 f p n , 0 = ( k 1 n 1 , 0 ) ( p 1 n 1 , 0 ) = ( max { k 1 n 1 , p 1 n 1 } , 0 ) = ( max { k , p } 1 n 1 , 0 ) = f ( k n , 0 ) ( p n , 0 ) .
Case 2. If  = 0 q > 0 , then
f k n , 0 f p n , q n = ( k 1 n 1 , 0 ) ( p 1 n 1 , 0 ) ( q 1 n 1 , 1 ) = ( max { k , p } 1 n 1 , 0 ) ( q 1 n 1 , 1 ) = f ( k n , 0 ) ( p n , q n ) .
The case  > 0 q = 0  is similar.
Case 3. If  > 0 q > 0 , then
f k n , n f p n , q n = ( k 1 n 1 , 0 ) ( 1 n 1 , 1 ) ( p 1 n 1 , 0 ) ( q 1 n 1 , 1 ) = ( max { k , p } 1 n 1 , 0 ) ( max { , q } 1 n 1 , 1 ) = f max { k , p } n , max { , q } n = f ( k n , n ) ( p n , q n ) .
Now we verify that f is an isomorphism of posets and hence an isomorphism of lattices. For all  x , y A ( L n + 1 ) ,
x y x y = y f ( x ) f ( y ) = f ( x y ) = f ( y ) f ( x ) f ( y ) .
Hence, f is an isomorphism of lattices.
Therefore,  A ( L n + 1 ) L 0 ( L n × L 2 )  and then  Δ ( L n × L 2 ) / Der ( L n + 1 ) . □
Corollary 6. 
If  L n  is the n-element MV-chain with  n 2 , then  MD ( L n + 1 ) /  is isomorphic to the lattice  Δ ( L n × L 2 ) / .
Proof. 
It follows from Theorem 1 and Proposition 11. □
Note that according to the isomorphism in Theorem 1,  | MD ( L n ) / | = | Der ( L n ) | = ( n 1 ) ( n + 2 ) 2  by [16] (Theorem 3.11). However, the following Example 5 shows that the cardinalities of different equivalence classes with respect to the equivalence relation ∼ are different in general.
Example 5. 
Let  n = 2  and define  δ MF ( L 2 )  by  δ ( 0 ) = { 0 } , δ ( 1 ) = { 0 , 1 } . Then, it is easy to check that
MD ( L 2 ) = { 0 MF ( L 2 ) , I d MF ( L 2 ) , δ } ,
MD ( L 2 ) / = { { 0 MF ( L 2 ) } , { I d MF ( L 2 ) , δ } } .
It is clear that  | 0 MF ( L 2 ) ¯ | = 1  but  | I d MF ( L 2 ) ¯ | = 2 . Hence,  2 = | MD ( L 2 ) / | | MD ( L 2 ) | = 3 .
So, the cardinality of  MD ( L n )  is not easy to deduce from Theorem 1. In the next section, we will investigate the enumeration of the set of  ( , ) -multiderivations on  L n  by constructing a counting principle (Theorem 3).

5. The Enumeration of  ( , ) -Multiderivations on a Finite MV-Chain

In this section, we determine the cardinality of  MD ( L n ) . For small values of n, this can be performed with calculations using Python (see the Appendix A Figure A1) in Table 1:
The result cannot be obtained after  n 6  due to the limitation of computing resources. But we have shown the following general formula.
Theorem 2. 
Let  n 2  be a positive integer. Then,  | MD ( L n ) | = 7 · 3 n 1 2 n + 2 + 1 2 .
In order to prove Theorem 2, we need the following Lemmas.
Lemma 15. 
Assume that A is an MV-chain and  σ MD ( A ) ; then, the following results hold:
1
If  M A , then  M = M M .
2
For any  x A , n N + , we have  σ ( x n ) = x n 1 σ ( x ) , where  x 0 = 1 x n = x x x n .
Proof. 
(1) It follows immediately from Lemma 6 (3), as M is a sublattice.
(2) We prove  σ ( x n ) = x n 1 σ ( x )  by induction on n. Obviously,  σ ( x 1 ) = σ ( x ) = 1 σ ( x ) = x 1 1 σ ( x ) .
Now, assume that  σ ( x n ) = x n 1 σ ( x ) . By Equation (3), we have
σ ( x n + 1 ) = σ ( x n x ) = ( σ ( x n ) x ) ( x n σ ( x ) ) = ( x n 1 σ ( x ) x ) ( x n σ ( x ) ) = x n σ ( x ) ,
so  ( 2 )  holds. □
Note that an MV-chain can be completely characterized by  ( 1 ) . That is, if A is an MV-algebra, then A is an MV-chain iff  M = M M  for every  M A . In fact, by way of contraposition, assume that  x , y A  and  x , y  are incomparable, denote  z = x y . Let  M = { x , y } . Then,  z = x y M M  but  z M . This leads to a contradiction.
Let  n N +  and  n 2 . In  L n , we know  n m 1 n 1 = ( n 2 n 1 ) m  for every  m { 1 , 2 , , n 1 } . So, any  x L n { 1 }  has a representation as a power of  n 2 n 1 .
Next, we give a counting principle for  ( , ) -multiderivations on a finite MV-chain  L n .
Theorem 3. 
Let σ be a multifunction on  L n  and  v = n 2 n 1 . Then,  σ MD ( L n )  iff σ satisfies the following conditions:
1
σ ( v m ) = v m 1 σ ( v ) m { 1 , 2 , , n 1 } .
2
σ ( v ) = σ ( v ) ( v σ ( 1 ) ) .
3
σ ( v ) { v } .
Proof. 
Assume  σ MD ( L n ) ; then, for each  m { 1 , 2 , , n 1 } , we have  σ ( v m ) = v m 1 σ ( v )  by Lemma 15  ( 2 ) , and  σ ( v ) = σ ( v 1 ) = σ ( v ) ( v σ ( 1 ) )  by Equation (3). Thus,  σ  satisfies  ( 1 )  and  ( 2 ) . Furthermore,  ( 3 )  holds by Proposition 4 (2).
Conversely, suppose that  σ  satisfies  ( 1 ) ( 2 )  and  ( 3 ) . Let  x , y L n . There are four cases:
If  x = y = 1 , then it is easy to see that  σ ( 1 1 ) = σ ( 1 ) = σ ( 1 ) σ ( 1 )  by Lemma 15 (1).
If  x = 1  or  y = 1 , and  x y . With out loss of generality, suppose that  x 1  and  y = 1 , then  x = v k  for some  k { 1 , 2 , , n 1 } . By (1), we have  σ ( x 1 ) = σ ( x ) = σ ( v k ) = v k 1 σ ( v ) . Also, we have
σ ( x ) ( x σ ( 1 ) ) = ( v k 1 σ ( v ) ) ( v k σ ( 1 ) ) = ( v k 1 σ ( v ) ) ( v k 1 ( v σ ( 1 ) ) ) = v k 1 ( σ ( v ) ( v σ ( 1 ) ) ( Lemma   7 ( 2 ) ) = v k 1 σ ( v ) . ( ( 2 ) of Theorem   3 )
Hence,  σ ( x 1 ) = σ ( x ) = ( σ ( x ) 1 ) ( x σ ( 1 ) ) .
If  x 1  and  y 1 , then assume that  x = v k  and  y = v  for some  k , { 1 , 2 , , n 1 } . We have
σ ( x y ) = σ ( v k v ) = σ ( v k + )
and
( σ ( x ) y ) ( x σ ( y ) ) = ( ( v k 1 σ ( v ) ) v ) ( v k ( v 1 σ ( v ) ) ) = v k + 1 σ ( v )
by Lemma 15 (1). Then, there are three cases:
For  k + < n 1 , by (1) we obtain  σ ( v k + ) = v k + 1 σ ( v ) .
For  k + = n 1 , by  ( 3 )  we have  σ ( v k + ) = σ ( v n 1 ) = σ ( 0 ) { 0 }  and so  σ ( 0 ) = { 0 } . And  v k + 1 σ ( v ) = v n 2 σ ( v ) = v σ ( v ) = { 0 } . Thus,  σ ( x y ) = ( σ ( x ) y ) ( x σ ( y ) ) .
For  n 1 < k + 2 n 2 , we have  σ ( v k + ) = σ ( 0 ) = { 0 } = 0 σ ( v ) = v k + 1 σ ( v )  by (3) and thus Equation (3) holds.
Therefore, we conclude that  σ MD ( L n ) . □
Lemma 16. 
Let  P , Q Δ ( L n ) . Then, the following results hold:
1
P P Q  iff  min Q min P .
2
P Q P  iff  [ min P , 1 ] Q P .
Proof. 
Denote  p 0 = min P q 0 = min Q .
(1) Assume  P P Q , then there exist  p P q Q  such that  p 0 = p q q . Thus,  q 0 q p 0 .
Conversely, suppose  q 0 p 0 , then  p = p q 0  for any  p P  since  p 0 p . Hence,  P P Q .
(2) Assume  P Q P ; then, for all  q [ p 0 , 1 ] Q , we have  q = p 0 q P Q P . Thus,  [ p 0 , 1 ] Q P .
Conversely, assume  [ p 0 , 1 ] Q P  and  p P q Q . If  q p , then  p q = p P . If  q > p , then  p q = q [ p 0 , 1 ] Q P . In either case,  p q P  and so  P Q P . □
Lemma 17. 
Let  Q , Q Δ ( L n )  and  1 Q . Denote  v = n 2 n 1 . Then, the following results hold:
1
If  0 Q , then  Q = v Q  iff  Q = Q v .
2
If  0 Q , denote  Q 1 = Q { 0 } . Then,  Q = v Q  iff  Q = { 0 } ( Q 1 v ) { v } ( Q 1 v )  or  { 0 , v } ( Q 1 v ) .
Proof. 
(1) Let  0 Q  and  Q = v Q . Then,  0 Q , otherwise,  0 = v 0 v Q = Q , a contradiction. Thus,  0 Q , which implies  { v } Q . Hence, we have
Q = Q v = { q v q Q } = { ( q v ) v q Q } = ( Q v ) v = Q v .
Conversely, assume  Q = Q v . Since  1 Q , we have  Q { v } . Hence,
Q = Q v = { q v n Q } = { v ( q v ) n Q } = v ( Q v ) = v Q .
(2) Assume  0 Q  and  Q = v Q ; then,  0 = v q  for some  q Q . Thus,  0 Q  or  v Q . Denote  Q 0 = { 0 , v } Q  and  Q 1 = Q Q 0 . By  v Q 0 = { 0 }  and  { v } v Q 1 , we have
Q 1 = Q { 0 } = ( v Q ) { 0 } = ( v ( Q 0 Q 1 ) ) { 0 } = ( ( v Q 0 ) ( v Q 1 ) ) { 0 } ( Lemma   7 ( 3 ) ) = ( { 0 } ( v Q 1 ) ) { 0 } = v Q 1 .
Since  0 Q 1 , we obtain  Q 1 = Q 1 v  by (1). Therefore,
Q = Q 0 Q 1 = Q 0 ( Q 1 v ) ,
where  Q 0 = { 0 } { v }  or  { 0 , v } .
Conversely, assume  0 Q  and  Q = Q 0 ( Q 1 v ) , where  Q 0 = { 0 } { v }  or  { 0 , v } . From  1 Q 1 , it follows that  Q 1 { v }  and
v Q = v ( Q 0 ( Q 1 v ) ) = ( v Q 0 ) ( v ( Q 1 v ) ) ( Lemma   7 ( 3 ) ) = { 0 } ( Q 1 v ) = { 0 } Q 1 = Q .
Hence, we complete the proof. □
We are now in a position to prove Theorem 2:
Proof of Theorem 2.
Assume that  σ  is a multifunction on  L n  and denote  n 2 n 1  by v. According to Theorem 3,  σ  is uniquely determined by  σ ( v )  and  σ ( 1 )  if  σ MD ( L n ) . Hence, it is enough to consider the values of  σ ( v )  and  σ ( 1 ) . By Theorem 3,  σ MD ( L n )  iff
σ ( v ) { v } ,
and
σ ( v ) = σ ( v ) ( v σ ( 1 ) ) .
For convenience, we denote  P = σ ( v ) Q = σ ( 1 ) Q = v σ ( 1 ) p 0 = min P  and  q 0 = min Q . Equation (5) implies  1 P . By Lemma 16, we know Equation (6) implies that  q 0 p 0  and  [ p 0 , 1 ] Q P . Assume that  p 0 = k n 1  and  | P | = , where  0 k n 2  and  1 n k 1 . Then,  P { p 0 } k + 1 n 1 , n 2 n 1 . Thus, P has  C n k 2 1  choices with respect to k and . Now, we will determine all choices of Q and  Q .
Case 1. If  q 0 = p 0 , then  Q = [ q 0 , 1 ] Q = [ p 0 , 1 ] Q P . Hence,  Q { q 0 }  can take any subset of  P { p 0 }  and so Q has  2 1  choices.
If  q 0 > 0 , then  0 Q , and by Lemma 17 (1) and  Q = v Q  we know  Q = Q v . Hence,  Q  has  2 1  choices.
If  q 0 = 0 , then  0 Q , by Lemma 17 (2) and  Q = v Q  we have  Q = { 0 } ( Q 1 v ) { v } ( Q 1 v )  or  { 0 , v } ( Q 1 v ) . Thus,  Q  has  3 · 2 1  choices.
Case 2. If  0 < q 0 < p 0 , denote  Q 1 = ( 0 , p 0 ) Q  and  Q 2 = [ p 0 , 1 ] Q . Since  0 Q , we have  Q = Q 1 Q 2 . Notice that  Q 1 , so there are  2 k 1 1  choices of  Q 1 . Furthermore, since  Q 2 = [ p 0 , 1 ] Q P Q 2  can take any subset of P and so has  2  choices. Thus, there are  ( 2 k 1 1 ) · 2  choices of Q in this case. Since  0 Q , it follows that  Q  has also  ( 2 k 1 1 ) · 2  choices by Lemma 17 (1).
Case 3. If  0 = q 0 < p 0 , denote  Q 1 = ( 0 , p 0 ) Q  and  Q 2 = [ p 0 , 1 ] Q , so we have  Q = { 0 } Q 1 Q 2 . Since  Q 1 ( 0 , p 0 ) , there are  2 k 1  choices of  Q 1 . Moreover,  Q 2  has  2  choices as in Case 2. Thus, there are  2 k + 1  choices of Q in this case. Since  0 Q , it follows that  Q  has  3 · 2 k + 1  choices by Lemma 17 (2).
According to Theorem 3, we can determine the unique  ( , ) -multiderivation for each choices of  σ ( 1 )  and  σ ( v ) .
Therefore, it follows
| MD ( L n ) | = k = 1 n 2 = 1 n k 1 n k 2 1 ( 2 1 + ( 2 k 1 1 ) · 2 + 3 · 2 k 1 · 2 ) + = 1 n 1 n 2 1 ( 3 · 2 1 ) = k = 0 n 2 = 1 n k 1 n k 2 1 ( 2 k + + 1 2 1 ) = k = 0 n 2 ( 2 k + 2 1 ) = 1 n k 1 n k 2 1 · 2 1 = k = 0 n 2 ( 2 k + 2 1 ) ( 2 + 1 ) n k 2 = 3 n k = 0 n 2 2 3 k + 2 1 3 k + 2 = 7 · 3 n 1 2 n + 2 + 1 2 .

6. Conclusions and Questions

In this paper, the point-to-point  ( , ) -derivations on MV-algebras have been extended to point-to-set  ( , ) -multiderivations. We show that  ( MD ( L n ) / , )  is isomorphic to the complete lattice  Der ( L n ) , the underlying set of  ( , ) -derivations on  L n . This unveils a certain relevance between  ( , ) -multiderivations and  ( , ) -derivations. Moreover, by building a counting principle, we obtain the enumeration of  MD ( L n ) .
This general study of  ( , ) -multiderivations has the advantage of developing into a system theory of sets and has potential wide applications: other logical algebras, control theory, interval analysis, and artificial intelligence.
We list three questions to be considered in the future:
(1) We have found two ways to construct  ( , ) -multiderivations from  ( , ) -derivations in Propositions 5 and 6. Are there other ways?
(2) We ask whether the equivalent characterization and enumeration of  ( , ) - multiderivations on finite MV-chains can be extended to finite MV-algebras.
(3) We ask whether MV-algebras A and  A  are isomorphic if  ( MD ( A ) , )  and  ( MD ( A ) , )  are order isomorphic.

Author Contributions

Conceptualization, X.Z. and Y.Y.; methodology, X.Z., K.D., A.G. and Y.Y.; software, K.D.; validation, X.Z. and K.D.; investigation, X.Z. and Y.Y.; writing—original draft preparation, X.Z.; writing—review and editing, Y.Y.; supervision, Y.Y. All authors have read and agreed to the published version of the manuscript.

Funding

The work is partially supported by CNNSF (Grants: 12171022, 62250001).

Data Availability Statement

Data sharing is not applicable to this article as no new data were created or analyzed in this study.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Appendix A. Calculation Program by Python in Table 1

Figure A1. MD(Ln).py.
Figure A1. MD(Ln).py.
Axioms 13 00250 g0a1aAxioms 13 00250 g0a1b

References

  1. Posner, E. Derivations in prime rings. Proc. Amer. Math Soc. 1957, 8, 1093–1100. [Google Scholar] [CrossRef]
  2. Szász, G. Derivations of lattices. Acta Sci. Math. 1975, 37, 149–154. [Google Scholar]
  3. Ferrari, L. On derivations of lattices. Pure Math Appl. 2001, 12, 365–382. [Google Scholar]
  4. Xin, X.L.; Li, T.Y.; Lu, J.H. On derivations of lattices. Inf. Sci. 2008, 178, 307–316. [Google Scholar] [CrossRef]
  5. Xin, X.L. The fixed set of a derivation in lattices. Fixed Point Theory Appl. 2012, 218, 218. [Google Scholar] [CrossRef]
  6. Gan, A.P.; Guo, L. On differential lattices. Soft Comput. 2022, 26, 7043–7058. [Google Scholar] [CrossRef]
  7. Jun, Y.B.; Xin, X.L. On derivations on BCI-algebras. Inf. Sci. 2004, 159, 167–176. [Google Scholar] [CrossRef]
  8. He, P.F.; Xin, X.L.; Zhan, J.M. On derivations and their fixed point sets in residuated lattices. Fuzzy Sets Syst. 2016, 303, 97–113. [Google Scholar] [CrossRef]
  9. Krňávek, J.; Kühr, J. A note on derivations on basic algebras. Soft Comput. 2015, 19, 1765–1771. [Google Scholar] [CrossRef]
  10. Hua, X.J. State L-algebras and derivations of L-algebras. Soft Comput. 2021, 25, 4201–4212. [Google Scholar] [CrossRef]
  11. Alshehri, N.O. Derivations of MV-algebras. Int. J. Math. Math. Sci. 2010, 2010, 312027. [Google Scholar] [CrossRef]
  12. Hamal, A. Additive derivative and multiplicative coderivative operators on MV-algebras. Turk. J. Math. 2019, 43, 879–893. [Google Scholar] [CrossRef]
  13. Wang, J.T.; He, P.F.; She, Y.H. Some results on derivations of MV-algebras. Appl. Math. J. Chin. Univ. Ser. B 2023, 38, 126–143. [Google Scholar] [CrossRef]
  14. Yazarli, H. A note on derivations in MV-algebras. Miskolc Math. Notes 2013, 14, 345–354. [Google Scholar] [CrossRef]
  15. Rachůnek, J.; Šalounová, D. Derivations on algebras of a non-commutative generalization of the Łukasiewicz logic. Fuzzy Sets Syst. 2018, 333, 11–16. [Google Scholar] [CrossRef]
  16. Zhao, X.T.; Gan, A.P.; Yang, Y.C. (⊙,∨)-derivations on MV-algebras. Soft Comput. 2024, 28, 1833–1849. [Google Scholar] [CrossRef]
  17. Eilenberg, S.; Montgomery, D. Fixed Point Theorems for Multi-Valued Transformations. Amer. J. Math. 1946, 68, 214. [Google Scholar] [CrossRef]
  18. Aumann, R.J. Integrals of set-valued functions. J. Math. Anal. Appl. 1965, 12, 1–12. [Google Scholar] [CrossRef]
  19. Filippov, A.F. Classical solutions of differential equations with multivalued right-hand side. SIAM J. Control 1967, 5, 609–621. [Google Scholar] [CrossRef]
  20. Hermes, H. Calculus of set valued functions and control. J. Math. Mech. 1968, 18, 47–60. [Google Scholar] [CrossRef]
  21. Aumann, R.J. Existence of a competitive equilibrium in markets with a continuum of traders. Econometrica 1966, 34, 1–17. [Google Scholar] [CrossRef]
  22. Neumann, J.V.; Morgenstern, O. Theory of Games and Economic Behavior; Princeton: Princeton, NJ, USA, 1944. [Google Scholar]
  23. Rezapour, S.; Sami, S. Some properties of isotone and joinitive multiderivations on lattices. Filomat 2016, 30, 2743–2748. [Google Scholar] [CrossRef]
  24. Cignoli, R.; D’Ottaviano, I.M.L.; Mundici, D. Algebraic Foundations of Many-Valued Reasoning; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2000. [Google Scholar]
  25. Chang, C.C. Algebraic analysis of many-valued logic. Trans. Am. Math. Soc. 1958, 88, 467–490. [Google Scholar] [CrossRef]
  26. Ansari, Q.H.; Köbis, E.; Yao, J.C. Vector Variational Inequalities and Vector Optimization; Springer International Publishing: Cham, Switzerland, 2018. [Google Scholar]
  27. Awodey, S. Category Theory; Oxford University Press: New York, NY, USA, 2010. [Google Scholar]
  28. Burris, S.; Sankappanavar, H.P. A Course in Universal Algebra; Springer: New York, NY, USA, 2012. [Google Scholar]
  29. Almeida, J.; Cano, A.; Klíma, O.; Pin, J.E. On fixed points of the lower set operator. Internat. J. Algebra Comput. 2015, 25, 259–292. [Google Scholar] [CrossRef]
  30. Gierz, G.; Hofmann, K.H.; Keimel, K.; Lawson, J.D.; Mislove, M.; Scott, D.S. Continuous Lattices and Domains; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar]
Figure 1. Hasse diagram of  B 4 .
Figure 1. Hasse diagram of  B 4 .
Axioms 13 00250 g001
Figure 2. Hasse diagram of  B 8 .
Figure 2. Hasse diagram of  B 8 .
Axioms 13 00250 g002
Table 1. The cardinality of  MD ( L n ) .
Table 1. The cardinality of  MD ( L n ) .
n23456
| MD ( L n ) | 31663220723
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Zhao, X.; Duo, K.; Gan, A.; Yang, Y. The Enumeration of (⊙,∨)-Multiderivations on a Finite MV-Chain. Axioms 2024, 13, 250. https://doi.org/10.3390/axioms13040250

AMA Style

Zhao X, Duo K, Gan A, Yang Y. The Enumeration of (⊙,∨)-Multiderivations on a Finite MV-Chain. Axioms. 2024; 13(4):250. https://doi.org/10.3390/axioms13040250

Chicago/Turabian Style

Zhao, Xueting, Kai Duo, Aiping Gan, and Yichuan Yang. 2024. "The Enumeration of (⊙,∨)-Multiderivations on a Finite MV-Chain" Axioms 13, no. 4: 250. https://doi.org/10.3390/axioms13040250

APA Style

Zhao, X., Duo, K., Gan, A., & Yang, Y. (2024). The Enumeration of (⊙,∨)-Multiderivations on a Finite MV-Chain. Axioms, 13(4), 250. https://doi.org/10.3390/axioms13040250

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop