Article

The Enumeration of (\odot, \vee)-Multiderivations on a Finite MV-Chain

Xueting Zhao ${ }^{1}$, Kai Duo ${ }^{1}$, Aiping Gan ${ }^{2}$ and Yichuan Yang ${ }^{1, *}$
1 School of Mathematical Sciences, Shahe Campus, Beihang University, Beijing 102206, China; xtzhao@buaa.edu.cn (X.Z.); duokai@buaa.edu.cn (K.D.)
2 School of Mathematics and Statistics, Jiangxi Normal University, Nanchang 330022, China; 003191@jxnu.edu.cn
* Correspondence: ycyang@buaa.edu.cn

Abstract

In this paper, (\odot, V)-multiderivations on an MV-algebra A are introduced, the relations between (\odot, \vee)-multiderivations and (\odot, \vee)-derivations are discussed. The set $\operatorname{MD}(A)$ of (\odot, \vee) multiderivations on A can be equipped with a preorder, and $(\operatorname{MD}(A) / \sim, \preceq)$ can be made into a partially ordered set with respect to some equivalence relation \sim. In particular, for any finite MVchain $L_{n},\left(\operatorname{MD}\left(L_{n}\right) / \sim, \preccurlyeq\right)$ becomes a complete lattice. Finally, a counting principle is built to obtain the enumeration of $\operatorname{MD}\left(L_{n}\right)$.

Keywords: MV-algebra; (\odot, \vee)-multiderivation; complete lattice; enumeration; cardinality
MSC: 3G20; 06D35; 06B10; 08B26

1. Introduction

The concept of derivation originating from analysis has been delineated for a variety of algebraic structures which come in analogy with the Leibniz rule

$$
\frac{d}{d x}(f g)=\frac{d}{d x}(f) g+f \frac{d}{d x}(g)
$$

Posner [1] introduced the derivation on prime rings $(R,+, \cdot)$ as a mapping d from R to R such that for all $x, y \in R$:

$$
\text { (1) } d(x \cdot y)=d(x) \cdot y+x \cdot d(y), \quad(2) d(x+y)=d(x)+d(y)
$$

It implies that

$$
\text { (3) } d(1)=0, \quad(4) d(0)=0
$$

which are the 0 -ary version of (1) and (2), respectively.
The derivations on lattices (L, \vee, \wedge) were defined in [2] by Szász and were developed in [3] by Ferrari as a map d from L to L such that for all elements x, y in L :

$$
(i) d(x \wedge y)=(d(x) \wedge y) \vee(x \wedge d(y)), \quad(i i) d(x \vee y)=d(x) \vee d(y)
$$

Xin et al. [4,5] investigated the derivations on a lattice satisfying only condition (i). In fact, a derivation d on L with both the Leibniz rule (i) and the linearity (ii) implies that $d(x)=x \wedge u$ for some $u \in L$ [6] (Proposition 2.5). If u is the maximum of a lattice, then such a derivation is actually the identity. It seems that this is an important reason for the derivations on, for instance, BCI-algebra [7], residuated lattices [8], basic algebra [9], L-algebra [10], and differential lattices [6], which are defined with the unique requirement of the Leibniz rule (i) (for the discussion in detail, cf. Section 2).

The derivation on an MV-algebra $(A, \oplus, *, 0)$ was firstly introduced by Alshehri [11] as a mapping d from A to A satisfying an (\odot, \oplus)-condition: $\forall x, y \in A$,

$$
d(x \odot y)=(d(x) \odot y) \oplus(x \odot d(y)),
$$

where $x \odot y$ is defined to be $\left(x^{*} \oplus y^{*}\right)^{*}$. Then, several derivations on MV-algebras have been considered in [12-15]. However, the interplay of the ring operations \cdot and + is more similar to the interplay between the MV-operations \odot and \vee rather than that between the MV-operations \odot and \oplus. In fact, the main interplay between \cdot and + in rings is the distributivity of \cdot over + . In MV-algebras, \odot distributes over \vee, as in rings, while it is not true that \odot distributes over \oplus. It is also true that \odot distributes over \wedge, but \vee is preferable because the identity element of \vee is absorbing for \odot, that is, $0 \odot x=0$ for any element x in an MV-algebra A, as in rings, while the same is not true for \wedge. Therefore, the (\odot, \vee) derivation on MV-algebras [16] is a nature improvement of Alshehri's celebrated work [11] of the (\odot, \oplus)-derivation (cf. Section 2 for more discussion).

Let E and F be nonempty sets. A multifunction $f: E \rightarrow \Delta(F)$ is a map (or function) from E into $\Delta(F)$, the collection of nonempty subsets of F. The multifunction [17] is also known as set-valued function [18]. Significantly, multifunctions have many diverse and interesting applications in control problems [19,20] and mathematical economics [21,22]. Motivated by the role played by derivations on MV-algebras and the work of multiderivations on lattices [23], it is imperative to undertake a systematic study of the corresponding algebraic structure for derivations on MV-algebras.

This article is a continuation of work on (\odot, V)-multiderivations based on the nature (\odot, V)-derivation on MV-algebras [16], that is, a set-valued generalization of point-valued (\odot, \vee)-derivations. Section 2 starts with a review of the (\odot, \vee)-derivations on an MValgebra A. In Section 3, we first define a natural preorder on $\Delta(A)$ that $M \preceq N$ iff for every $m \in M$ there exists $n \in N$ such that $m \leq n$. Then, we introduce (\odot, \vee)-multiderivations on MV-algebras. The relations between (\odot, V)-derivations and (\odot, V)-multiderivations on an MV-algebra are given (Propositions 5-7). In Section 4, we investigate the set of (\odot, V)-multiderivations $\mathrm{MD}(A)$ on an MV-algebra A. Let $\sigma, \sigma^{\prime} \in \operatorname{MD}(A)$. Define $\sigma \preccurlyeq \sigma^{\prime}$ if $\sigma(x) \preceq \sigma^{\prime}(x)$ for any $x \in A$, and an equivalence relation \sim on $\operatorname{MD}(A)$ by $\sigma \sim \sigma^{\prime}$ iff $\sigma \preccurlyeq \sigma^{\prime}$ and $\sigma^{\prime} \preccurlyeq \sigma$. Then, $(\operatorname{MD}(A) / \sim, \preccurlyeq)$ is a poset. For an n-element MV-chain L_{n}, we show that $\left(\operatorname{MD}\left(L_{n}\right) / \sim, \preccurlyeq\right)$ is isomorphic to the complete lattice $\operatorname{Der}\left(L_{n}\right)$, the underlying set of (\odot, \vee)-derivations on L_{n} (Theorem 1), so we deduce that $\left|\operatorname{MD}\left(L_{n}\right) / \sim\right|=\left|\operatorname{Der}\left(L_{n}\right)\right|$, then [16] (Theorem 3.11) can be applied. Moreover, we define an equivalence relation \sim on $\Delta(A)$, and present the fact that the poset $\Delta\left(L_{n} \times L_{2}\right) / \sim$ is isomorphic to the complete lattice $\operatorname{Der}\left(L_{n+1}\right)$ (Proposition 11). However, the cardinalities of different equivalence classes with respect to the equivalence relation \sim are different in general (Example 5). In Section 5, by building a counting principle (Theorem 3) for (\odot, V)-multiderivations on an n-element MV-chain L_{n}, we finally obtain the enumeration of $\operatorname{MD}\left(L_{n}\right):\left(7 \cdot 3^{n-1}-2^{n+2}+1\right) / 2$.

Notation. Throughout this paper, A denotes an MV-algebra; $|X|$ denotes the cardinality of a set $X ; \Delta(X)$ denotes the set of nonempty subsets of a set $X ; \sqcup$ means disjoint union; \mathbb{N} denotes the set of natural numbers; "iff" is the abbreviation for "if and only if^{\prime} ".

2. Preliminaries

Definition 1 ([24]). An algebra $(A, \oplus, *, 0)$ is an MV-algebra if the following axioms are satisfied:
(MV1) (associativity) $x \oplus(y \oplus z)=(x \oplus y) \oplus z$.
(MV2) (commutativity) $x \oplus y=y \oplus x$.
(MV3) (existence of the unit 0) $x \oplus 0=x$.
(MV4) (involution) $x^{* *}=x$.
(MV5) (maximal element 0^{*}) $x \oplus 0^{*}=0^{*}$.
(MV6) (Łukasiewicz axiom) $\left(x^{*} \oplus y\right)^{*} \oplus y=\left(y^{*} \oplus x\right)^{*} \oplus x$.
Define $1=0^{*}$ and the natural order on A as follows: $y \geq x$ iff $x \odot y^{*}=0$. Then, the interval $[a, b]=\{r \in A \mid a \leq r \leq b\}$ for any $a, b \in A$ and $a \leq b$. Note that A is a bounded distributive lattice with respect to the natural order [24] (Proposition 1.5.1) with 0,1 , and

$$
\begin{equation*}
x \vee y=\left(x \odot y^{*}\right) \oplus y, x \wedge y=x \odot\left(x^{*} \oplus y\right) \tag{1}
\end{equation*}
$$

An MV-chain is an MV-algebra which is linearly ordered with respect to the natural order.
Example 1 ([24]). Let $L=[0,1]$ be the real unit interval. Define

$$
x \oplus y=\min \{1, x+y\} \text { and } x^{*}=1-x \text { for any } x, y \in L
$$

Then $\left(L, \oplus,{ }^{*}, 0\right)$ is an MV-chain. Note that $x \odot y=\max \{0, x+y-1\}$.
Example 2. For every $2 \leq n \in \mathbb{N}_{+}$, let

$$
L_{n}=\left\{0, \frac{1}{n-1}, \frac{2}{n-1}, \cdots, \frac{n-2}{n-1}, 1\right\} .
$$

Then the n-element subset L_{n} is an MV-subalgebra of L.
Lemma 1 ([24,25]). If A is an MV-algebra, then the following statements are true $\forall x, y, z \in A$:

1. $x \oplus y \geq x \vee y \geq x \geq x \wedge y \geq x \odot y$.
2. $\quad x \oplus y=0$ iff $x=y=0$. $x \odot y=1$ iff $x=y=1$.
3. If $y \geq x$, then $y \vee z \geq x \vee z, y \wedge z \geq x \wedge z$.
4. If $y \geq x$, then $y \oplus z \geq x \oplus z, y \odot z \geq x \odot z$.
5. $y \geq x$ iff $x^{*} \geq y^{*}$.
6. $\quad x \odot(y \wedge z)=(x \odot y) \wedge(x \odot z)$.
7. $x \odot(y \vee z)=(x \odot y) \vee(x \odot z)$.
8. $x \odot y \leq z$ iff $x \leq y^{*} \oplus z$.

Let Ω be an index set. The direct product $\prod_{i \in \Omega} A_{i}[24]$ of a family of MV-algebras $\left\{A_{i}\right\}_{i \in \Omega}$ is the MV-algebra with cartesian product of the family and pointwise MV-operations. We denote $A_{1} \times A_{2} \times \cdots \times A_{n}$ when Ω is a positive integer n. We call $a \in A$ idempotent if $a \oplus a=a$. Let $\mathbf{B}(A)$ be the set of idempotent elements of A and $B_{2^{n}}$ be the 2^{n}-element Boolean algebra. Note that B_{4} is actually $L_{2} \times L_{2}$ [24].

Lemma 2 ([24], Proposition 3.5.3). Let A be a subalgebra of $[0,1]$. Let $A^{+}=\{x \in A \mid x>0\}$ and $a=\inf A^{+}$be the infimum of A^{+}. If $a=0$, then A is a dense subchain of $[0,1]$. If $a>0$, then $A=L_{n}$ for some $n \geq 2$.

Definition 2 ([16]). If A is an MV-algebra, then a map d from A to A is an (\odot, \vee)-derivation on A if $\forall x, y \in A$,

$$
\begin{equation*}
d(x \odot y)=(d(x) \odot y) \vee(x \odot d(y)) \tag{2}
\end{equation*}
$$

Let $\operatorname{Der}(A)$ be the set of (\odot, \vee)-derivations on A. For $X=\left\{x_{1}, x_{2}, \cdots, x_{n}\right\}$ and a map $d: X \rightarrow X$, we shall write d as

$$
\left(\begin{array}{cccc}
x_{1} & x_{2} & \cdots & x_{n} \\
d\left(x_{1}\right) & d\left(x_{2}\right) & \cdots & d\left(x_{n}\right)
\end{array}\right) .
$$

The mappings Id_{A} and $\mathbf{0}_{A}$, defined by $\operatorname{Id}_{A}(x)=x$ and $\mathbf{0}_{A}(x)=0(\forall x \in A)$, respectively, are (\odot, \vee)-derivations on A. For $u \in A$, the operator $\chi^{(u)}(x):=\left\{\begin{array}{ll}u, & \text { if } x=1 \\ x, & \text { otherwise }\end{array} \in\right.$ $\operatorname{Der}(A)$. More examples are given in [16].

Proposition 1 ([16]). If A is an MV-algebra and $d \in \operatorname{Der}(A)$, then the followings hold for all $x, y \in A$:

1. $\quad 0=d(0)$.
2. $x \geq d(x)$.
3. If $d(x)=x$, then $d(y)=y$ for $y \leq x$.

Remark 1. Now let us give some explanations of the naturality of an (\odot, \vee)-derivation in Definition 2. The interplay of the ring operations \cdot and + is more similar to the interplay between the $M V$-operations \odot and \vee rather than that between the $M V$-operations \odot and \oplus.

Next we discuss why we include only Equation (2). Recall that $d(0)=0$ is the 0 -ary version of $d(x+y)=d(x)+d(y)$ in derivations on a ring. For MV-algebras, $d(0)=0$ is the 0 -ary version of (a); see Proposition 1 (1). $d(1)=0$ is the 0-ary version of $d(x \cdot y)=d(x) \cdot d(y)$ in derivations on a ring. Hence, it seems that the most faithful and natural derivation notion on A as a translation of the ring-theoretic notion of derivation (cf. Introduction) would include:
(a) $\quad d(x \odot y)=(d(x) \odot y) \vee(x \odot d(y))$,
(b) $d(1)=0$,
(c) $d(x \vee y)=d(x) \vee d(y)$,
(d) $d(0)=0$.

However, (b) and (c) imply that d is trivial (note that (a) is automatically assumed).
Lemma 3. If A is an MV-algebra and $d: A \rightarrow A$ is a map satisfying (a), (b) and (c) for any $x, y \in A$. Then, $d=\mathbf{0}_{A}$.

Proof. Assume $x \leq y$, it follows from (c) that $d(y)=d(x \vee y)=d(x) \vee d(y)$ and thus $d(x) \leq d(y)$. Together with (b) $d(1)=0$, we have $d(x)=0$ for any $x \in A$ since $x \leq 1$. Hence, $d=\mathbf{0}_{A}$.

Next, we consider what will happen if the condition $\left(\mathrm{b}^{\prime}\right) d(1)=1$ replaces $(\mathrm{b}) d(1)=0$.
Lemma 4. If $d: A \rightarrow A$ is a mapping from an MV-algebra A to A with (a) and (b^{\prime}) for any $x, y \in A$, then, $d=\operatorname{Id}_{A}$.

Proof. Assume d satisfies (a) and (b^{\prime}). We obtain that d satisfies Proposition 1 (3) since d satisfies (a). Both with $\left(\mathrm{b}^{\prime}\right) d(1)=1$, we obtain $d(x)=x$ for any $x \in A$. Therefore, $d=\operatorname{Id}_{A}$.

Recall that for a given $a \in A$, a principal (\odot, \vee)-derivation d_{a} on A [16] is defined by $d_{a}(x):=a \odot x$ for all $x \in A$. An (\odot, \vee)-derivation d is isotone [16] if $\forall x, y \in A, y \geq x$ implies that $d(y) \geq d(x)$. Note that $\mathbf{0}_{A}$ and Id_{A} are both principal and isotone. More generally, we obtain the following.

Proposition 2 ([16] (Proposition 3.19)). Let A be an $M V$-algebra and d be a map satisfying (a) and ($\mathrm{b}^{\prime \prime}$). Then, the followings are equivalent:

1. d is isotone;
2. $d(1) \odot x=d(x)$ for all $x \in A$;
3. $\quad d(x) \vee d(y)=d(x \vee y)$.

If d satisfies (b), then the principal derivations on MV-algebra A will not be included, expect $\mathbf{0}_{A}$. Even identity derivations Id_{A} will not be within our scope of consideration. Hence, the scope of the study will be significantly narrowed.

Remark 2. Note that d is isotone if d satisfies (c). In fact, if $x \leq y$, then $d(y)=d(x \vee y)=$ $d(x) \vee d(y)$ and thus $d(x) \leq d(y)$. The isotone case is a special case of d, thus the scope of research will be narrowed. This case has been partially studied in [16], Section 3.3.

Therefore, we use the derivation meaning from Definition 2 in our series papers since [16] on.

3. (\odot, V)-Multiderivations on an MV-Algebra

Let X and Y be two nonempty sets. Recall that a set-valued function or multivalued function (for short, multifunction) F between X and Y is a map $F: X \rightarrow \Delta(Y)$. The set $F(x)$ is called the image of x under F (cf. [26], Appendix A).

Definition 3. Let A be an MV-algebra and $M, N \in \Delta(A)$. We define four binary operations $\oplus, \odot, \vee, \wedge$ and an unary operation $*$ on $\Delta(A)$ by:

$$
M \star N=\{m \star n \mid m \in M, n \in N\} \text { and } M^{*}=\left\{m^{*} \mid m \in M\right\}
$$

where $\star \in\{\oplus, \odot, \vee, \wedge\}$.

Remark 3.

1. Note that $M \vee N$ means the pointwise $m \vee n$ operation from Equation (1) of sets, which is different from the supremum of M and $N . M \wedge N$ has a similar meaning.
2. We abbreviate $M \star\{x\}$ and $\{x\}^{*}$ by $M \star x$ and x^{*}, respectively. But if $\{x\}$ appears by itself such as $M \preceq\{x\}$, we still use $\{x\}$.

We define a binary relation $M \preceq N$ iff for every $m \in M$ there exists $n \in N$ such that $m \leq n$. Denote $M \prec N$ if $M \preceq N$ and $M \neq N$.

Then, \preceq is a preorder on $\Delta(A)$. In fact, the reflexivity and transitivity of \preceq are clear. However, \preceq does not satisfy antisymmetry in general. In fact, \preceq satisfies antisymmetry iff the MV-algebra A is trivial: If A is trivial, we have $\Delta(A)=\{\{0\}\}$ and $\{0\} \preceq\{0\}$. Hence, \preceq satisfies antisymmetry. Conversely, suppose A is nontrivial, we have $A \neq\{1\}$, but $\{1\} \preceq A$ and $A \preceq\{1\}$, a contradiction.

Lemma 5. Let A be an MV-algebra and $x, a, b, c, e, f \in A$. Then, the followings hold:

1. If $x \leq b \odot c$, then there exists $t \in A$ such that $t \leq b$ and $x=t \odot c$.
2. If $x \leq b \vee c$, then there exist $t, s \in A$ such that $t \leq b, s \leq c$ and $x=t \vee s$.
3. $[a, b] \odot c=[a \odot c, b \odot c]$.
4. $[a, b] \vee[e, f]=[a \vee e, b \vee f]$.

Proof. (1) Assume $x \leq b \odot c$, then

$$
x=(b \odot c) \wedge x=(b \odot c) \odot\left((b \odot c)^{*} \oplus x\right)=b \odot\left((b \odot c)^{*} \oplus x\right) \odot c
$$

Thus, we may choose $t=b \odot\left((b \odot c)^{*} \oplus x\right)$.
(2) Assume $x \leq b \vee c$. Recall that A is a distributive lattice. So

$$
x=(b \vee c) \wedge x=(b \wedge x) \vee(c \wedge x)
$$

Hence, we can obtain $x=t \vee s$ by taking $t=b \wedge x, s=c \wedge x$.
(3) For each $x \in[a, b]$, we obtain $a \odot c \leq x \odot c \leq b \odot c$ by Lemma 1 (4). Thus, $[a, b] \odot c \subseteq[a \odot c, b \odot c]$. It suffices to prove that $[a \odot c, b \odot c] \subseteq[a, b] \odot c$. For any $a \odot c \leq x \leq b \odot c$, by (1) there is $t=b \odot\left((b \odot c)^{*} \oplus x\right) \leq b$ such that $x=t \odot c$. If we can prove $a \leq t$, then the result follows immediately. Note that

$$
t=b \odot\left((b \odot c)^{*} \oplus x\right)=b \odot\left(b^{*} \oplus c^{*} \oplus x\right)=b \wedge\left(c^{*} \oplus x\right)
$$

Since $a \odot c \leq x$, we have $a \leq c^{*} \oplus x$ by Lemma 1 (8). Together with $a \leq b$, we obtain $a \leq b \wedge\left(c^{*} \oplus x\right)=t$. Thus, we conclude that $[a, b] \odot c=[a \odot c, b \odot c]$.
(4) For any $t \in[a, b], s \in[e, f]$, we have $a \vee e \leq t \vee s \leq b \vee f$ by Lemma 1 (3). Thus, $[a, b] \vee[e, f] \subseteq[a \vee e, b \vee f]$. It is enough to prove that $[a \vee e, b \vee f] \subseteq[a, b] \vee[e, f]$. For any $a \vee e \leq x \leq b \vee f$, there exist $t, s \in A$ such that

$$
t=b \wedge x \leq b, s=f \wedge x \leq f \text { and } x=t \vee s
$$

by (2). If we can prove $a \leq t$ and $e \leq s$, then the result follows. Note that since $a \leq b$ and $a \leq a \vee e \leq x$, we have $a \leq b \wedge x=t$. Similarly, $e \leq s$. Therefore, $[a \vee e, b \vee f]=$ $[a, b] \vee[e, f]$.

The following result holds for any MV-algebra A since it is a distributive lattice under the natural order.

Lemma 6 ([23] (Lemma 2.1)). Let L be a lattice and $M, N, P, Q \in \Delta(L)$. Then, the following statements hold:

1. $M \wedge N \preceq M \preceq M \vee N$.
2. If $M \preceq N$ and $P \preceq Q$, then $M \wedge P \preceq N \wedge Q$ and $M \vee P \preceq N \vee Q$. In particular, $M \preceq N$ implies $M \wedge P \preceq N \wedge P$.
3. $M \subseteq M \wedge M, M \subseteq M \vee M$. If M is a sublattice of L, then $M=M \vee M$.
4. $M \vee N=N \vee M$.
5. $(M \vee N) \vee P=M \vee(N \vee P)$.
6. If $M \vee N \subseteq M$, then $N \preceq M$.
7. If L is distributive, then $(M \vee N) \wedge P \subseteq(M \wedge P) \vee(N \wedge P)$.

Remark 4.

1. Note that the converse inclusion of Lemma 6 (3), i.e., $M \wedge M \subseteq M$ and $M \vee M \subseteq M$, does not hold in general. For example, consider the Boolean lattice $B_{4}=\{0, a, b, 1\}$ (see Figure 1), $M=\{a, b\} \subseteq B_{4}$, then $0=a \wedge b \in M \wedge M$ and $1=a \vee b \in M \vee M$, but $0,1 \notin M$.
2. The converse of Lemma 6 (6), i.e., $N \preceq M$ implies $M \vee N \subseteq M$ may not hold. For example, in L_{3}, let $N=\left\{0, \frac{1}{2}\right\}, M=\{0,1\}$. We have $N \preceq M$ but $M \vee N=\left\{0, \frac{1}{2}, 1\right\} \nsubseteq M$.
3. The converse inclusion of Lemma 6 (7) holds if P is a singleton but need not hold in general. This is slightly different from [23]. For example, let $B_{8}=\{0, a, b, c, u, v, w, 1\}$ be the 8-element Boolean lattice as Figure 2, $M=\{u\}, N=\{w\}$ and $P=\{a, b, c\}$. We can check that $u=a \vee b=(u \wedge a) \vee(w \wedge b) \in(M \wedge P) \vee(N \wedge P)$ but $u \notin P=(M \vee N) \wedge P$.

Figure 1. Hasse diagram of B_{4}.

Figure 2. Hasse diagram of B_{8}.
According to Lemma 1, one obtains

Lemma 7. Assume that A is an MV-algebra, $M, N, P, Q \in \Delta(A)$, and $m \in M$. Then, the following statements hold:

1. If $M \preceq N$ and $P \preceq Q$, then $M \oplus P \preceq N \oplus Q$ and $M \odot P \preceq N \odot Q$. In particular, $M \preceq N$ implies $M \oplus P \preceq N \oplus P$ and $M \odot P \preceq N \odot P$.
2. $\quad m \odot(P \vee Q)=(m \odot P) \vee(m \odot Q)$.
3. $m \odot(P \cup Q)=(m \odot P) \cup(m \odot Q)$.
4. $M \odot N \preceq M \wedge N \preceq M \preceq M \vee N \preceq M \oplus N$.
5. If $M \oplus N \subseteq M$, then $N \preceq M$.

Proof. (1) Suppose $M \preceq N$ and $P \preceq Q$. For any $x=m \oplus p \in M \oplus P$, there are $n \in N$ and $q \in Q$ such that $m \leq n$ and $p \leq q$. It follows from Lemma 1 (4) that $m \oplus p \leq m \oplus q \leq n \oplus q$, where $n \oplus q \in N \oplus Q$. Thus, $M \oplus P \preceq N \oplus Q$. Similarly, we have $M \odot P \preceq N \odot Q$. In particular, we obtain $M \oplus P \preceq N \oplus P$ and $M \odot P \preceq N \odot P$.
(2) For any $p \in P$ and $q \in Q$, we have $m \odot(p \vee q)=(m \odot p) \vee(m \odot q) \in(m \odot P) \vee$ $(m \odot Q)$ by Lemma 1 (7). Thus, $m \odot(P \vee Q) \subseteq(m \odot P) \vee(m \odot Q)$. The reverse inclusion can be verified similarly. Therefore, $m \odot(P \vee Q)=(m \odot P) \vee(m \odot Q)$.
(3) We have $x \in m \odot(P \cup Q)$, iff there is $y \in P \cup Q$ such that $x=m \odot y$, iff there is $y \in P$ or $y \in Q$ such that $x=m \odot y$, iff $x \in m \odot P$ or $x \in m \odot Q$, iff $x \in(m \odot P) \cup(m \odot Q)$. Hence, $m \odot(P \cup Q)=(m \odot P) \cup(m \odot Q)$.
(4) For any $m \in M$ and $n \in N$, we know $m \odot n \leq m \wedge n \leq m \leq m \vee n \leq m \oplus n$ by Lemma 1 (1). The result follows immediately.
(5) Assume $M \oplus N \subseteq M$, then for any $n \in N$, there exists $m \in M$ such that $m \oplus n \in M$. So by Lemma 1 (1) we obtain $n \leq m \oplus n$. Therefore, $N \preceq M$.

To study whether $\left(\Delta(A), \oplus,^{*},\{0\}\right)$ is an MV-algebra, we first give
Lemma 8. If A is an MV-algebra, then, for any $M, N, P \in \Delta(A)$, the followings hold:

1. $(M \oplus N) \oplus P=M \oplus(N \oplus P)$.
2. $\quad M \oplus N=N \oplus M$.
3. $M \oplus 0=M$.
4. $M^{* *}=M$.
5. $M \oplus 0^{*}=\left\{0^{*}\right\}$.

Proof. (1)-(5) follow from (MV1)-(MV5), respectively.
Remark 5. Since (MV1)-(MV5) are satisfied on $\Delta(A)$, it is natural to consider whether (MV6) $\left(M^{*} \oplus N\right)^{*} \oplus N=\left(N^{*} \oplus M\right)^{*} \oplus M$ holds on $\Delta(A)$. The answer is no. For example, let $M=\left\{\frac{1}{2}\right\}$ and $N=\{0,1\}$ on three-element MV-chain L_{3}. It is easy to see that $\left(\frac{1}{2}^{*} \oplus\{0,1\}\right)^{*} \oplus\{0,1\}=$ $\left\{0, \frac{1}{2}\right\} \oplus\{0,1\}=\left\{0, \frac{1}{2}, 1\right\} \neq\left\{\frac{1}{2}, 1\right\}=\left(\{0,1\}^{*} \oplus \frac{1}{2}\right)^{*} \oplus \frac{1}{2}$. That is, $\left(M^{*} \oplus N\right)^{*} \oplus N \neq$ $\left(N^{*} \oplus M\right)^{*} \oplus M$.

If A is a nontrivial MV-algebra, and $\varphi: A \rightarrow \Delta(A)$ is a multifunction on $A . \varphi$ is called additive and negative, if $\varphi(x \oplus y)=\varphi(x) \oplus \varphi(y)$ and $\varphi\left(x^{*}\right)=(\varphi(x))^{*}$ for all $x, y \in A$, respectively.

Proposition 3. Let A be an MV-algebra and $\varphi: A \rightarrow \Delta(A)$ be a multifunction on A. If φ is additive and negative, then $\left(\varphi(A), \oplus,{ }^{*}, \varphi(0)\right)$ is an MV-algebra, where $\varphi(A)=\{\varphi(x) \mid x \in A\}$.

Proof. It is sufficient to prove (MV3), (MV5) and (MV6), since we know that $\left(\varphi(A), \oplus,{ }^{*}, \varphi(0)\right)$ satisfies (MV1), (MV2) and (MV4) by Lemma 8. Since φ is additive and negative, it follows that $\varphi(x) \oplus \varphi(0)=\varphi(x \oplus 0)=\varphi(x)$ and $\varphi(x) \oplus \varphi(0)^{*}=\varphi\left(x \oplus 0^{*}\right)=\varphi\left(0^{*}\right)=$ $\varphi(0)^{*}$. Furthermore, $\left(\varphi(x)^{*} \oplus \varphi(y)\right)^{*} \oplus \varphi(y)=\varphi\left(x^{*} \oplus y\right)^{*} \oplus \varphi(y)=\varphi\left(\left(x^{*} \oplus y\right)^{*} \oplus y\right)=$ $\varphi\left(\left(y^{*} \oplus x\right)^{*} \oplus x\right)=\varphi\left(y^{*} \oplus x\right)^{*} \oplus \varphi(x)=\left(\varphi(y)^{*} \oplus \varphi(x)\right)^{*} \oplus \varphi(x)$ for any $x, y \in A$. Thus, $\left(\varphi(A), \oplus,{ }^{*}, \varphi(0)\right)$ is an MV-algebra.

Now let us define the (\odot, \vee)-multiderivation.
Definition 4. If A is an MV-algebra, a multifunction $\sigma: A \rightarrow \Delta(A)$ is called an (\odot, \vee) multiderivation on A if

$$
\begin{equation*}
\sigma(x \odot y)=(\sigma(x) \odot y) \vee(x \odot \sigma(y)) \tag{3}
\end{equation*}
$$

for all $x, y \in A$. Denote the set of (\odot, \vee)-multiderivations on A by $\operatorname{MD}(A)$.
Example 3. (i) Consider the MV-chain L_{4}. We define a multifunction σ on L_{4} by $\sigma(0)=\{0\}$, $\sigma\left(\frac{1}{3}\right)=\left\{0, \frac{1}{3}\right\}, \sigma\left(\frac{2}{3}\right)=\left\{0, \frac{2}{3}\right\}, \sigma(1)=\{0,1\}$. Then, we can check σ is an (\odot, \vee)-multiderivation on L_{4}. In fact, $\sigma=\beta_{1}$ (see Corollary 1).
(ii) Consider the standard MV-algebra $L=[0,1]$. We define a multifunction $\sigma: L \rightarrow \Delta(L)$ by $\sigma(x)=[0, x]$ for all $x \in L$. Then, we can verify that σ is an (\odot, \vee)-multiderivation on L (see Proposition 6).
(iii) Let A be an MV-algebra and $S \subseteq A$ be a subalgebra of A. Define a multifunction σ_{S} on A by $\sigma_{S}(x)=x \odot S, \forall x \in A$, then $\sigma_{S} \in \operatorname{MD}(A)$, which is called a principal $(\odot, \vee)-$ multiderivation. In fact, for any $x, y \in A$, since the subalgebra S must be a sublattice of A, it follows that $S=S \vee S$ by Lemma 6 (3). According to Lemma 7 (2), we immediately have $\sigma_{S}(x \odot$ $y)=x \odot y \odot S=x \odot y \odot(S \vee S)=(x \odot y \odot S) \vee(x \odot y \odot S)=\left(\sigma_{S}(x) \odot y\right) \vee\left(x \odot \sigma_{S}(y)\right)$.

Proposition 4. If A is an MV-algebra and $\sigma \in \operatorname{MD}(A)$. Then, the followings hold for all $x, y \in A$,

1. $\sigma(0)=\{0\}$.
2. $\sigma(x) \preceq\{x\}$.
3. $\quad \sigma(x) \odot \sigma(y) \preceq \sigma(x \odot y) \preceq \sigma(x) \vee \sigma(y)$.
4. $x \odot \sigma(1) \preceq \sigma(x)$.
5. If I is a lower set of A, then $\sigma(x) \subseteq I$ holds for any $x \in I$.
6. Let $1 \in \sigma(1)$. Then, $x \in \sigma(x)$.

Proof. (1) Taking $x=y=0$ in Equation (3), we obtain $\sigma(0)=\sigma(0 \odot 0)=(\sigma(0) \odot 0) \vee$ $(0 \odot \sigma(0))=\{0\}$.
(2) Since $x \odot x^{*}=0$, we know that $\{0\}=\sigma(0)=\sigma\left(x \odot x^{*}\right)=\left(\sigma(x) \odot x^{*}\right) \vee(x \odot$ $\left.\sigma\left(x^{*}\right)\right)$ by (1). So $\sigma(x) \odot x^{*}=\{0\}$ and we obtain $\sigma(x) \preceq\{x\}$.
(3) By Lemma 6 (3), we have $\sigma(x) \odot \sigma(y) \subseteq(\sigma(x) \odot \sigma(y)) \vee(\sigma(x) \odot \sigma(y))$. Moreover, $\sigma(x) \odot \sigma(y) \preceq \sigma(x) \odot y$ and $\sigma(x) \odot \sigma(y) \preceq x \odot \sigma(y)$ by (2) and Lemma 7 (1). Thus,

$$
\sigma(x) \odot \sigma(y) \subseteq(\sigma(x) \odot \sigma(y)) \vee(\sigma(x) \odot \sigma(y)) \preceq(\sigma(x) \odot y) \vee(x \odot \sigma(y))=\sigma(x \odot y)
$$

by Lemma 6 (2). Moreover, by Lemma 7 (1) and Lemma 6 (2) we have

$$
\sigma(x \odot y)=(\sigma(x) \odot y) \vee(x \odot \sigma(y)) \preceq \sigma(x) \vee \sigma(y) .
$$

(4) Since $x=1 \odot x$, it follows that $\sigma(x)=\sigma(1 \odot x)=\sigma(x) \vee(x \odot \sigma(1))$ by Equation (3). Then, we can obtain $x \odot \sigma(1) \preceq \sigma(x)$ by Lemma 6 (6).
(5) For any $x \in I$, we know $\sigma(x) \preceq\{x\}$ by (2). It induces that $y \leq x$ holds for any $y \in \sigma(x)$. Then, $y \in I$ since I is a lower set. Thus, $\sigma(x) \subseteq I$.
(6) Since $1 \in \sigma(1)$, there must exist $y \in \sigma(x)$ such that $x=x \odot 1 \leq y$ by (4). Moreover, by (2) we know $y \leq x$ always holds for y. Hence, we obtain $x=y$ and $x \in \sigma(x)$.

Now, let us explore the relations between (\odot, \vee)-derivation d and (\odot, \vee)-multiderivation σ on A.

On the one hand, given an (\odot, \vee)-derivation d on A, how can we construct an (\odot, \vee) multiderivation on A ? We get started with a direct construction. Assume $d \in \operatorname{Der}(A)$. Define a multifunction $\alpha: A \rightarrow \Delta(A)$ as follows:

$$
\alpha(x)=\{d(x)\} \quad \text { for any } x \in A
$$

Then, $\alpha \in \operatorname{MD}(A)$.
Proposition 5. If A is an MV-algebra and $d \in \operatorname{Der}(A)$, define a multifunction $\beta: A \rightarrow \Delta(A)$ on A as follows

$$
\beta(x):=\{0, d(x)\} .
$$

Then, $\beta \in \operatorname{MD}(A)$ iff $d(x) \odot y=x \odot d(y)$ holds for any $x, y \in A$ with $d(x) \odot y>0$ and $x \odot d(y)>0$.

Proof. Assuming $\beta \in \operatorname{MD}(A)$, it follows that

$$
\begin{aligned}
\{0, d(x \odot y)\} & =\beta(x \odot y) \\
& =(\beta(x) \odot y) \vee(x \odot \beta(y)) \\
& =(\{0, d(x)\} \odot y) \vee(x \odot\{0, d(y)\}) \\
& =\{0, d(x) \odot y\} \vee\{0, x \odot d(y)\} \\
& =\{0, d(x) \odot y, x \odot d(y), d(x \odot y)\}
\end{aligned}
$$

for any $x, y \in A$. From the chain of equalities, we know that $d(x) \odot y, x \odot d(y) \in\{0, d(x \odot$ $y)\}$. If both $d(x) \odot y>0$ and $x \odot d(y)>0$, then $d(x) \odot y=d(x \odot y)=x \odot d(y)$.

Conversely, let $x, y \in A$.
Then,

$$
\beta(x \odot y)=\{0, d(x \odot y)\}
$$

and

$$
(\beta(x) \odot y) \vee(x \odot \beta(y))=\{0, d(x) \odot y, x \odot d(y), d(x \odot y)\} .
$$

There are only two cases:
If $d(x) \odot y=0$ or $x \odot d(y)=0$, without loss of generality, assume that $d(x) \odot y=0$. Then,

$$
d(x \odot y)=0 \vee(x \odot d(y))=x \odot d(y)
$$

Thus, $(\beta(x) \odot y) \vee(x \odot \beta(y))=\{0, d(x \odot y)\}=\beta(x \odot y)$.
If $d(x) \odot y=x \odot d(y)$, then

$$
d(x \odot y)=d(x) \odot y=x \odot d(y)
$$

Thus, $(\beta(x) \odot y) \vee(x \odot \beta(y))=\{0, d(x \odot y)\}=\beta(x \odot y)$.
Consequently, we infer $\beta \in \operatorname{MD}(A)$.
Corollary 1. If A is an MV-algebra, and $a \in A$, a multifunction $\beta_{a}: A \rightarrow \Delta(A)$ on A is defined as follows

$$
\beta_{a}(x):=\left\{0, d_{a}(x)\right\} .
$$

Then $\beta_{a} \in \operatorname{MD}(A)$.
Proof. If $d=d_{a}$ in Proposition 5, then for any $x, y \in A$, we know $d(x) \odot y=a \odot x \odot y=$ $x \odot d(y)$. Hence, we infer that $\beta_{a} \in \operatorname{MD}(A)$ by Proposition 5 .

Remark 6. The conclusion is not necessarily true for general (\odot, \vee)-derivations. For example, $d=\left(\begin{array}{cccc}0 & \frac{1}{3} & \frac{2}{3} & 1 \\ 0 & \frac{1}{3} & \frac{2}{3} & \frac{2}{3}\end{array}\right)$ is an (\odot, \vee)-derivation on L_{4}. But $\beta\left(\frac{2}{3} \odot 1\right)=\left\{0, \frac{2}{3}\right\} \neq\left\{0, \frac{1}{3}, \frac{2}{3}\right\}=$ $\left\{0, \frac{2}{3}\right\} \vee\left\{0, \frac{1}{3}\right\}=\left(\left\{0, \frac{2}{3}\right\} \odot 1\right) \vee\left(\frac{2}{3} \odot\left\{0, \frac{2}{3}\right\}\right)=\left(\beta\left(\frac{2}{3}\right) \odot 1\right) \vee\left(\frac{2}{3} \odot \beta(1)\right)$.

Proposition 6. Let A be an MV-algebra and $d \in \operatorname{Der}(A)$. Define a multifunction $\gamma: A \rightarrow \Delta(A)$ on A as follows

$$
\gamma(x):=[0, d(x)] .
$$

Then $\gamma \in \operatorname{MD}(A)$.
Proof. Since $d \in \operatorname{Der}(A)$, we obtain $\gamma(x \odot y)=[0, d(x \odot y)]=[0,(d(x) \odot y) \vee(x \odot d(y))]$. Moreover, we have

$$
\begin{aligned}
(\gamma(x) \odot y) \vee(x \odot \gamma(y)) & =([0, d(x)] \odot y) \vee(x \odot[0, d(y)]) & & (\text { Definition 3) } \\
& =[0, d(x) \odot y] \vee[0, x \odot d(y)] & & (\text { Lemma } 5(3)) \\
& =[0,(d(x) \odot y) \vee(x \odot d(y))] . & & (\text { Lemma } 5(4))
\end{aligned}
$$

Hence, we conclude that $\gamma \in \operatorname{MD}(A)$.
On the other hand, if there is a given (\odot, \vee)-multiderivation σ on A, then we can construct a corresponding (\odot, \vee)-derivation d from σ. We need the following lemma to prepare.

Lemma 9. If A is an MV-algebra, and $M, N \in \Delta(A)$, if both $\sup (M)$ and $\sup (N)$ exist, then

1. $\quad \sup (M \odot N)$ exists and $\sup (M \odot N)=\sup (M) \odot \sup (N)$.
2. $\quad \sup (M \vee N)$ exists and $\sup (M \vee N)=\sup (M) \vee \sup (N)$.

Proof. Denote $m_{0}=\sup (M)$ and $n_{0}=\sup (N)$.
(1) Firstly, we prove that $m_{0} \odot n_{0}$ is an upper bound of $M \odot N$. For any $m \in M$ and $n \in N$, we immediately have $m \odot n \leq m_{0} \odot n_{0}$ by Lemma 1 (4). Hence, it is enough to show that $m_{0} \odot n_{0}$ is the least upper bound. Assume that $m \odot n \leq x$ for all $m \in M, n \in N$. It tells us that $m \leq n^{*} \oplus x$ and so $m_{0} \leq n^{*} \oplus x$ by Lemma 1 (8) and the definition of least upper bound. Then, we have $m_{0} \odot n \leq x$. Similarly, we obtain $n \leq m_{0}^{*} \oplus x$ and $n_{0} \leq m_{0}^{*} \oplus x$. Thus, we can prove that $m_{0} \odot n_{0} \leq x$. Finally, $\sup (M \odot N)=\sup (M) \odot \sup (N)$ holds.
(2) For any $m \in M$ and $n \in N$, we have $m \leq m_{0}$ and $n \leq n_{0}$. So, $m \vee n \leq m_{0} \vee n_{0}$ and $\sup (M \vee N) \leq \sup (M) \vee \sup (N)$. Conversely, since $M \vee N \succeq M, N$, it implies that $\sup (M \vee N) \geq \sup (M), \sup (N)$ and thus $\sup (M \vee N) \geq \sup (M) \vee \sup (N)$. Therefore, $\sup (M \vee N)=\sup (M) \vee \sup (N)$.

Proposition 7. If A is an MV-algebra, $\sigma \in \operatorname{MD}(A)$, and $\sup (\sigma(x))$ exists for any $x \in A$, define $\sup \sigma: A \rightarrow A b y(\sup \sigma)(x)=\sup (\sigma(x))$. Then, $\sup \sigma \in \operatorname{Der}(A)$.

Proof. For any $x, y \in A$, we have

$$
\begin{aligned}
(\sup \sigma)(x \odot y) & =\sup (\sigma(x \odot y)) & & \text { (Definition of } \sup \sigma) \\
& =\sup ((\sigma(x) \odot y) \vee(x \odot \sigma(y))) & & \text { (Equation (3)) } \\
& =\sup (\sigma(x) \odot y) \vee \sup (x \odot \sigma(y)) & & \text { (Lemma 9 (2)) } \\
& =(\sup (\sigma(x)) \odot \sup \{y\}) \vee(\sup \{x\} \odot \sup (\sigma(y))) & & (\text { Lemma } 9(1)) \\
& =((\sup \sigma)(x) \odot y) \vee(x \odot(\sup \sigma)(y)) . & & \text { (Definition of } \sup \sigma)
\end{aligned}
$$

Hence, $\sup \sigma \in \operatorname{Der}(A)$.
Remark 7. (1) If MV-algebra A is complete, then $\sup \sigma$ is always an (\odot, \vee)-derivation on A for an arbitrary (\odot, \vee)-multiderivation σ on A.
(2) If $\sigma \in \operatorname{MD}(A)$ and the image $\sigma(x)$ is finite for any $x \in A$, then $\sup \sigma$ is always an (\odot, \vee)-derivation on A.

Next, we construct (\odot, \vee)-multiderivations on subalgebras and direct products of MV-algebras from a given (\odot, \vee)-multiderivation.

Proposition 8. Let A be an MV-algebra and $\sigma \in \operatorname{MD}(A)$. If S is a subalgebra of A and $\sigma(x) \subseteq S$ for any $x \in S$, then $\left.\sigma\right|_{S} \in \operatorname{MD}(S)$.

Proof. For any $x, y \in S$, we know that $\sigma(x), \sigma(y) \subseteq S$ and so $\sigma(x) \odot y, x \odot \sigma(y) \subseteq S$. Then,

$$
\left.\sigma\right|_{S}(x \odot y)=(\sigma(x) \odot y) \vee(x \odot \sigma(y))=\left(\left.\sigma\right|_{S}(x) \odot y\right) \vee\left(\left.x \odot \sigma\right|_{S}(y)\right) \subseteq S \vee S=S
$$

by Lemma 6 (3). Thus, $\left.\sigma\right|_{S} \in \operatorname{MD}(S)$.
Definition 5. If Ω is a nonempty set, for each $i \in \Omega$, let σ_{i} be a multifunction on A_{i}. The direct product of $\left\{\sigma_{i}\right\}_{i \in \Omega} \prod_{i \in \Omega} \sigma_{i}: \prod_{i \in \Omega} A_{i} \rightarrow \Delta\left(\prod_{i \in \Omega} A_{i}\right)$ is defined by

$$
\left(\prod_{i \in \Omega} \sigma_{i}\right)(g)=\prod_{i \in \Omega} \sigma_{i}(g(i))=\left\{\left(x_{i}\right)_{i \in \Omega} \mid x_{i} \in \sigma_{i}(g(i))\right\}
$$

for all $g \in \prod_{i \in \Omega} A_{i}$.
Lemma 10. Let Ω be a nonempty set, $\left\{A_{i}\right\}_{i \in \Omega}$ be a family of MV-algebras, and $M_{i}, N_{i} \in \Delta\left(A_{i}\right)$. Then, $\prod_{i \in \Omega}\left(M_{i} \vee N_{i}\right)=\prod_{i \in \Omega} M_{i} \vee \prod_{i \in \Omega} N_{i}$.

Proof. We first show that $\prod_{i \in \Omega}\left(M_{i} \vee N_{i}\right) \subseteq \prod_{i \in \Omega} M_{i} \vee \prod_{i \in \Omega} N_{i}$. For any $x \in \prod_{i \in \Omega}\left(M_{i} \vee\right.$ $\left.N_{i}\right)$, there are $m_{i} \in M_{i}, n_{i} \in N_{i}$ for any $i \in \Omega$ such that $x=\left(m_{i} \vee n_{i}\right)_{i \in \Omega}$. Denote $m=\left(m_{i}\right)_{i \in \Omega}, n=\left(n_{i}\right)_{i \in \Omega}$, we have $x=\left(m_{i} \vee n_{i}\right)_{i \in \Omega}=\left(m_{i}\right)_{i \in \Omega} \vee\left(n_{i}\right)_{i \in \Omega}=m \vee n \in$ $\prod_{i \in \Omega} M_{i} \vee \prod_{i \in \Omega} N_{i}$. And vice versa. Therefore, $\prod_{i \in \Omega}\left(M_{i} \vee N_{i}\right)=\prod_{i \in \Omega} M_{i} \vee \prod_{i \in \Omega} N_{i}$.

Proposition 9. Assume that Ω is a nonempty set and $\left\{A_{i}\right\}_{i \in \Omega}$ is a family of MV-algebras. Then, $\sigma_{i} \in \operatorname{MD}\left(A_{i}\right)$ for any $i \in \Omega$ iff $\prod_{i \in \Omega} \sigma_{i} \in \operatorname{MD}\left(\prod_{i \in \Omega} A_{i}\right)$.

Proof. Denote $A=\prod_{i \in \Omega} A_{i}$ and $\sigma=\prod_{i \in \Omega} \sigma_{i}$. For all $x=\left(x_{i}\right)_{i \in \Omega}, y=\left(y_{i}\right)_{i \in \Omega} \in A$, we have

$$
\sigma(x \odot y)=\sigma\left(\left(x_{i}\right)_{i \in \Omega} \odot\left(y_{i}\right)_{i \in \Omega}\right)=\prod_{i \in \Omega} \sigma_{i}\left(x_{i} \odot y_{i}\right)
$$

$$
\begin{aligned}
(\sigma(x) \odot y) \vee(x \odot \sigma(y)) & =\left(\prod_{i \in \Omega} \sigma_{i}\left(x_{i}\right) \odot\left(y_{i}\right)_{i \in \Omega}\right) \vee\left(\left(x_{i}\right)_{i \in \Omega} \odot \prod_{i \in \Omega} \sigma_{i}\left(y_{i}\right)\right) \\
& =\prod_{i \in \Omega}\left(\sigma_{i}\left(x_{i}\right) \odot y_{i}\right) \vee \prod_{i \in \Omega}\left(x_{i} \odot \sigma_{i}\left(y_{i}\right)\right) \\
& =\prod_{i \in \Omega}\left(\left(\sigma_{i}\left(x_{i}\right) \odot y_{i}\right) \vee\left(x_{i} \odot \sigma_{i}\left(y_{i}\right)\right)\right) .
\end{aligned}
$$

We can immediately obtain $\sigma_{i} \in \operatorname{MD}\left(A_{i}\right)$ for all $i \in \Omega$ iff $\sigma(x \odot y)=(\sigma(x) \odot y) \vee(x \odot$ $\sigma(y))$ by Equation (3).

Finally, we investigate the condition when an (\odot, \vee)-multiderivation σ is isotone.
Definition 6. If A is an MV-algebra, and $\sigma \in \operatorname{MD}(A)$, we say σ is isotone if $\sigma(x) \preceq \sigma(y)$ whenever $x \leq y$.

Proposition 10. If A is an MV-algebra, and $\sigma \in \operatorname{MD}(A)$, then σ is isotone iff $\sigma(x \wedge y) \preceq$ $\sigma(x) \wedge y$ for all $x, y \in A$.

Proof. Assume σ is isotone, then,

$$
\sigma(x \wedge y) \subseteq \sigma(x \wedge y) \wedge \sigma(x \wedge y) \preceq \sigma(x) \wedge \sigma(y) \preceq \sigma(x) \wedge y
$$

by Lemma 6 (3) and (2). Conversely, assume that $\sigma(x \wedge y) \preceq \sigma(y) \wedge x$ for all $x, y \in A$. Let $x, y \in A$ with $x \leq y$. Then, $\sigma(x)=\sigma(y \wedge x) \preceq \sigma(y) \wedge x$. Thus, for every $a \in \sigma(x)$ there is $b \in \sigma(y)$ such that $a \leq b \wedge x$. Hence, $a \leq b$ and so $\sigma(x) \preceq \sigma(y)$.

Corollary 2. If A is an MV-algebra, and $S \subseteq A$ is a subalgebra of A, then the principal (\odot, \vee) multiderivation σ_{S} is isotone.

Proof. Method 1: Let $x, y \in A$ and $x \leq y$. For any $s \in S$, Lemma 1 (4) implies $x \odot s \leq y \odot s$. Thus, $\sigma_{S}(x) \preceq \sigma_{S}(y)$.

Method 2: It is enough to verify that $\sigma_{S}(x \wedge y) \preceq \sigma_{S}(x) \wedge y$ for all $x, y \in A$ by Proposition 10. For any $s \in S$, Lemma 1 (6) implies

$$
(x \wedge y) \odot s=(x \odot s) \wedge(y \odot s) \leq(x \odot s) \wedge y
$$

Thus, $\sigma_{S}(x \wedge y)=(x \wedge y) \odot S \preceq(x \odot S) \wedge y=\sigma_{S}(x) \wedge y$.

4. The Order Structure of (\odot, \vee)-Multiderivations on a Finite MV-Chain

Let $\operatorname{MF}(A)$ be the set of multifunctions on an MV-algebra A. Define \preccurlyeq on $\operatorname{MF}(A)$ by:

$$
\left(\forall \sigma, \sigma^{\prime} \in \operatorname{MF}(A)\right) \quad \sigma \preccurlyeq \sigma^{\prime} \text { if } \sigma(x) \preceq \sigma^{\prime}(x), \forall x \in A .
$$

Then, \preccurlyeq is a preorder on $\operatorname{MF}(A)$ and $\mathbf{0}_{\mathrm{MF}(A)} \preccurlyeq \sigma \preccurlyeq \mathbf{1}_{\mathrm{MF}(A)}$ for any $\sigma \in \operatorname{MF}(A)$, where $\mathbf{0}_{\mathrm{MF}(A)}$ and $\mathbf{1}_{\mathrm{MF}(A)}$ are defined by $\mathbf{0}_{\mathrm{MF}(A)}(x):=\{0\}$ and $\mathbf{1}_{\mathrm{MF}(A)}(x):=\{1\}$ for any $x \in A$, respectively. For any $\sigma \in \operatorname{MD}(A)$, we have $0_{\mathrm{MF}(A)} \preccurlyeq \sigma \preccurlyeq \operatorname{Id}_{\mathrm{MF}(A)}$, where $\operatorname{Id}_{\mathrm{MF}(A)}(x)=$ $\{x\}$, and it is plain that $\{0\} \preceq \sigma(x) \preceq\{x\}, \forall x \in A$.

For $\sigma, \sigma^{\prime} \in \operatorname{MF}(A)$, set

$$
\begin{equation*}
\left(\sigma \boxtimes \sigma^{\prime}\right)(x):=\sigma(x) \boxtimes \sigma^{\prime}(x), \tag{4}
\end{equation*}
$$

for any $x \in A$ and $\boxtimes \in\{\vee, \wedge, \cup, \cap\}$.

Remark 8.

1. Note that $\sigma(x) \vee \sigma^{\prime}(x)$ is meant in the sense of Definition 3, rather than the supremum of $\sigma(x)$ and $\sigma^{\prime}(x)$.
2. Note that $\sigma \vee \sigma^{\prime}$ is an upper bound of σ and σ^{\prime} by Lemma 6 (1) but is not necessarily a least upper bound. For example, define $\sigma \in \operatorname{MF}\left(B_{4}\right)$ by $\sigma(a)=\sigma(b)=\{a, b\}, \sigma(0)=$ $\{0\}, \sigma(1)=\{1\}$. Then,

$$
(\sigma \vee \sigma)(a)=(\sigma \vee \sigma)(b)=\{a, b, 1\}
$$

It is clear that both σ and $\sigma \vee \sigma$ are upper bounds of σ and σ, but $\sigma \prec \sigma \vee \sigma$. In a word, $\sigma \vee \sigma$ is not a least upper bound of σ and σ.
More generally, let A be an MV-algebra which is not an MV-chain with two incomparable elements a, b. Define $\sigma \in \operatorname{MF}(A)$ as $\sigma(a)=\sigma(b)=\{a, b\}, \sigma(x)=\{x\}$ for $x \in A \backslash\{a, b\}$. $\sigma \vee \sigma$ is not a least upper bound of σ and σ.

In the sense of category theory, a preordered set P is called complete [27] (Section 8.5) if for every subset S of P both sup S and $\inf S$ exist (in P). Note that sup S and $\inf S$ need not be unique. For example, let $P=\{a, b\}$ and define a preorder \preceq as follows: $a \preceq b, b \preceq a$. Take $S=\{a, b\}$. Then, both a and b are $\sup S$, also $\inf S$. Therefore, we use "a" rather than "the" concerning $\sup S$ and $\inf S$ in the following.

Let $\left\{\sigma_{i}\right\}_{i \in \Omega}$ be a nonempty family of multifunctions on an MV-algebra A. Define a multifunction $\bigcup_{i \in \Omega} \sigma_{i}$ on A, by

$$
\left(\bigcup_{i \in \Omega} \sigma_{i}\right)(x):=\bigcup_{i \in \Omega} \sigma_{i}(x),
$$

for any $x \in A$.
Analogue to [28] (Theorem I.4.2), we have the following.

Lemma 11. If A is an MV-algebra, then $\left(\operatorname{MF}(A), \preccurlyeq, \mathbf{0}_{\mathrm{MF}(A)}, \mathbf{1}_{\mathrm{MF}(A)}\right)$ is a complete bounded preordered set, where $\bigcup_{i \in \Omega} \sigma_{i}$ is a least upper bound of $\left\{\sigma_{i}\right\}_{i \in \Omega}$, and $\sigma \wedge \sigma^{\prime}$ is a greatest lower bound of σ and σ^{\prime}, respectively.

Proof. Note that $\mathbf{0}_{\mathrm{MF}(A)} \preccurlyeq \sigma \preccurlyeq \mathbf{1}_{\mathrm{MF}(A)}$ for any $\sigma \in \operatorname{MF}(A)$.
Let $\left\{\sigma_{i}\right\}_{i \in \Omega}$ be a nonempty family of $\operatorname{MF}(A)$. Then, $\sigma_{i} \preccurlyeq \bigcup_{i \in \Omega} \sigma_{i}$. Now we will prove that $\bigcup_{i \in \Omega} \sigma_{i}$ is a least upper bound of $\left\{\sigma_{i}\right\}_{i \in \Omega}$. Assume that $\sigma_{i} \preccurlyeq \eta$ for every $i \in \Omega$. For any $y \in\left(\bigcup_{i \in \Omega} \sigma_{i}\right)(x)$ where $x \in A$, there exists $k \in \Omega$ such that $y \in \sigma_{k}(x)$. Since $\sigma_{k}(x) \preceq \eta(x)$, there is $z \in \eta(x)$ such that $y \leq z$, which shows $\bigcup_{i \in \Omega} \sigma_{i} \preccurlyeq \eta$. Therefore, $\bigcup_{i \in \Omega} \sigma_{i}$ is a least upper bound of $\left\{\sigma_{i}\right\}_{i \in \Omega}$.

Let

$$
X^{\ell}=\left\{\lambda \in \operatorname{MF}(A) \mid \lambda \preccurlyeq \sigma_{i}, \forall i \in \Omega\right\}
$$

be the set of lower bounds of $\left\{\sigma_{i}\right\}_{i \in \Omega}$ in $\operatorname{MF}(A)$. Next, we verify that $\bigcup_{\lambda \in X^{\ell}} \lambda$ is indeed a greatest lower bound of $\left\{\sigma_{i}\right\}_{i \in \Omega}$. For any $i \in \Omega$ and $\lambda \in X^{\ell}$, we have $\lambda \preccurlyeq \sigma_{i}$. Thus, $\bigcup_{\lambda \in X^{\ell}} \lambda \preccurlyeq \sigma_{i}$ and $\bigcup_{\lambda \in X^{\ell}} \lambda \in X^{\ell}$. Hence, $\bigcup_{\lambda \in X^{\ell}} \lambda$ is a greatest lower bound of $\left\{\sigma_{i}\right\}_{i \in \Omega}$. Therefore, $\operatorname{MF}(A)$ is complete.

For any $\sigma, \sigma^{\prime} \in \operatorname{MF}(A)$, since $\sigma \wedge \sigma^{\prime} \preccurlyeq \sigma, \sigma^{\prime}$, it follows that $\sigma \wedge \sigma^{\prime}$ is a lower bound of σ and σ^{\prime}. To verify that $\sigma \wedge \sigma^{\prime}$ is a greatest lower bound, let $\eta \preccurlyeq \sigma, \sigma^{\prime}$. Then, for any $y \in \eta(x)$ $(x \in A)$, there are $z \in \sigma(x)$ and $w \in \sigma^{\prime}(x)$ such that $y \leq z$ and $y \leq w$ by $\eta(x) \preceq \sigma(x), \sigma^{\prime}(x)$. Hence,

$$
y \leq z \wedge w \in \sigma(x) \wedge \sigma^{\prime}(x)
$$

Therefore, $\eta(x) \preceq \sigma(x) \wedge \sigma^{\prime}(x)$. Thus, $\eta \preccurlyeq \sigma \wedge \sigma^{\prime}$.
As already mentioned, \preceq is not always a partial order on $\Delta(A)$, where $M \preceq N$ iff for each $m \in M$ there exists $n \in N$ such that $m \leq n$. The binary relation \sim on $\Delta(A)$ defined by $M \sim N$ iff $M \preceq N$ and $N \preceq M$ is an equivalence relation. Given $M \in \Delta(A)$, the equivalence class of M with respect to \sim will be denoted by \bar{M}. If $M=\{x\}$ is a singleton, then we abbreviate $\overline{\{x\}}$ by \bar{x}. Thus, we can obtain a partial order \preceq on $\Delta(A) / \sim$ defined by $\bar{M} \preceq \bar{N}$ iff $M \preceq N$. We claim that \preceq is well defined. In fact, if $M \sim M^{\prime}, N \sim N^{\prime}$ and $M \preceq N$, then $M^{\prime} \preceq M \preceq N \preceq N^{\prime}$.

Recall that for a subset M of A, the lower set generated by \boldsymbol{M} [29] is the set

$$
\downarrow M=\{x \in A \mid \text { there exists } m \in M \text { such that } x \leq m\} .
$$

Lemma 12. Let $M, N \in \Delta(A)$. Then, $\bar{M}=\bar{N}$ iff $\downarrow M=\downarrow N$.
Proof. It is sufficient to show that $M \preceq N$ iff $\downarrow M \subseteq \downarrow N$.
Let $M \preceq N$. For every $x \in \downarrow M$, there is $m \in M$ such that $x \leq m$. Then, $M \preceq N$ gives $m \leq n$ for some $n \in N$. Hence, $x \leq n$ and $x \in \downarrow N$. Therefore, $\downarrow M \subseteq \downarrow N$.

Conversely, assume that $\downarrow M \subseteq \downarrow N$. For any $m \in M$, we have $m \in \downarrow M \subseteq \downarrow N$. Thus, there exists $n \in N$ such that $m \leq n$. Hence, $M \preceq N$.

Similarly, $N \preceq M$ iff $\downarrow N \subseteq \downarrow M$.
Corollary 3. In general, let A be an MV-algebra, $M \in \Delta(A)$, and $a \in A$. Then, $\bar{M}=\bar{a}$ iff $\sup M$ exists and $\sup M=a \in M$.

Assume $\bar{M}=\bar{a}$. Then a is an upper bound of M since $M \preceq\{a\}$. To prove a is a least upper bound of M, let b be an upper bound of M. Since $\{a\} \preceq M$, there exists $m \in M$ such that $a \leq m$. Hence, $a \leq m \leq b$, which shows sup $M=a \in M$.

Conversely, let $\sup M=a \in M$. It suffices to verify that $\downarrow M=\downarrow a$ by Lemma 12. If $x \in \downarrow M$, then there is $m \in M$ such that $x \leq m \leq a$. It follows that $x \in \downarrow a$ and $\downarrow M \subseteq \downarrow a$. If $x \in \downarrow a$, then $x \leq a \in M$. Thus, $x \in \downarrow M$ and $\downarrow a \subseteq \downarrow M$. Therefore, $\downarrow M=\downarrow a$.

Corollary 4. Let L_{n} with $n \geq 2$ and $M \in \Delta\left(L_{n}\right)$. Then, $\bar{M}=\overline{\sup M}$.

Proof. Observe that sup M is exactly $\frac{i}{n-1}$ for a certain $0 \leq i \leq n-1$. It suffices to verify that $\downarrow M=\downarrow \sup M$ by Lemma 12. Suppose $x \in \downarrow M$, there is $m \in M$ such that $x \leq m$. Since $m \leq \sup M$, it follows that $x \leq \sup M$. Hence, $x \in \downarrow \sup M$. Conversely, assume $x \in \downarrow \sup M$, which means $x \leq \sup M=\frac{i}{n-1}$. Since sup $M \in M$, it follows that $x \in \downarrow M$. Therefore, $\downarrow M=\downarrow \sup M$ and $\bar{M}=\overline{\sup M}$.

Note that the family of all lower sets of a poset A is a complete lattice by [30] (Example O-2.8). We will prove that the family of all nonempty lower sets of A is also a complete lattice, denoted by $\left(L_{0}(A), \subseteq\right)$.

Corollary 5. Let A be an MV-algebra, then $\Delta(A) / \sim$ is isomorphic to the complete lattice $\left(L_{0}(A), \subseteq\right)$.

Proof. Since A has a least element 0 , the intersection of a family of nonempty lower sets of A is still a nonempty lower set. Therefore, $L_{0}(A)$ is a complete lattice.

Define $\varphi: \Delta(A) / \sim \rightarrow L_{0}(A)$ by $\bar{M} \mapsto \downarrow M$. Lemma 12 shows that φ is well defined and injective, and φ is also surjective since $M=\downarrow M$ if $M \in L_{0}(A)$. As discussed in the proof of Lemma $12, \bar{M} \preceq \bar{N}$ iff $\downarrow M \subseteq \downarrow N$ for all $M, N \in \Delta(A)$, which gives both φ and φ^{-1} are order preserving. Hence, φ is an isomorphism.

Next, we study the order structure on $\Delta\left(L_{n}\right) / \sim$. First, we need
Lemma 13. Let A be an MV-chain, $M, N \in \Delta(A)$, and $\sup M$, $\sup N$ exist.

1. If $\bar{M} \preceq \bar{N}$, then $\sup M \leq \sup N$.
2. If $\sup M<\sup N$, then $\bar{M} \preceq \bar{N}$.
3. $\bar{M}=\bar{N}$ iff the following conditions hold:
(a) $\sup M=\sup N$.
(b) $\sup M \in M \Leftrightarrow \sup N \in N$.

In particular, if A is a finite MV-chain, then $\bar{M}=\bar{N}$ iff (a) holds.
Proof. (1) Suppose $\bar{M} \preceq \bar{N}$, then $M \preceq N$. For any $m \in M$ there is $n \in N$ such that $m \leq n \leq \sup N$. According to the definition of $\sup M$, we have $\sup M \leq \sup N$.
(2) Let $\sup M<\sup N$. Assume on the contrary $M \npreceq N$. Then, there is $m \in M$ such that $m>n$ for any $n \in N$. The definition of $\sup N$ implies $m \geq \sup N$. Thus, $\sup N \leq m \leq \sup M$, which contradicts the fact that $\sup M<\sup N$.
(3) Assume that $\bar{M}=\bar{N}$. (a) follows from (1).

To prove that $\sup M \in M \Leftrightarrow \sup N \in N$, we assume $\sup M \in M$. Then, there exists $n_{0} \in N$ such that $\sup M \leq n_{0}$ by $M \preceq N$. Since $N \preceq M$, we have $n_{0} \leq \sup M$. Hence, $n_{0}=\sup M$. Therefore, $\sup N=\sup M=n_{0} \in N$ by (a). Symmetrically, $\sup N \in N \Rightarrow$ $\sup M \in M$.

Conversely, assume that (a) and (b) hold, it suffices to show that $\downarrow M=\downarrow N$ by Lemma 12. Assume that $\downarrow M \neq \downarrow N$; without loss of generality, there is $y \in \downarrow M$ but $y \notin \downarrow N$. That is to say, for arbitrary $n \in N$ we have $n<y$. So, sup $N \in N$ implies sup $N<y$. Since $y \in \downarrow M$, there is $m \in M$ such that $y \leq m$. It follows sup $N<y \leq m<\sup M$ by the definition of $\sup N$, which is contrary to $\sup M=\sup N$. Thus, $\bar{M}=\bar{N}$.

Assume A is a finite MV-chain, and (b) always holds. Hence, $\bar{M}=\bar{N}$ iff (a) holds.
Remark 9. Note that $\sup M=\sup N$ may not imply $\bar{M} \preceq \bar{N}$. For example, let $A=[0,1]$ be the standard MV-algebra and $\frac{1}{2} \in A$. Define $M=\downarrow \frac{1}{2}$ and $N=\left\{a \in A \left\lvert\, 0 \leq a<\frac{1}{2}\right.\right\}$. Then, $\sup M=\sup N=\frac{1}{2}$, but $\bar{M} \npreceq \bar{N}$, since $\frac{1}{2} \in M$, there is no $y \in N$ such that $\frac{1}{2} \leq y$.

Example 4. Consider the MV-chain L_{n} with $n \geq 2$. Then, $\Delta\left(L_{n}\right) / \sim$ is order isomorphic to L_{n}.

Proof. Define $f: L_{n} \rightarrow \Delta\left(L_{n}\right) / \sim$ by $f(x)=\bar{x}$ for any $x \in L_{n}$. If $\bar{x}=\bar{y}$, then $x=\sup \{x\}=$ $\sup \{y\}=y$ by Lemma 13 (3). Thus, f is injective. To prove f is surjective, assume $\bar{M} \in \Delta\left(L_{n}\right) / \sim$, then $f(\sup M)=\overline{\sup M}=\bar{M}$ by Corollary 4 .

It is enough to verify that f and f^{-1} are order preserving. If $x \leq y$, then $f(x)=$ $\bar{x} \preceq \bar{y}=f(y)$ since $\{x\} \preceq\{y\}$ and Corollary 4 . Conversely, suppose $\bar{x} \preceq \bar{y}$, we have $x=\sup \{x\} \leq \sup \{y\}=y$ by Lemma 13 (1). Therefore, f is an isomorphism.

We next investigate the preorder on the set of (\odot, \vee)-multiderivations.
Similar to $\Delta(A)$, we can define an equivalence relation on $\operatorname{MD}(A)$ by $\sigma \sim \sigma^{\prime}$ iff $\sigma \preccurlyeq \sigma^{\prime}$ and $\sigma^{\prime} \preccurlyeq \sigma$, and define $\bar{\sigma} \preccurlyeq \overline{\sigma^{\prime}}$ in $\operatorname{MD}(A) / \sim \operatorname{iff} \sigma \preccurlyeq \sigma^{\prime}$. Observe that $\preccurlyeq \operatorname{inD}(A) / \sim$ is a well-defined partial order by the hereditary order of \preceq. Clearly, $(\operatorname{MD}(A) / \sim, \preccurlyeq)$ is a poset. By the definition of \preceq, we know $\bar{\sigma}=\overline{\sigma^{\prime}}$ iff $\overline{\sigma(x)}=\overline{\sigma^{\prime}(x)}$ for any $x \in A$.

For any $\sigma \in \operatorname{MD}(A), \downarrow \sigma: A \rightarrow \Delta(A)$ is defined as $(\downarrow \sigma)(x)=\downarrow \sigma(x)$. We claim that $\bar{\sigma}=\overline{\downarrow \sigma}$. In fact, $\sigma \preccurlyeq \downarrow \sigma$ is trivial. For any $y \in \downarrow \sigma(x)$, there exists $z \in \sigma(x)$ such that $y \leq z$ by the definition of $\downarrow \sigma(x)$. Therefore, $\downarrow \sigma(x) \preceq \sigma(x)$ for any $x \in A$ and $\downarrow \sigma \preccurlyeq \sigma$.

Lemma 14. If A is an MV-algebra, then:

1. $\quad \sigma \vee \sigma^{\prime} \in \operatorname{MD}(A)$ for all $\sigma, \sigma^{\prime} \in \operatorname{MD}(A)$.
2. $\quad \downarrow \sigma \in \operatorname{MD}(A)$ for any $\sigma \in \operatorname{MD}(A)$.

Proof. (1) Let $\sigma, \sigma^{\prime} \in \operatorname{MD}(A)$ and $x, y \in A$. Then, we have

$$
\begin{aligned}
\left(\sigma \vee \sigma^{\prime}\right)(x \odot y) & =\sigma(x \odot y) \vee \sigma^{\prime}(x \odot y) & & \text { (Definition of } \left.\sigma \vee \sigma^{\prime}\right) \\
& =((\sigma(x) \odot y) \vee(x \odot \sigma(y))) \vee\left(\left(\sigma^{\prime}(x) \odot y\right) \vee\left(x \odot \sigma^{\prime}(y)\right)\right) & & \left(\sigma, \sigma^{\prime} \in \operatorname{MD}(A)\right) \\
& =\left((\sigma(x) \odot y) \vee\left(\sigma^{\prime}(x) \odot y\right)\right) \vee\left((x \odot \sigma(y)) \vee\left(x \odot \sigma^{\prime}(y)\right)\right) & & \text { (Lemma 6(4) and (5)) } \\
& =\left(\left(\sigma(x) \vee \sigma^{\prime}(x)\right) \odot y\right) \vee\left(x \odot\left(\sigma(y) \vee \sigma^{\prime}(y)\right)\right) & & \text { (Lemma 7 (2)) } \\
& =\left(\left(\sigma \vee \sigma^{\prime}\right)(x) \odot y\right) \vee\left(x \odot\left(\sigma \vee \sigma^{\prime}\right)(y)\right) & & \text { (Definition of } \left.\sigma \vee \sigma^{\prime}\right)
\end{aligned}
$$

and so $\sigma \vee \sigma^{\prime} \in \operatorname{MD}(A)$.
(2) Assume $\sigma \in \operatorname{MD}(A)$. Let $a \in(\downarrow \sigma)(x \odot y)=\downarrow \sigma(x \odot y)=\downarrow((\sigma(x) \odot y) \vee(x \odot$ $\sigma(y)))$. There exist $x_{1} \in \sigma(x)$ and $y_{1} \in \sigma(y)$ such that $a \leq\left(x_{1} \odot y\right) \vee\left(x \odot y_{1}\right)$. It follows that

$$
\begin{aligned}
a & =a \wedge\left(\left(x_{1} \odot y\right) \vee\left(x \odot y_{1}\right)\right) & & \\
& =\left(a \wedge\left(x_{1} \odot y\right)\right) \vee\left(a \wedge\left(x \odot y_{1}\right)\right) & & (\text { Distributivity of } A) \\
& =(b \odot y) \vee(x \odot c), & & (\text { Lemma } 5(1))
\end{aligned}
$$

where $b \leq x_{1}$ and $c \leq y_{1}$. Hence, $a \in((\downarrow \sigma)(x) \odot y) \vee(x \odot(\downarrow \sigma)(y))$.
Conversely, let $a \in((\downarrow \sigma)(x) \odot y) \vee(x \odot(\downarrow \sigma)(y))$. There exist $x_{1} \in \sigma(x)$ and $y_{1} \in \sigma(y)$ such that

$$
a=(b \odot y) \vee(x \odot c) \leq\left(x_{1} \odot y\right) \vee\left(x \odot y_{1}\right),
$$

where $b \leq x_{1}$ and $c \leq y_{1}$. Thus, $a \in(\downarrow \sigma)(x \odot y)$.
Therefore, $\downarrow \sigma \in \operatorname{MD}(A)$.
Remark 10. When A is an MV-chain, $\sigma \vee \sigma^{\prime} \in \operatorname{MD}(A)$ is a least upper bound of σ and σ^{\prime} in $\operatorname{MD}(A)$. We know $\sigma \cup \sigma^{\prime}$ is a least upper bound of σ and σ^{\prime} in $\operatorname{MF}(A)$. Note that $\operatorname{MD}(A) \subseteq$ $\operatorname{MF}(A)$ and the preordered on $\operatorname{MF}(A)$. It suffices to verify that $\sigma \vee \sigma^{\prime} \sim \sigma \cup \sigma^{\prime}$. For all $x \in A$, $\left(\sigma \cup \sigma^{\prime}\right)(x) \preceq\left(\sigma \vee \sigma^{\prime}\right)(x)$ is trivial. For any $y \in\left(\sigma \vee \sigma^{\prime}\right)(x)$, there exist $z \in \sigma(x)$ and $z^{\prime} \in \sigma^{\prime}(x)$ such that $y=z \vee z^{\prime}$. Since A is an MV-chain, $y=z$ or $y=z^{\prime}$. Hence, $y \in\left(\sigma \cup \sigma^{\prime}\right)(x)$, which implies $\left(\sigma \vee \sigma^{\prime}\right)(x) \preceq\left(\sigma \cup \sigma^{\prime}\right)(x)$. Therefore, $\left(\sigma \cup \sigma^{\prime}\right)(x) \sim\left(\sigma \vee \sigma^{\prime}\right)(x)$ for all $x \in A$, and hence, $\sigma \vee \sigma^{\prime} \in \operatorname{MD}(A)$ is a least upper bound of σ and σ^{\prime} in $\operatorname{MD}(A)$.

At the end of this section, we characterize the lattice $\operatorname{MD}\left(L_{n}\right) / \sim(n \geq 2)$.

Theorem 1. If L_{n} is the n-element MV-chain with $n \geq 2$, then the lattices $\operatorname{MD}\left(L_{n}\right) / \sim$ and $\operatorname{Der}\left(L_{n}\right)$ are isomorphic.

Proof. Define a map $f: \operatorname{MD}\left(L_{n}\right) / \sim \rightarrow \operatorname{Der}\left(L_{n}\right)$ by

$$
f(\bar{\sigma})=\sup \sigma
$$

By Proposition 7 we know sup $\sigma \in \operatorname{Der}\left(L_{n}\right)$. The order \leqq on $\operatorname{Der}\left(L_{n}\right)$ is defined as $d \leqq d^{\prime}$ iff $d(x) \leq d^{\prime}(x), \forall x \in L_{n}$.

Firstly, we prove that f is well defined. Suppose $\bar{\sigma}=\overline{\sigma^{\prime}}$, that is, $\overline{\sigma(x)}=\overline{\sigma^{\prime}(x)}$ for any $x \in L_{n}$. We get

$$
(\sup \sigma)(x)=\sup (\sigma(x))=\sup \left(\sigma^{\prime}(x)\right)=\left(\sup \sigma^{\prime}\right)(x)
$$

for any $x \in L_{n}$ by Lemma 13 (3). Thus, $f(\bar{\sigma})=\sup (\sigma)=\sup \left(\sigma^{\prime}\right)=f\left(\overline{\sigma^{\prime}}\right)$.
If $f(\bar{\sigma})=f\left(\overline{\sigma^{\prime}}\right)$, that is, $\sup (\sigma)=\sup \left(\sigma^{\prime}\right)$, then $\sup (\sigma(x))=\sup \left(\sigma^{\prime}(x)\right)$ for any $x \in L_{n}$. Lemma 13 (3) implies $\overline{\sigma(x)}=\overline{\sigma^{\prime}(x)}$ for any $x \in L_{n}$ and thus $\bar{\sigma}=\overline{\sigma^{\prime}}$. Hence, f is injective. For any $d \in \operatorname{Der}\left(L_{n}\right)$, there is $\gamma_{d} \in \operatorname{MD}\left(L_{n}\right)$ where $\gamma_{d}(x):=[0, d(x)]$ such that

$$
f\left(\overline{\gamma_{d}}\right)(x)=\left(\sup \gamma_{d}\right)(x)=\sup \left(\gamma_{d}(x)\right)=\sup [0, d(x)]=d(x)
$$

for all $x \in L_{n}$ by Propositions 6 and 7 . Thus, $f\left(\overline{\gamma_{d}}\right)=d$ and f is surjective.
To prove that f is an order-isomorphism, let $\bar{\sigma} \preccurlyeq \overline{\sigma^{\prime}}$, that is, for any $x \in L_{n}, \overline{\sigma(x)} \preceq$ $\overline{\sigma^{\prime}(x)}$. Corollary 4 implies that $\overline{\sigma(x)}=\overline{\sup (\sigma(x))}$ for any $x \in L_{n}$. It follows that

$$
\overline{(\sup \sigma)(x)}=\overline{\sup (\sigma(x))} \preceq \overline{\sup \left(\sigma^{\prime}(x)\right)}=\overline{\left(\sup \sigma^{\prime}\right)(x)}
$$

and thus $(\sup \sigma)(x) \leq\left(\sup \sigma^{\prime}\right)(x)$ for any $x \in L_{n}$ since $(\sup \sigma)(x)$ is a singleton. Hence, $f(\bar{\sigma})=\sup \sigma \leqq \sup \sigma^{\prime}=f\left(\overline{\sigma^{\prime}}\right)$. Conversely, assume $d, d^{\prime} \in \operatorname{Der}\left(L_{n}\right)$ and $d \leqq d^{\prime}$, which means $d(x) \leq d^{\prime}(x)$ for all $x \in L_{n}$. Now the construction in Proposition 6 gives $\gamma_{d}=f^{-1}$: $A \rightarrow \Delta(A)$, where $\gamma_{d}(x)=[0, d(x)]$. Furthermore, we have

$$
\gamma_{d}(x)=[0, d(x)] \preceq\left[0, d^{\prime}(x)\right]=\gamma_{d^{\prime}}(x)
$$

for any $x \in L_{n}$ by the definition of \preceq. Thus, $\gamma_{d} \preccurlyeq \gamma_{d^{\prime}}$ and $f^{-1}(d)=\overline{\gamma_{d}} \preccurlyeq \overline{\gamma_{d^{\prime}}}=f^{-1}\left(d^{\prime}\right)$.
Proposition 11. If L_{n} is the n-element MV-chain with $n \geq 2$, then the lattices $\Delta\left(L_{n} \times L_{2}\right) / \sim$ and $\operatorname{Der}\left(L_{n+1}\right)$ are isomorphic.

Proof. Recall that $\operatorname{Der}\left(L_{n+1}\right)$ is isomorphic to the lattice $\left(\mathcal{A}\left(L_{n+1}\right), \leqq\right)$ where $\mathcal{A}\left(L_{n+1}\right)=$ $\left\{(x, y) \in L_{n+1} \times L_{n+1} \mid y \leq x\right\} \backslash\{(0,0)\}[16$, Theorem 5.6] and \leqq is defined by: for any $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in L_{n+1} \times L_{n+1},\left(x_{1}, y_{1}\right) \leqq\left(x_{2}, y_{2}\right)$ iff $x_{1} \leq x_{2}$ and $y_{1} \leq y_{2}$. Moreover, $\Delta\left(L_{n} \times L_{2}\right) / \sim$ is isomorphic to the lattice $L_{0}\left(L_{n} \times L_{2}\right)$ by Corollary 5.

Define a map $f: \mathcal{A}\left(L_{n+1}\right) \rightarrow L_{0}\left(L_{n} \times L_{2}\right)$ by:

$$
f\left(\frac{k}{n}, \frac{\ell}{n}\right)= \begin{cases}\downarrow\left(\frac{k-1}{n-1}, 0\right), & \text { if } \ell=0 ; \\ \downarrow\left(\frac{k-1}{n-1}, 0\right) \cup \downarrow\left(\frac{\ell-1}{n-1}, 1\right), & \text { if } \ell>0,\end{cases}
$$

where $0 \leq k, \ell \leq n-1$. It is easy to see that f is injective. Now we show that f is surjective. For any $M \in L_{0}\left(L_{n} \times L_{2}\right)$, we claim M has at most two maximal elements. By way of contradiction, assume M has three different maximal elements denoted by $\left(a_{n}, b_{n}\right), n=1,2,3$; then, there exist $1 \leq i<j \leq 3$ such that $b_{i}=b_{j}$ since $b_{n} \in L_{2}$. Thus, $\left(a_{i}, b_{i}\right)$ and $\left(a_{j}, b_{j}\right)$ are comparable, which contradicts the fact that $\left(a_{i}, b_{i}\right)$ and $\left(a_{j}, b_{j}\right)$ are different maximal elements. If M has only one maximal element denoted by $\left(\frac{k}{n-1}, a\right)$, then

$$
M=\downarrow\left(\frac{k}{n-1}, a\right)= \begin{cases}f\left(\frac{k+1}{n}, 0\right), & \text { if } a=0 \\ f\left(\frac{k+1}{n}, \frac{k+1}{n}\right), & \text { if } a=1\end{cases}
$$

If M has exactly two maximal elements denoted by $\left(\frac{k}{n-1}, 0\right)$ and $\left(\frac{\ell}{n-1}, 1\right)$, then

$$
M=\downarrow\left(\frac{k}{n-1}, 0\right) \cup \downarrow\left(\frac{\ell}{n-1}, 1\right)=f\left(\frac{k+1}{n}, \frac{\ell+1}{n}\right) .
$$

Therefore, f is surjective.
Since a bijection with supremum preserving is an order isomorphism, it suffices to verify that f preserves the supremum, that is,

$$
f\left(\left(\frac{k}{n}, \frac{\ell}{n}\right) \vee\left(\frac{p}{n}, \frac{q}{n}\right)\right)=f\left(\frac{k}{n}, \frac{\ell}{n}\right) \cup f\left(\frac{p}{n}, \frac{q}{n}\right)
$$

for all $\left(\frac{k}{n}, \frac{\ell}{n}\right),\left(\frac{p}{n}, \frac{q}{n}\right) \in \mathcal{A}\left(L_{n+1}\right)$.
Case 1. If $\ell=q=0$, then

$$
\begin{aligned}
f\left(\frac{k}{n}, 0\right) \cup f\left(\frac{p}{n}, 0\right) & =\downarrow\left(\frac{k-1}{n-1}, 0\right) \cup \downarrow\left(\frac{p-1}{n-1}, 0\right) \\
& =\downarrow\left(\max \left\{\frac{k-1}{n-1}, \frac{p-1}{n-1}\right\}, 0\right) \\
& =\downarrow\left(\frac{\max \{k, p\}-1}{n-1}, 0\right) \\
& =f\left(\left(\frac{k}{n}, 0\right) \vee\left(\frac{p}{n}, 0\right)\right) .
\end{aligned}
$$

Case 2. If $\ell=0, q>0$, then

$$
\begin{aligned}
f\left(\frac{k}{n}, 0\right) \cup f\left(\frac{p}{n}, \frac{q}{n}\right) & =\downarrow\left(\frac{k-1}{n-1}, 0\right) \cup\left(\downarrow\left(\frac{p-1}{n-1}, 0\right) \cup \downarrow\left(\frac{q-1}{n-1}, 1\right)\right) \\
& =\downarrow\left(\frac{\max \{k, p\}-1}{n-1}, 0\right) \cup \downarrow\left(\frac{q-1}{n-1}, 1\right) \\
& =f\left(\left(\frac{k}{n}, 0\right) \vee\left(\frac{p}{n}, \frac{q}{n}\right)\right) .
\end{aligned}
$$

The case $\ell>0, q=0$ is similar.
Case 3. If $\ell>0, q>0$, then

$$
\begin{aligned}
f\left(\frac{k}{n}, \frac{\ell}{n}\right) \cup f\left(\frac{p}{n}, \frac{q}{n}\right) & =\left(\downarrow\left(\frac{k-1}{n-1}, 0\right) \cup \downarrow\left(\frac{\ell-1}{n-1}, 1\right)\right) \cup\left(\downarrow\left(\frac{p-1}{n-1}, 0\right) \cup \downarrow\left(\frac{q-1}{n-1}, 1\right)\right) \\
& =\downarrow\left(\frac{\max \{k, p\}-1}{n-1}, 0\right) \cup \downarrow\left(\frac{\max \{\ell, q\}-1}{n-1}, 1\right) \\
& =f\left(\frac{\max \{k, p\}}{n}, \frac{\max \{\ell, q\}}{n}\right) \\
& =f\left(\left(\frac{k}{n}, \frac{\ell}{n}\right) \vee\left(\frac{p}{n}, \frac{q}{n}\right)\right) .
\end{aligned}
$$

Now we verify that f is an isomorphism of posets and hence an isomorphism of lattices. For all $x, y \in \mathcal{A}\left(L_{n+1}\right)$,

$$
x \leqq y \Leftrightarrow x \vee y=y \Leftrightarrow f(x) \cup f(y)=f(x \vee y)=f(y) \Leftrightarrow f(x) \subseteq f(y)
$$

Hence, f is an isomorphism of lattices.
Therefore, $\mathcal{A}\left(L_{n+1}\right) \cong L_{0}\left(L_{n} \times L_{2}\right)$ and then $\Delta\left(L_{n} \times L_{2}\right) / \sim \cong \operatorname{Der}\left(L_{n+1}\right)$.
Corollary 6. If L_{n} is the n-element MV-chain with $n \geq 2$, then $\operatorname{MD}\left(L_{n+1}\right) / \sim$ is isomorphic to the lattice $\Delta\left(L_{n} \times L_{2}\right) / \sim$.

Proof. It follows from Theorem 1 and Proposition 11.

Note that according to the isomorphism in Theorem 1, $\left|\operatorname{MD}\left(L_{n}\right) / \sim\right|=\left|\operatorname{Der}\left(L_{n}\right)\right|=$ $\frac{(n-1)(n+2)}{2}$ by [16] (Theorem 3.11). However, the following Example 5 shows that the cardinalities of different equivalence classes with respect to the equivalence relation \sim are different in general.

Example 5. Let $n=2$ and define $\delta \in \operatorname{MF}\left(L_{2}\right)$ by $\delta(0)=\{0\}, \delta(1)=\{0,1\}$. Then, it is easy to check that

$$
\begin{gathered}
\operatorname{MD}\left(L_{2}\right)=\left\{\mathbf{0}_{\mathrm{MF}\left(L_{2}\right)}, \operatorname{Id}_{\mathrm{MF}\left(L_{2}\right)}, \delta\right\}, \\
\operatorname{MD}\left(L_{2}\right) / \sim=\left\{\left\{\mathbf{0}_{\mathrm{MF}\left(L_{2}\right)}\right\},\left\{\operatorname{Id}_{\mathrm{MF}\left(L_{2}\right)}, \delta\right\}\right\} .
\end{gathered}
$$

It is clear that $\left|\overline{\mathbf{0}_{\mathrm{MF}\left(L_{2}\right)}}\right|=1$ but $\left|\overline{\operatorname{Id}_{\mathrm{MF}\left(L_{2}\right)}}\right|=2$. Hence, $2=\left|\operatorname{MD}\left(L_{2}\right) / \sim\right| \nmid\left|\operatorname{MD}\left(L_{2}\right)\right|=3$.
So, the cardinality of $\operatorname{MD}\left(L_{n}\right)$ is not easy to deduce from Theorem 1. In the next section, we will investigate the enumeration of the set of (\odot, \vee)-multiderivations on L_{n} by constructing a counting principle (Theorem 3).

5. The Enumeration of (\odot, \vee)-Multiderivations on a Finite MV-Chain

In this section, we determine the cardinality of $\operatorname{MD}\left(L_{n}\right)$. For small values of n, this can be performed with calculations using Python (see the Appendix A Figure A1) in Table 1:

Table 1. The cardinality of $\operatorname{MD}\left(L_{n}\right)$.

\boldsymbol{n}	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$
$\left\|\mathrm{MD}\left(L_{n}\right)\right\|$	3	16	63	220	723

The result cannot be obtained after $n \geq 6$ due to the limitation of computing resources. But we have shown the following general formula.

Theorem 2. Let $n \geq 2$ be a positive integer. Then, $\left|\operatorname{MD}\left(L_{n}\right)\right|=\frac{7 \cdot 3^{n-1}-2^{n+2}+1}{2}$.
In order to prove Theorem 2, we need the following Lemmas.
Lemma 15. Assume that A is an MV-chain and $\sigma \in \operatorname{MD}(A)$; then, the following results hold:

1. If $M \subseteq A$, then $M=M \vee M$.
2. For any $x \in A, n \in \mathbb{N}_{+}$, we have $\sigma\left(x^{n}\right)=x^{n-1} \odot \sigma(x)$, where $x^{0}=1, x^{n}=\underbrace{x \odot x \odot \cdots \odot x}_{n}$.

Proof. (1) It follows immediately from Lemma 6 (3), as M is a sublattice.
(2) We prove $\sigma\left(x^{n}\right)=x^{n-1} \odot \sigma(x)$ by induction on n. Obviously, $\sigma\left(x^{1}\right)=\sigma(x)=$ $1 \odot \sigma(x)=x^{1-1} \odot \sigma(x)$.

Now, assume that $\sigma\left(x^{n}\right)=x^{n-1} \odot \sigma(x)$. By Equation (3), we have

$$
\begin{aligned}
\sigma\left(x^{n+1}\right) & =\sigma\left(x^{n} \odot x\right) \\
& =\left(\sigma\left(x^{n}\right) \odot x\right) \vee\left(x^{n} \odot \sigma(x)\right) \\
& =\left(x^{n-1} \odot \sigma(x) \odot x\right) \vee\left(x^{n} \odot \sigma(x)\right) \\
& =x^{n} \odot \sigma(x),
\end{aligned}
$$

so (2) holds.
Note that an MV-chain can be completely characterized by (1). That is, if A is an MV-algebra, then A is an MV-chain iff $M=M \vee M$ for every $M \subseteq A$. In fact, by way of contraposition, assume that $x, y \in A$ and x, y are incomparable, denote $z=x \vee y$. Let $M=\{x, y\}$. Then, $z=x \vee y \in M \vee M$ but $z \notin M$. This leads to a contradiction.

Let $n \in \mathbb{N}_{+}$and $n \geq 2$. In L_{n}, we know $\frac{n-m-1}{n-1}=\left(\frac{n-2}{n-1}\right)^{m}$ for every $m \in\{1,2, \cdots, n-1\}$. So, any $x \in L_{n} \backslash\{1\}$ has a representation as a power of $\frac{n-2}{n-1}$.

Next, we give a counting principle for (\odot, \vee)-multiderivations on a finite MV-chain L_{n}.
Theorem 3. Let σ be a multifunction on L_{n} and $v=\frac{n-2}{n-1}$. Then, $\sigma \in \operatorname{MD}\left(L_{n}\right)$ iff σ satisfies the following conditions:

1. $\sigma\left(v^{m}\right)=v^{m-1} \odot \sigma(v), \forall m \in\{1,2, \cdots, n-1\}$.
2. $\quad \sigma(v)=\sigma(v) \vee(v \odot \sigma(1))$.
3. $\sigma(v) \preceq\{v\}$.

Proof. Assume $\sigma \in \operatorname{MD}\left(L_{n}\right)$; then, for each $m \in\{1,2, \cdots, n-1\}$, we have $\sigma\left(v^{m}\right)=$ $v^{m-1} \odot \sigma(v)$ by Lemma $15(2)$, and $\sigma(v)=\sigma(v \odot 1)=\sigma(v) \vee(v \odot \sigma(1))$ by Equation (3). Thus, σ satisfies (1) and (2). Furthermore, (3) holds by Proposition 4 (2).

Conversely, suppose that σ satisfies (1), (2) and (3). Let $x, y \in L_{n}$. There are four cases:

If $x=y=1$, then it is easy to see that $\sigma(1 \odot 1)=\sigma(1)=\sigma(1) \vee \sigma(1)$ by Lemma 15 (1).
If $x=1$ or $y=1$, and $x \neq y$. With out loss of generality, suppose that $x \neq 1$ and $y=1$, then $x=v^{k}$ for some $k \in\{1,2, \cdots, n-1\}$. By (1), we have $\sigma(x \odot 1)=\sigma(x)=\sigma\left(v^{k}\right)=$ $v^{k-1} \odot \sigma(v)$. Also, we have

$$
\begin{array}{rlrl}
\sigma(x) \vee(x \odot \sigma(1)) & =\left(v^{k-1} \odot \sigma(v)\right) \vee\left(v^{k} \odot \sigma(1)\right) & & \\
& =\left(v^{k-1} \odot \sigma(v)\right) \vee\left(v^{k-1} \odot(v \odot \sigma(1))\right) \\
& =v^{k-1} \odot(\sigma(v) \vee(v \odot \sigma(1)) & & \text { (Lemma 7 (2)) } \tag{2}\\
& =v^{k-1} \odot \sigma(v) . & & ((2) \text { of Theorem 3) }
\end{array}
$$

Hence, $\sigma(x \odot 1)=\sigma(x)=(\sigma(x) \odot 1) \vee(x \odot \sigma(1))$.
If $x \neq 1$ and $y \neq 1$, then assume that $x=v^{k}$ and $y=v^{\ell}$ for some $k, \ell \in\{1,2, \cdots, n-1\}$. We have

$$
\sigma(x \odot y)=\sigma\left(v^{k} \odot v^{\ell}\right)=\sigma\left(v^{k+\ell}\right)
$$

and

$$
(\sigma(x) \odot y) \vee(x \odot \sigma(y))=\left(\left(v^{k-1} \odot \sigma(v)\right) \odot v^{\ell}\right) \vee\left(v^{k} \odot\left(v^{\ell-1} \odot \sigma(v)\right)\right)=v^{k+\ell-1} \odot \sigma(v)
$$

by Lemma 15 (1). Then, there are three cases:
For $k+\ell<n-1$, by (1) we obtain $\sigma\left(v^{k+\ell}\right)=v^{k+\ell-1} \odot \sigma(v)$.
For $k+\ell=n-1$, by (3) we have $\sigma\left(v^{k+\ell}\right)=\sigma\left(v^{n-1}\right)=\sigma(0) \preceq\{0\}$ and so $\sigma(0)=\{0\}$. And $v^{k+\ell-1} \odot \sigma(v)=v^{n-2} \odot \sigma(v)=v^{*} \odot \sigma(v)=\{0\}$. Thus, $\sigma(x \odot y)=(\sigma(x) \odot y) \vee(x \odot$ $\sigma(y)$).

For $n-1<k+\ell \leq 2 n-2$, we have $\sigma\left(v^{k+\ell}\right)=\sigma(0)=\{0\}=0 \odot \sigma(v)=v^{k+\ell-1} \odot$ $\sigma(v)$ by (3) and thus Equation (3) holds.

Therefore, we conclude that $\sigma \in \operatorname{MD}\left(L_{n}\right)$.
Lemma 16. Let $P, Q \in \Delta\left(L_{n}\right)$. Then, the following results hold:

1. $P \subseteq P \vee Q$ iff $\min Q \leq \min P$.
2. $P \vee Q \subseteq P$ iff $[\min P, 1] \cap Q \subseteq P$.

Proof. Denote $p_{0}=\min P, q_{0}=\min Q$.
(1) Assume $P \subseteq P \vee Q$, then there exist $p \in P, q \in Q$ such that $p_{0}=p \vee q \geq q$. Thus, $q_{0} \leq q \leq p_{0}$.

Conversely, suppose $q_{0} \leq p_{0}$, then $p=p \vee q_{0}$ for any $p \in P$ since $p_{0} \leq p$. Hence, $P \subseteq P \vee Q$.
(2) Assume $P \vee Q \subseteq P$; then, for all $q \in\left[p_{0}, 1\right] \cap Q$, we have $q=p_{0} \vee q \in P \vee Q \subseteq P$. Thus, $\left[p_{0}, 1\right] \cap Q \subseteq P$.

Conversely, assume $\left[p_{0}, 1\right] \cap Q \subseteq P$ and $p \in P, q \in Q$. If $q \leq p$, then $p \vee q=p \in P$. If $q>p$, then $p \vee q=q \in\left[p_{0}, 1\right] \cap Q \subseteq P$. In either case, $p \vee q \in P$ and so $P \vee Q \subseteq P$.

Lemma 17. Let $Q, Q^{\prime} \in \Delta\left(L_{n}\right)$ and $1 \notin Q$. Denote $v=\frac{n-2}{n-1}$. Then, the following results hold:

1. If $0 \notin Q$, then $Q=v \odot Q^{\prime}$ iff $Q^{\prime}=Q \oplus v^{*}$.
2. If $0 \in Q$, denote $Q_{1}=Q \backslash\{0\}$. Then, $Q=v \odot Q^{\prime}$ iff $Q^{\prime}=\{0\} \sqcup\left(Q_{1} \oplus v^{*}\right),\left\{v^{*}\right\} \sqcup$ $\left(Q_{1} \oplus v^{*}\right)$ or $\left\{0, v^{*}\right\} \sqcup\left(Q_{1} \oplus v^{*}\right)$.

Proof. (1) Let $0 \notin Q$ and $Q=v \odot Q^{\prime}$. Then, $0 \notin Q^{\prime}$, otherwise, $0=v \odot 0 \in v \odot Q^{\prime}=Q$, a contradiction. Thus, $0 \notin Q^{\prime}$, which implies $\left\{v^{*}\right\} \preceq Q^{\prime}$. Hence, we have

$$
\begin{aligned}
Q^{\prime}=Q^{\prime} \vee v^{*} & =\left\{q^{\prime} \vee v^{*} \mid q^{\prime} \in Q^{\prime}\right\} \\
& =\left\{\left(q^{\prime} \odot v\right) \oplus v^{*} \mid q^{\prime} \in Q^{\prime}\right\} \\
& =\left(Q^{\prime} \odot v\right) \oplus v^{*} \\
& =Q \oplus v^{*} .
\end{aligned}
$$

Conversely, assume $Q^{\prime}=Q \oplus v^{*}$. Since $1 \notin Q$, we have $Q \preceq\{v\}$. Hence,

$$
\begin{aligned}
Q=Q \wedge v & =\{q \wedge v \mid n \in Q\} \\
& =\left\{v \odot\left(q \oplus v^{*}\right) \mid n \in Q\right\} \\
& =v \odot\left(Q \oplus v^{*}\right) \\
& =v \odot Q^{\prime} .
\end{aligned}
$$

(2) Assume $0 \in Q$ and $Q=v \odot Q^{\prime}$; then, $0=v \odot q^{\prime}$ for some $q^{\prime} \in Q^{\prime}$. Thus, $0 \in Q^{\prime}$ or $v^{*} \in Q^{\prime}$. Denote $Q_{0}^{\prime}=\left\{0, v^{*}\right\} \cap Q^{\prime}$ and $Q_{1}^{\prime}=Q^{\prime} \backslash Q_{0}^{\prime}$. By $v \odot Q_{0}^{\prime}=\{0\}$ and $\left\{v^{*}\right\} \preceq v \odot Q_{1}^{\prime}$, we have

$$
\begin{aligned}
Q_{1}=Q \backslash\{0\} & =\left(v \odot Q^{\prime}\right) \backslash\{0\} \\
& =\left(v \odot\left(Q_{0}^{\prime} \cup Q_{1}^{\prime}\right)\right) \backslash\{0\} \\
& =\left(\left(v \odot Q_{0}^{\prime}\right) \cup\left(v \odot Q_{1}^{\prime}\right)\right) \backslash\{0\} \quad(\text { Lemma 7 (3)) } \\
& =\left(\{0\} \cup\left(v \odot Q_{1}^{\prime}\right)\right) \backslash\{0\} \\
& =v \odot Q_{1}^{\prime} .
\end{aligned}
$$

Since $0 \notin Q_{1}$, we obtain $Q_{1}^{\prime}=Q_{1} \oplus v^{*}$ by (1). Therefore,

$$
Q^{\prime}=Q_{0}^{\prime} \sqcup Q_{1}^{\prime}=Q_{0}^{\prime} \sqcup\left(Q_{1} \oplus v^{*}\right),
$$

where $Q_{0}^{\prime}=\{0\},\left\{v^{*}\right\}$ or $\left\{0, v^{*}\right\}$.
Conversely, assume $0 \in Q$ and $Q^{\prime}=Q_{0}^{\prime} \sqcup\left(Q_{1} \oplus v^{*}\right)$, where $Q_{0}^{\prime}=\{0\},\left\{v^{*}\right\}$ or $\left\{0, v^{*}\right\}$. From $1 \notin Q_{1}$, it follows that $Q_{1} \preceq\{v\}$ and

$$
\begin{aligned}
v \odot Q^{\prime} & =v \odot\left(Q_{0}^{\prime} \cup\left(Q_{1} \oplus v^{*}\right)\right) \\
& =\left(v \odot Q_{0}^{\prime}\right) \cup\left(v \odot\left(Q_{1} \oplus v^{*}\right)\right) \quad(\text { Lemma } 7(3)) \\
& =\{0\} \cup\left(Q_{1} \wedge v\right)=\{0\} \cup Q_{1}=Q .
\end{aligned}
$$

Hence, we complete the proof.
We are now in a position to prove Theorem 2:
Proof of Theorem 2. Assume that σ is a multifunction on L_{n} and denote $\frac{n-2}{n-1}$ by v. According to Theorem 3, σ is uniquely determined by $\sigma(v)$ and $\sigma(1)$ if $\sigma \in \operatorname{MD}\left(L_{n}\right)$. Hence, it is enough to consider the values of $\sigma(v)$ and $\sigma(1)$. By Theorem $3, \sigma \in \operatorname{MD}\left(L_{n}\right)$ iff

$$
\begin{equation*}
\sigma(v) \preceq\{v\}, \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
\sigma(v)=\sigma(v) \vee(v \odot \sigma(1)) \tag{6}
\end{equation*}
$$

For convenience, we denote $P=\sigma(v), Q^{\prime}=\sigma(1), Q=v \odot \sigma(1), p_{0}=\min P$ and $q_{0}=\min Q$. Equation (5) implies $1 \notin P$. By Lemma 16, we know Equation (6) implies that $q_{0} \leq p_{0}$ and $\left[p_{0}, 1\right] \cap Q \subseteq P$. Assume that $p_{0}=\frac{k}{n-1}$ and $|P|=\ell$, where $0 \leq k \leq n-2$ and $1 \leq \ell \leq n-k-1$. Then, $P \backslash\left\{p_{0}\right\} \subseteq\left[\frac{k+1}{n-1}, \frac{n-2}{n-1}\right]$. Thus, P has $C_{n-k-2}^{\ell-1}$ choices with respect to k and ℓ. Now, we will determine all choices of Q and Q^{\prime}.

Case 1. If $q_{0}=p_{0}$, then $Q=\left[q_{0}, 1\right] \cap Q=\left[p_{0}, 1\right] \cap Q \subseteq P$. Hence, $Q \backslash\left\{q_{0}\right\}$ can take any subset of $P \backslash\left\{p_{0}\right\}$ and so Q has $2^{\ell-1}$ choices.

If $q_{0}>0$, then $0 \notin Q$, and by Lemma 17 (1) and $Q=v \odot Q^{\prime}$ we know $Q^{\prime}=Q \oplus v^{*}$. Hence, Q^{\prime} has $2^{\ell-1}$ choices.

If $q_{0}=0$, then $0 \in Q$, by Lemma 17 (2) and $Q=v \odot Q^{\prime}$ we have $Q^{\prime}=\{0\} \sqcup\left(Q_{1} \oplus v^{*}\right)$, $\left\{v^{*}\right\} \sqcup\left(Q_{1} \oplus v^{*}\right)$ or $\left\{0, v^{*}\right\} \sqcup\left(Q_{1} \oplus v^{*}\right)$. Thus, Q^{\prime} has $3 \cdot 2^{\ell-1}$ choices.

Case 2. If $0<q_{0}<p_{0}$, denote $Q_{1}=\left(0, p_{0}\right) \cap Q$ and $Q_{2}=\left[p_{0}, 1\right] \cap Q$. Since $0 \notin Q$, we have $Q=Q_{1} \sqcup Q_{2}$. Notice that $Q_{1} \neq \varnothing$, so there are $2^{k-1}-1$ choices of Q_{1}. Furthermore, since $Q_{2}=\left[p_{0}, 1\right] \cap Q \subseteq P, Q_{2}$ can take any subset of P and so has 2^{ℓ} choices. Thus, there are $\left(2^{k-1}-1\right) \cdot 2^{\ell}$ choices of Q in this case. Since $0 \notin Q$, it follows that Q^{\prime} has also $\left(2^{k-1}-1\right) \cdot 2^{\ell}$ choices by Lemma 17 (1).

Case 3. If $0=q_{0}<p_{0}$, denote $Q_{1}=\left(0, p_{0}\right) \cap Q$ and $Q_{2}=\left[p_{0}, 1\right] \cap Q$, so we have $Q=\{0\} \sqcup Q_{1} \sqcup Q_{2}$. Since $Q_{1} \subset\left(0, p_{0}\right)$, there are 2^{k-1} choices of Q_{1}. Moreover, Q_{2} has 2^{ℓ} choices as in Case 2. Thus, there are $2^{k+\ell-1}$ choices of Q in this case. Since $0 \in Q$, it follows that Q^{\prime} has $3 \cdot 2^{k+\ell-1}$ choices by Lemma 17 (2).

According to Theorem 3 , we can determine the unique (\odot, \vee)-multiderivation for each choices of $\sigma(1)$ and $\sigma(v)$.

Therefore, it follows

$$
\begin{aligned}
\left|\operatorname{MD}\left(L_{n}\right)\right| & =\sum_{k=1}^{n-2} \sum_{\ell=1}^{n-k-1}\binom{n-k-2}{\ell-1}\left(2^{\ell-1}+\left(2^{k-1}-1\right) \cdot 2^{\ell}+3 \cdot 2^{k-1} \cdot 2^{\ell}\right)+\sum_{\ell=1}^{n-1}\binom{n-2}{\ell-1}\left(3 \cdot 2^{\ell-1}\right) \\
& =\sum_{k=0}^{n-2} \sum_{\ell=1}^{n-k-1}\binom{n-k-2}{\ell-1}\left(2^{k+\ell+1}-2^{\ell-1}\right) \\
& =\sum_{k=0}^{n-2}\left(\left(2^{k+2}-1\right) \sum_{\ell=1}^{n-k-1}\binom{n-k-2}{\ell-1} \cdot 2^{\ell-1}\right) \\
& =\sum_{k=0}^{n-2}\left(2^{k+2}-1\right)(2+1)^{n-k-2} \\
& =3^{n} \sum_{k=0}^{n-2}\left(\left(\frac{2}{3}\right)^{k+2}-\left(\frac{1}{3}\right)^{k+2}\right) \\
& =\frac{7 \cdot 3^{n-1}-2^{n+2}+1}{2} .
\end{aligned}
$$

6. Conclusions and Questions

In this paper, the point-to-point (\odot, \vee)-derivations on MV-algebras have been extended to point-to-set (\odot, \vee)-multiderivations. We show that $\left(\operatorname{MD}\left(L_{n}\right) / \sim, \preccurlyeq\right)$ is isomorphic to the complete lattice $\operatorname{Der}\left(L_{n}\right)$, the underlying set of (\odot, V)-derivations on L_{n}. This unveils a certain relevance between (\odot, \vee)-multiderivations and (\odot, \vee)-derivations. Moreover, by building a counting principle, we obtain the enumeration of $\operatorname{MD}\left(L_{n}\right)$.

This general study of (\odot, V)-multiderivations has the advantage of developing into a system theory of sets and has potential wide applications: other logical algebras, control theory, interval analysis, and artificial intelligence.

We list three questions to be considered in the future:
(1) We have found two ways to construct (\odot, \vee)-multiderivations from (\odot, \vee)-derivations in Propositions 5 and 6. Are there other ways?
(2) We ask whether the equivalent characterization and enumeration of (\odot, \vee) - multiderivations on finite MV-chains can be extended to finite MV-algebras.
(3) We ask whether MV-algebras A and A^{\prime} are isomorphic if $(\operatorname{MD}(A), \preccurlyeq)$ and $\left(\operatorname{MD}\left(A^{\prime}\right), \preccurlyeq\right)$ are order isomorphic.

Author Contributions: Conceptualization, X.Z. and Y.Y.; methodology, X.Z., K.D. A.G., and Y. Y.; software, K,D.; validation, X.Z. and K.D.; investigation, X.Z. and Y.Y.; writing-original draft preparation, X.Z.; writing-review and editing, Y.Y.; supervision, Y.Y. All authors have read and agreed to the published version of the manuscript.

Funding: The work is partially supported by CNNSF (Grants: 12171022, 62250001).
Data Availability Statement: Data sharing is not applicable to this article as no new data were created or analyzed in this study.

Conflicts of Interest: The authors declare that they have no conflicts of interest.

Appendix A. Calculation Program by Python in Table 1

```
from itertools import product
#the set of MV-chain Ln
n = 6 # Adjust n as needed
L = list(range(n))
# operators on Ln
def omul(a, b):
        return max(a + b + 1 - n, 0)
def join(a, b):
        return max(a, b)
# operators on Delta(Ln)
def Omul(A, B):
        C = []
        for i in A:
            for j in B:
                    k = omul(i, j)
                    if k not in C:
                    C.append(k)
        return C
def Join(A, B):
        C = []
        for i in A:
            for j in B:
                    k = join(i, j)
                    if k not in C:
```

Figure A1. Cont.

```
                                    C.append(k)
    return C
# judge whether F is a multiderivation
def IsMulDer(F):
    for i in range(n):
        for j in range(n):
                    if set(F[omul(i, j)]) != set(Join(Omul(F[i], [j
                ]), Omul([i], F[j]))):
                return False
    return True
# get the list of all multifunctions on Ln
def powerset(s):
    for i in range(1 << len(s)):
        yield [s[j] for j in range(len(s)) if (i & (1 << j))
                ]
def generate_PLn(n):
    elements = []
    for i in range(1, n+1):
        a = list(powerset(range(i)))
            if [] in a:
                a.remove ([])
            elements.append(a)
    return list(product(*elements))
def find_MulDer():
    MulDer = 0
    for F in generate_PLn(n):
            if IsMulDer(F):
                MulDer += 1
                print(F)
    return MulDer
MulDer_count = find_MulDer()
print(MulDer_count)
```

Figure A1. $\mathrm{MD}\left(L_{n}\right)$.py.

References

1. Posner, E. Derivations in prime rings. Proc. Amer. Math Soc. 1957, 8, 1093-1100. [CrossRef]
2. Szász, G. Derivations of lattices. Acta Sci. Math. 1975, 37, 149-154.
3. Ferrari, L. On derivations of lattices. Pure Math Appl. 2001, 12, 365-382.
4. Xin, X.L.; Li, T.Y.; Lu, J.H. On derivations of lattices. Inf. Sci. 2008, 178, 307-316. [CrossRef]
5. Xin, X.L. The fixed set of a derivation in lattices. Fixed Point Theory Appl. 2012, 218, 218. [CrossRef]
6. Gan, A.P.; Guo, L. On differential lattices. Soft Comput. 2022, 26, 7043-7058. [CrossRef]
7. Jun, Y.B.; Xin, X.L. On derivations on BCI-algebras. Inf. Sci. 2004, 159, 167-176. [CrossRef]
8. He, P.F.; Xin, X.L.; Zhan, J.M. On derivations and their fixed point sets in residuated lattices. Fuzzy Sets Syst. 2016, 303, 97-113. [CrossRef]
9. Krňávek, J.; Kühr, J. A note on derivations on basic algebras. Soft Comput. 2015, 19, 1765-1771. [CrossRef]
10. Hua, X.J. State L-algebras and derivations of L-algebras. Soft Comput. 2021, 25, 4201-4212. [CrossRef]
11. Alshehri, N.O. Derivations of MV-algebras. Int. J. Math. Math. Sci. 2010, 2010, 312027. [CrossRef]
12. Hamal, A. Additive derivative and multiplicative coderivative operators on MV-algebras. Turk. J. Math. 2019, 43, 879-893. [CrossRef]
13. Wang, J.T.; He, P.F.; She, Y.H. Some results on derivations of MV-algebras. Appl. Math. J. Chin. Univ. Ser. B 2023, 38, 126-143. [CrossRef]
14. Yazarli, H. A note on derivations in MV-algebras. Miskolc Math. Notes 2013, 14, 345-354. [CrossRef]
15. Rachůnek, J.; Šalounová, D. Derivations on algebras of a non-commutative generalization of the Łukasiewicz logic. Fuzzy Sets Syst. 2018, 333, 11-16. [CrossRef]
16. Zhao, X.T.; Gan, A.P.; Yang, Y.C. ($\odot, V)$-derivations on MV-algebras. Soft Comput. 2024, 28, 1833-1849. [CrossRef]
17. Eilenberg, S.; Montgomery, D. Fixed Point Theorems for Multi-Valued Transformations. Amer. J. Math. 1946, 68, 214. [CrossRef]
18. Aumann, R.J. Integrals of set-valued functions. J. Math. Anal. Appl. 1965, 12, 1-12. [CrossRef]
19. Filippov, A.F. Classical solutions of differential equations with multivalued right-hand side. SIAM J. Control 1967, 5, 609-621. [CrossRef]
20. Hermes, H. Calculus of set valued functions and control. J. Math. Mech. 1968, 18, 47-60. [CrossRef]
21. Aumann, R.J. Existence of a competitive equilibrium in markets with a continuum of traders. Econometrica 1966, 34, 1-17. [CrossRef]
22. Neumann, J.V.; Morgenstern, O. Theory of Games and Economic Behavior; Princeton: Princeton, NJ, USA, 1944.
23. Rezapour, S.; Sami, S. Some properties of isotone and joinitive multiderivations on lattices. Filomat 2016, 30, 2743-2748. [CrossRef]
24. Cignoli, R.; D'Ottaviano, I.M.L.; Mundici, D. Algebraic Foundations of Many-Valued Reasoning; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2000.
25. Chang, C.C. Algebraic analysis of many-valued logic. Trans. Am. Math. Soc. 1958, 88, 467-490. [CrossRef]
26. Ansari, Q.H.; Köbis, E.; Yao, J.C. Vector Variational Inequalities and Vector Optimization; Springer International Publishing: Cham, Switzerland, 2018.
27. Awodey, S. Category Theory; Oxford University Press: New York, NY, USA, 2010.
28. Burris, S.; Sankappanavar, H.P. A Course in Universal Algebra; Springer: New York, NY, USA, 2012.
29. Almeida, J.; Cano, A.; Klíma, O.; Pin, J.E. On fixed points of the lower set operator. Internat. J. Algebra Comput. 2015, 25, 259-292. [CrossRef]
30. Gierz, G.; Hofmann, K.H.; Keimel, K.; Lawson, J.D.; Mislove, M.; Scott, D.S. Continuous Lattices and Domains; Cambridge University Press: Cambridge, UK, 2003.

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and / or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

