

Article **The Enumeration of** (\odot, \lor) -**Multiderivations on a Finite MV-Chain**

Xueting Zhao¹, Kai Duo¹, Aiping Gan² and Yichuan Yang^{1,*}

- ¹ School of Mathematical Sciences, Shahe Campus, Beihang University, Beijing 102206, China; xtzhao@buaa.edu.cn (X.Z.); duokai@buaa.edu.cn (K.D.)
- ² School of Mathematics and Statistics, Jiangxi Normal University, Nanchang 330022, China; 003191@jxnu.edu.cn
- * Correspondence: ycyang@buaa.edu.cn

Abstract: In this paper, (\odot, \lor) -multiderivations on an MV-algebra *A* are introduced, the relations between (\odot, \lor) -multiderivations and (\odot, \lor) -derivations are discussed. The set MD(*A*) of (\odot, \lor) -multiderivations on *A* can be equipped with a preorder, and $(MD(A)/\sim, \preccurlyeq)$ can be made into a partially ordered set with respect to some equivalence relation \sim . In particular, for any finite MV-chain L_n , $(MD(L_n)/\sim, \preccurlyeq)$ becomes a complete lattice. Finally, a counting principle is built to obtain the enumeration of $MD(L_n)$.

Keywords: MV-algebra; (\odot, \lor) -multiderivation; complete lattice; enumeration; cardinality

MSC: 3G20; 06D35; 06B10; 08B26

1. Introduction

The concept of derivation originating from analysis has been delineated for a variety of algebraic structures which come in analogy with the Leibniz rule

$$\frac{d}{dx}(fg) = \frac{d}{dx}(f)g + f\frac{d}{dx}(g).$$

Posner [1] introduced the derivation on prime rings $(R, +, \cdot)$ as a mapping *d* from *R* to *R* such that for all $x, y \in R$:

(1)
$$d(x \cdot y) = d(x) \cdot y + x \cdot d(y)$$
, (2) $d(x + y) = d(x) + d(y)$.

It implies that

(

$$(3) \ d(1) = 0, \quad (4) \ d(0) = 0,$$

which are the 0-ary version of (1) and (2), respectively. The derivations on lattices (L, \lor, \land) were defined in [2] by Szász and were developed in [3] by Ferrari as a map *d* from *L* to *L* such that for all elements *x*, *y* in *L*:

$$(i) \ d(x \wedge y) = (d(x) \wedge y) \lor (x \wedge d(y)), \quad (ii) \ d(x \lor y) = d(x) \lor d(y).$$

Xin et al. [4,5] investigated the derivations on a lattice satisfying only condition (i). In fact, a derivation *d* on *L* with both the Leibniz rule (i) and the linearity (ii) implies that $d(x) = x \wedge u$ for some $u \in L$ [6] (Proposition 2.5). If *u* is the maximum of a lattice, then such a derivation is actually the identity. It seems that this is an important reason for the derivations on, for instance, BCI-algebra [7], residuated lattices [8], basic algebra [9], L-algebra [10], and differential lattices [6], which are defined with the unique requirement of the Leibniz rule (i) (for the discussion in detail, cf. Section 2).

The derivation on an MV-algebra $(A, \oplus, *, 0)$ was firstly introduced by Alshehri [11] as a mapping *d* from *A* to *A* satisfying an (\odot, \oplus) -condition: $\forall x, y \in A$,

Citation: Zhao, X.; Duo, K.; Gan, A.; Yang, Y. The Enumeration of (\odot, \lor) -Multiderivations on a Finite MV-Chain. *Axioms* **2024**, *13*, 250. https://doi.org/10.3390/ axioms13040250

Academic Editors: Changyou Wang, Dong Qiu, Yonghong Shen and Cristina Flaut

Received: 21 February 2024 Revised: 27 March 2024 Accepted: 29 March 2024 Published: 10 April 2024

Copyright: © 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).

$$d(x \odot y) = (d(x) \odot y) \oplus (x \odot d(y)),$$

where $x \odot y$ is defined to be $(x^* \oplus y^*)^*$. Then, several derivations on MV-algebras have been considered in [12–15]. However, the interplay of the ring operations \cdot and + is more similar to the interplay between the MV-operations \odot and \lor rather than that between the MV-operations \odot and \oplus . In fact, the main interplay between \cdot and + in rings is the distributivity of \cdot over +. In MV-algebras, \odot distributes over \lor , as in rings, while it is not true that \odot distributes over \oplus . It is also true that \odot distributes over \land , but \lor is preferable because the identity element of \lor is absorbing for \odot , that is, $0 \odot x = 0$ for any element xin an MV-algebra A, as in rings, while the same is not true for \land . Therefore, the (\odot , \lor)derivation on MV-algebras [16] is a nature improvement of Alshehri's celebrated work [11] of the (\odot , \oplus)-derivation (cf. Section 2 for more discussion).

Let *E* and *F* be nonempty sets. A multifunction $f: E \to \Delta(F)$ is a map (or function) from *E* into $\Delta(F)$, the collection of nonempty subsets of *F*. The multifunction [17] is also known as set-valued function [18]. Significantly, multifunctions have many diverse and interesting applications in control problems [19,20] and mathematical economics [21,22]. Motivated by the role played by derivations on MV-algebras and the work of multiderivations on lattices [23], it is imperative to undertake a systematic study of the corresponding algebraic structure for derivations on MV-algebras.

This article is a continuation of work on (\odot, \lor) -multiderivations based on the nature (\odot, \lor) -derivation on MV-algebras [16], that is, a set-valued generalization of point-valued (\odot, \lor) -derivations. Section 2 starts with a review of the (\odot, \lor) -derivations on an MValgebra A. In Section 3, we first define a natural preorder on $\Delta(A)$ that $M \preceq N$ iff for every $m \in M$ there exists $n \in N$ such that $m \leq n$. Then, we introduce (\odot, \lor) -multiderivations on MV-algebras. The relations between (\odot, \lor) -derivations and (\odot, \lor) -multiderivations on an MV-algebra are given (Propositions 5–7). In Section 4, we investigate the set of (\odot, \lor) -multiderivations MD(A) on an MV-algebra A. Let $\sigma, \sigma' \in MD(A)$. Define $\sigma \preccurlyeq \sigma'$ if $\sigma(x) \preceq \sigma'(x)$ for any $x \in A$, and an equivalence relation \sim on MD(A) by $\sigma \sim \sigma'$ iff $\sigma \preccurlyeq \sigma'$ and $\sigma' \preccurlyeq \sigma$. Then, $(MD(A)/\sim, \preccurlyeq)$ is a poset. For an *n*-element MV-chain L_n , we show that $(MD(L_n)/\sim, \preccurlyeq)$ is isomorphic to the complete lattice $Der(L_n)$, the underlying set of (\odot, \lor) -derivations on L_n (Theorem 1), so we deduce that $|MD(L_n)/\sim| = |Der(L_n)|$, then [16] (Theorem 3.11) can be applied. Moreover, we define an equivalence relation \sim on $\Delta(A)$, and present the fact that the poset $\Delta(L_n \times L_2) / \sim$ is isomorphic to the complete lattice $Der(L_{n+1})$ (Proposition 11). However, the cardinalities of different equivalence classes with respect to the equivalence relation \sim are different in general (Example 5). In Section 5, by building a counting principle (Theorem 3) for (\odot, \lor) -multiderivations on an *n*-element MV-chain L_n , we finally obtain the enumeration of MD(L_n): $(7 \cdot 3^{n-1} - 2^{n+2} + 1)/2$.

Notation. Throughout this paper, *A* denotes an MV-algebra; |X| denotes the cardinality of a set *X*; $\Delta(X)$ denotes the set of nonempty subsets of a set *X*; \sqcup means disjoint union; \mathbb{N} denotes the set of natural numbers; "iff" is the abbreviation for "if and only if".

2. Preliminaries

Definition 1 ([24]). An algebra $(A, \oplus, *, 0)$ is an MV-algebra if the following axioms are satisfied: (MV1) (associativity) $x \oplus (y \oplus z) = (x \oplus y) \oplus z$.

(*MV2*) (*commutativity*) $x \oplus y = y \oplus x$.

(MV3) (existence of the unit 0) $x \oplus 0 = x$.

(MV4) (involution) $x^{**} = x$.

(MV5) (maximal element 0^*) $x \oplus 0^* = 0^*$.

(*MV6*) (*Łukasiewicz axiom*) $(x^* \oplus y)^* \oplus y = (y^* \oplus x)^* \oplus x$.

Define $1 = 0^*$ and **the natural order** on *A* as follows: $y \ge x$ iff $x \odot y^* = 0$. Then, the interval $[a, b] = \{r \in A \mid a \le r \le b\}$ for any $a, b \in A$ and $a \le b$. Note that *A* is a bounded distributive lattice with respect to the natural order [24] (Proposition 1.5.1) with 0, 1, and

$$x \lor y = (x \odot y^*) \oplus y$$
, $x \land y = x \odot (x^* \oplus y).$ (1)

An MV-chain is an MV-algebra which is linearly ordered with respect to the natural order.

Example 1 ([24]). Let L = [0, 1] be the real unit interval. Define

 $x \oplus y = \min\{1, x + y\}$ and $x^* = 1 - x$ for any $x, y \in L$.

Then $(L, \oplus, *, 0)$ *is an* MV-*chain. Note that* $x \odot y = \max\{0, x + y - 1\}$ *.*

Example 2. For every $2 \le n \in \mathbb{N}_+$, let

$$L_n = \left\{0, \frac{1}{n-1}, \frac{2}{n-1}, \cdots, \frac{n-2}{n-1}, 1\right\}.$$

Then the n-element subset L_n is an MV-subalgebra of L.

Lemma 1 ([24,25]). *If A is an* MV*-algebra, then the following statements are true* $\forall x, y, z \in A$:

1. $x \oplus y \ge x \lor y \ge x \ge x \land y \ge x \odot y$.

- 2. $x \oplus y = 0$ iff x = y = 0. $x \odot y = 1$ iff x = y = 1.
- 3. If $y \ge x$, then $y \lor z \ge x \lor z$, $y \land z \ge x \land z$.
- 4. If $y \ge x$, then $y \oplus z \ge x \oplus z$, $y \odot z \ge x \odot z$.
- 5. $y \ge x$ iff $x^* \ge y^*$.
- 6. $x \odot (y \land z) = (x \odot y) \land (x \odot z).$
- 7. $x \odot (y \lor z) = (x \odot y) \lor (x \odot z).$
- 8. $x \odot y \le z \text{ iff } x \le y^* \oplus z.$

Let Ω be an index set. The **direct product** $\prod_{i \in \Omega} A_i$ [24] of a family of MV-algebras $\{A_i\}_{i \in \Omega}$ is the MV-algebra with cartesian product of the family and pointwise MV-operations. We denote $A_1 \times A_2 \times \cdots \times A_n$ when Ω is a positive integer n. We call $a \in A$ **idempotent** if $a \oplus a = a$. Let **B**(A) be the set of idempotent elements of A and B_{2^n} be the 2^n -element Boolean algebra. Note that B_4 is actually $L_2 \times L_2$ [24].

Lemma 2 ([24], Proposition 3.5.3). Let A be a subalgebra of [0, 1]. Let $A^+ = \{x \in A \mid x > 0\}$ and $a = \inf A^+$ be the infimum of A^+ . If a = 0, then A is a dense subchain of [0, 1]. If a > 0, then $A = L_n$ for some $n \ge 2$.

Definition 2 ([16]). *If A is an* MV*-algebra, then a map d from A to A is an* (\odot, \lor) *-derivation on A if* $\forall x, y \in A$,

$$d(x \odot y) = (d(x) \odot y) \lor (x \odot d(y)).$$
⁽²⁾

Let Der(A) be the set of (\odot, \lor) -derivations on A. For $X = \{x_1, x_2, \cdots, x_n\}$ and a map $d : X \to X$, we shall write d as

$$\begin{pmatrix} x_1 & x_2 & \cdots & x_n \\ d(x_1) & d(x_2) & \cdots & d(x_n) \end{pmatrix}$$
.

The mappings Id_A and $\mathbf{0}_A$, defined by $\operatorname{Id}_A(x) = x$ and $\mathbf{0}_A(x) = 0$ ($\forall x \in A$), respectively, are (\odot, \lor) -derivations on A. For $u \in A$, the operator $\chi^{(u)}(x) := \begin{cases} u, & \text{if } x = 1 \\ x. & \text{otherwise} \end{cases} \in \operatorname{Der}(A)$. More examples are given in [16].

Proposition 1 ([16]). *If* A *is an* MV-*algebra and* $d \in Der(A)$ *, then the followings hold for all* $x, y \in A$:

- 1. 0 = d(0).
- 2. $x \ge d(x)$.
- 3. If d(x) = x, then d(y) = y for $y \le x$.

Remark 1. Now let us give some explanations of the naturality of an (\odot, \lor) -derivation in Definition 2. The interplay of the ring operations \cdot and + is more similar to the interplay between the *MV*-operations \odot and \lor rather than that between the *MV*-operations \odot and \oplus .

Next we discuss why we include only Equation (2). Recall that d(0) = 0 is the 0-ary version of d(x + y) = d(x) + d(y) in derivations on a ring. For MV-algebras, d(0) = 0 is the 0-ary version of (a); see Proposition 1 (1). d(1) = 0 is the 0-ary version of $d(x \cdot y) = d(x) \cdot d(y)$ in derivations on a ring. Hence, it seems that the most faithful and natural derivation notion on A as a translation of the ring-theoretic notion of derivation (cf. Introduction) would include:

- (a) $d(x \odot y) = (d(x) \odot y) \lor (x \odot d(y)),$
- (b) d(1) = 0,
- (c) $d(x \lor y) = d(x) \lor d(y)$,
- (d) d(0) = 0.

However, (b) and (c) imply that d is trivial (note that (a) is automatically assumed).

Lemma 3. If A is an MV-algebra and $d : A \to A$ is a map satisfying (a), (b) and (c) for any $x, y \in A$. Then, $d = \mathbf{0}_A$.

Proof. Assume $x \le y$, it follows from (c) that $d(y) = d(x \lor y) = d(x) \lor d(y)$ and thus $d(x) \le d(y)$. Together with (b) d(1) = 0, we have d(x) = 0 for any $x \in A$ since $x \le 1$. Hence, $d = \mathbf{0}_A$. \Box

Next, we consider what will happen if the condition (b') d(1) = 1 replaces (b) d(1) = 0.

Lemma 4. If $d : A \to A$ is a mapping from an MV-algebra A to A with (a) and (b') for any $x, y \in A$, then, $d = Id_A$.

Proof. Assume *d* satisfies (a) and (b'). We obtain that *d* satisfies Proposition 1 (3) since *d* satisfies (a). Both with (b') d(1) = 1, we obtain d(x) = x for any $x \in A$. Therefore, $d = \text{Id}_A$. \Box

Recall that for a given $a \in A$, a **principal** (\odot, \lor) -derivation d_a on A [16] is defined by $d_a(x) := a \odot x$ for all $x \in A$. An (\odot, \lor) -derivation d is **isotone** [16] if $\forall x, y \in A, y \ge x$ implies that $d(y) \ge d(x)$. Note that $\mathbf{0}_A$ and Id_A are both principal and isotone. More generally, we obtain the following.

Proposition 2 ([16] (Proposition 3.19)). *Let A be an MV-algebra and d be a map satisfying* (a) *and* (b"). *Then, the followings are equivalent:*

- 1. *d* is isotone;
- 2. $d(1) \odot x = d(x)$ for all $x \in A$;
- 3. $d(x) \lor d(y) = d(x \lor y).$

If *d* satisfies (b), then the principal derivations on MV-algebra *A* will not be included, expect $\mathbf{0}_A$. Even identity derivations Id_A will not be within our scope of consideration. Hence, the scope of the study will be significantly narrowed.

Remark 2. Note that *d* is isotone if *d* satisfies (c). In fact, if $x \le y$, then $d(y) = d(x \lor y) = d(x) \lor d(y)$ and thus $d(x) \le d(y)$. The isotone case is a special case of *d*, thus the scope of research will be narrowed. This case has been partially studied in [16], Section 3.3.

Therefore, we use the derivation meaning from Definition 2 in our series papers since [16] on.

3. (\odot, \lor) -Multiderivations on an MV-Algebra

Let *X* and *Y* be two nonempty sets. Recall that a **set-valued function** or **multivalued function** (for short, **multifunction**) *F* between *X* and *Y* is a map $F : X \to \Delta(Y)$. The set F(x) is called the image of *x* under *F* (cf. [26], Appendix A).

Definition 3. Let A be an MV-algebra and $M, N \in \Delta(A)$. We define four binary operations $\oplus, \odot, \lor, \land$ and an unary operation * on $\Delta(A)$ by:

 $M \star N = \{m \star n \mid m \in M, n \in N\}$ and $M^* = \{m^* \mid m \in M\}$

where $\star \in \{\oplus, \odot, \lor, \land\}$.

Remark 3.

- 1. Note that $M \lor N$ means the pointwise $m \lor n$ operation from Equation (1) of sets, which is different from the supremum of M and N. $M \land N$ has a similar meaning.
- 2. We abbreviate $M \star \{x\}$ and $\{x\}^*$ by $M \star x$ and x^* , respectively. But if $\{x\}$ appears by itself such as $M \preceq \{x\}$, we still use $\{x\}$.

We define a binary relation $M \leq N$ iff for every $m \in M$ there exists $n \in N$ such that $m \leq n$. Denote $M \prec N$ if $M \leq N$ and $M \neq N$.

Then, \leq is a preorder on $\Delta(A)$. In fact, the reflexivity and transitivity of \leq are clear. However, \leq does not satisfy antisymmetry in general. In fact, \leq satisfies antisymmetry iff the MV-algebra *A* is trivial: If *A* is trivial, we have $\Delta(A) = \{\{0\}\}$ and $\{0\} \leq \{0\}$. Hence, \leq satisfies antisymmetry. Conversely, suppose *A* is nontrivial, we have $A \neq \{1\}$, but $\{1\} \leq A$ and $A \leq \{1\}$, a contradiction.

Lemma 5. Let A be an MV-algebra and $x, a, b, c, e, f \in A$. Then, the followings hold:

- 1. If $x \le b \odot c$, then there exists $t \in A$ such that $t \le b$ and $x = t \odot c$.
- 2. If $x \le b \lor c$, then there exist $t, s \in A$ such that $t \le b, s \le c$ and $x = t \lor s$.
- 3. $[a,b] \odot c = [a \odot c, b \odot c].$
- 4. $[a,b] \lor [e,f] = [a \lor e, b \lor f].$

Proof. (1) Assume $x \leq b \odot c$, then

$$x = (b \odot c) \land x = (b \odot c) \odot ((b \odot c)^* \oplus x) = b \odot ((b \odot c)^* \oplus x) \odot c.$$

Thus, we may choose $t = b \odot ((b \odot c)^* \oplus x)$.

(2) Assume $x \le b \lor c$. Recall that *A* is a distributive lattice. So

$$x = (b \lor c) \land x = (b \land x) \lor (c \land x).$$

Hence, we can obtain $x = t \lor s$ by taking $t = b \land x, s = c \land x$.

(3) For each $x \in [a, b]$, we obtain $a \odot c \leq x \odot c \leq b \odot c$ by Lemma 1 (4). Thus, $[a, b] \odot c \subseteq [a \odot c, b \odot c]$. It suffices to prove that $[a \odot c, b \odot c] \subseteq [a, b] \odot c$. For any $a \odot c \leq x \leq b \odot c$, by (1) there is $t = b \odot ((b \odot c)^* \oplus x) \leq b$ such that $x = t \odot c$. If we can prove $a \leq t$, then the result follows immediately. Note that

$$t = b \odot ((b \odot c)^* \oplus x) = b \odot (b^* \oplus c^* \oplus x) = b \land (c^* \oplus x).$$

Since $a \odot c \le x$, we have $a \le c^* \oplus x$ by Lemma 1 (8). Together with $a \le b$, we obtain $a \le b \land (c^* \oplus x) = t$. Thus, we conclude that $[a, b] \odot c = [a \odot c, b \odot c]$.

(4) For any $t \in [a, b]$, $s \in [e, f]$, we have $a \lor e \le t \lor s \le b \lor f$ by Lemma 1 (3). Thus, $[a, b] \lor [e, f] \subseteq [a \lor e, b \lor f]$. It is enough to prove that $[a \lor e, b \lor f] \subseteq [a, b] \lor [e, f]$. For any $a \lor e \le x \le b \lor f$, there exist $t, s \in A$ such that

$$t = b \land x \le b$$
, $s = f \land x \le f$ and $x = t \lor s$

by (2). If we can prove $a \le t$ and $e \le s$, then the result follows. Note that since $a \le b$ and $a \le a \lor e \le x$, we have $a \le b \land x = t$. Similarly, $e \le s$. Therefore, $[a \lor e, b \lor f] = [a,b] \lor [e,f]$. \Box

The following result holds for any MV-algebra *A* since it is a distributive lattice under the natural order.

Lemma 6 ([23] (Lemma 2.1)). *Let L be a lattice and M*, *N*, *P*, $Q \in \Delta(L)$. *Then, the following statements hold:*

- 1. $M \land N \preceq M \preceq M \lor N$.
- 2. If $M \leq N$ and $P \leq Q$, then $M \wedge P \leq N \wedge Q$ and $M \vee P \leq N \vee Q$. In particular, $M \leq N$ implies $M \wedge P \leq N \wedge P$.
- 3. $M \subseteq M \land M, M \subseteq M \lor M$. If M is a sublattice of L, then $M = M \lor M$.
- 4. $M \lor N = N \lor M$.
- 5. $(M \lor N) \lor P = M \lor (N \lor P).$
- 6. If $M \lor N \subseteq M$, then $N \preceq M$.
- 7. If *L* is distributive, then $(M \lor N) \land P \subseteq (M \land P) \lor (N \land P)$.

Remark 4.

- 1. Note that the converse inclusion of Lemma 6 (3), i.e., $M \land M \subseteq M$ and $M \lor M \subseteq M$, does not hold in general. For example, consider the Boolean lattice $B_4 = \{0, a, b, 1\}$ (see Figure 1), $M = \{a, b\} \subseteq B_4$, then $0 = a \land b \in M \land M$ and $1 = a \lor b \in M \lor M$, but $0, 1 \notin M$.
- 2. The converse of Lemma 6 (6), i.e., $N \leq M$ implies $M \vee N \subseteq M$ may not hold. For example, in L_3 , let $N = \{0, \frac{1}{2}\}, M = \{0, 1\}$. We have $N \leq M$ but $M \vee N = \{0, \frac{1}{2}, 1\} \not\subseteq M$.
- 3. The converse inclusion of Lemma 6 (7) holds if P is a singleton but need not hold in general. This is slightly different from [23]. For example, let $B_8 = \{0, a, b, c, u, v, w, 1\}$ be the 8-element Boolean lattice as Figure 2, $M = \{u\}, N = \{w\}$ and $P = \{a, b, c\}$. We can check that $u = a \lor b = (u \land a) \lor (w \land b) \in (M \land P) \lor (N \land P)$ but $u \notin P = (M \lor N) \land P$.

Figure 1. Hasse diagram of *B*₄.

Figure 2. Hasse diagram of *B*₈.

According to Lemma 1, one obtains

Lemma 7. Assume that A is an MV-algebra, $M, N, P, Q \in \Delta(A)$, and $m \in M$. Then, the following statements hold:

- 1. If $M \leq N$ and $P \leq Q$, then $M \oplus P \leq N \oplus Q$ and $M \odot P \leq N \odot Q$. In particular, $M \leq N$ implies $M \oplus P \leq N \oplus P$ and $M \odot P \leq N \odot P$.
- 2. $m \odot (P \lor Q) = (m \odot P) \lor (m \odot Q).$
- 3. $m \odot (P \cup Q) = (m \odot P) \cup (m \odot Q).$
- 4. $M \odot N \preceq M \land N \preceq M \preceq M \lor N \preceq M \oplus N$.
- 5. If $M \oplus N \subseteq M$, then $N \preceq M$.

Proof. (1) Suppose $M \leq N$ and $P \leq Q$. For any $x = m \oplus p \in M \oplus P$, there are $n \in N$ and $q \in Q$ such that $m \leq n$ and $p \leq q$. It follows from Lemma 1 (4) that $m \oplus p \leq m \oplus q \leq n \oplus q$, where $n \oplus q \in N \oplus Q$. Thus, $M \oplus P \leq N \oplus Q$. Similarly, we have $M \odot P \leq N \odot Q$. In particular, we obtain $M \oplus P \leq N \oplus P$ and $M \odot P \leq N \odot P$.

(2) For any $p \in P$ and $q \in Q$, we have $m \odot (p \lor q) = (m \odot p) \lor (m \odot q) \in (m \odot P) \lor (m \odot Q)$ by Lemma 1 (7). Thus, $m \odot (P \lor Q) \subseteq (m \odot P) \lor (m \odot Q)$. The reverse inclusion can be verified similarly. Therefore, $m \odot (P \lor Q) = (m \odot P) \lor (m \odot Q)$.

(3) We have $x \in m \odot (P \cup Q)$, iff there is $y \in P \cup Q$ such that $x = m \odot y$, iff there is $y \in P$ or $y \in Q$ such that $x = m \odot y$, iff $x \in m \odot P$ or $x \in m \odot Q$, iff $x \in (m \odot P) \cup (m \odot Q)$. Hence, $m \odot (P \cup Q) = (m \odot P) \cup (m \odot Q)$.

(4) For any $m \in M$ and $n \in N$, we know $m \odot n \le m \land n \le m \le m \lor n \le m \oplus n$ by Lemma 1 (1). The result follows immediately.

(5) Assume $M \oplus N \subseteq M$, then for any $n \in N$, there exists $m \in M$ such that $m \oplus n \in M$. So by Lemma 1 (1) we obtain $n \leq m \oplus n$. Therefore, $N \preceq M$. \Box

To study whether $(\Delta(A), \oplus, *, \{0\})$ is an MV-algebra, we first give

Lemma 8. If A is an MV-algebra, then, for any $M, N, P \in \Delta(A)$, the followings hold:

- 1. $(M \oplus N) \oplus P = M \oplus (N \oplus P).$
- 2. $M \oplus N = N \oplus M$.
- 3. $M \oplus 0 = M$.
- 4. $M^{**} = M$.
- 5. $M \oplus 0^* = \{0^*\}.$

Proof. (1)–(5) follow from (MV1)–(MV5), respectively. \Box

Remark 5. Since (MV1)-(MV5) are satisfied on $\Delta(A)$, it is natural to consider whether (MV6) $(M^* \oplus N)^* \oplus N = (N^* \oplus M)^* \oplus M$ holds on $\Delta(A)$. The answer is no. For example, let $M = \{\frac{1}{2}\}$ and $N = \{0,1\}$ on three-element MV-chain L₃. It is easy to see that $(\frac{1}{2}^* \oplus \{0,1\})^* \oplus \{0,1\} = \{0,\frac{1}{2}\} \oplus \{0,1\} = \{0,\frac{1}{2},1\} \neq \{\frac{1}{2},1\} = (\{0,1\}^* \oplus \frac{1}{2})^* \oplus \frac{1}{2}$. That is, $(M^* \oplus N)^* \oplus N \neq (N^* \oplus M)^* \oplus M$.

If *A* is a nontrivial MV-algebra, and $\varphi : A \to \Delta(A)$ is a multifunction on *A*. φ is called additive and negative, if $\varphi(x \oplus y) = \varphi(x) \oplus \varphi(y)$ and $\varphi(x^*) = (\varphi(x))^*$ for all $x, y \in A$, respectively.

Proposition 3. Let A be an MV-algebra and $\varphi : A \to \Delta(A)$ be a multifunction on A. If φ is additive and negative, then $(\varphi(A), \oplus, *, \varphi(0))$ is an MV-algebra, where $\varphi(A) = \{\varphi(x) \mid x \in A\}$.

Proof. It is sufficient to prove (MV3), (MV5) and (MV6), since we know that $(\varphi(A), \oplus, *, \varphi(0))$ satisfies (MV1), (MV2) and (MV4) by Lemma 8. Since φ is additive and negative, it follows that $\varphi(x) \oplus \varphi(0) = \varphi(x \oplus 0) = \varphi(x)$ and $\varphi(x) \oplus \varphi(0)^* = \varphi(x \oplus 0^*) = \varphi(0^*) = \varphi(0)^*$. Furthermore, $(\varphi(x)^* \oplus \varphi(y))^* \oplus \varphi(y) = \varphi(x^* \oplus y)^* \oplus \varphi(y) = \varphi((x^* \oplus y)^* \oplus y) = \varphi((y^* \oplus x)^* \oplus x) = \varphi(y^* \oplus x)^* \oplus \varphi(x) = (\varphi(y)^* \oplus \varphi(x))^* \oplus \varphi(x)$ for any $x, y \in A$. Thus, $(\varphi(A), \oplus, ^*, \varphi(0))$ is an MV-algebra. \Box

Now let us define the (\odot, \lor) -multiderivation.

Definition 4. If *A* is an MV-algebra, a multifunction $\sigma : A \to \Delta(A)$ is called an (\odot, \lor) -multiderivation on *A* if

$$\sigma(x \odot y) = (\sigma(x) \odot y) \lor (x \odot \sigma(y)) \tag{3}$$

for all $x, y \in A$. Denote the set of (\odot, \lor) -multiderivations on A by MD(A).

Example 3. (*i*) Consider the MV-chain L_4 . We define a multifunction σ on L_4 by $\sigma(0) = \{0\}$, $\sigma(\frac{1}{3}) = \{0, \frac{1}{3}\}, \sigma(\frac{2}{3}) = \{0, \frac{2}{3}\}, \sigma(1) = \{0, 1\}$. Then, we can check σ is an (\odot, \lor) -multiderivation on L_4 . In fact, $\sigma = \beta_1$ (see Corollary 1).

(ii) Consider the standard MV-algebra L = [0, 1]. We define a multifunction $\sigma : L \to \Delta(L)$ by $\sigma(x) = [0, x]$ for all $x \in L$. Then, we can verify that σ is an (\odot, \lor) -multiderivation on L (see Proposition 6).

(iii) Let A be an MV-algebra and $S \subseteq A$ be a subalgebra of A. Define a multifunction σ_S on A by $\sigma_S(x) = x \odot S$, $\forall x \in A$, then $\sigma_S \in MD(A)$, which is called a **principal** (\odot, \lor) -**multiderivation**. In fact, for any $x, y \in A$, since the subalgebra S must be a sublattice of A, it follows that $S = S \lor S$ by Lemma 6 (3). According to Lemma 7 (2), we immediately have $\sigma_S(x \odot y) = x \odot y \odot S = x \odot y \odot (S \lor S) = (x \odot y \odot S) \lor (x \odot y \odot S) = (\sigma_S(x) \odot y) \lor (x \odot \sigma_S(y))$.

Proposition 4. If A is an MV-algebra and $\sigma \in MD(A)$. Then, the followings hold for all $x, y \in A$,

- 1. $\sigma(0) = \{0\}.$
- 2. $\sigma(x) \preceq \{x\}$.
- 3. $\sigma(x) \odot \sigma(y) \preceq \sigma(x \odot y) \preceq \sigma(x) \lor \sigma(y)$.
- 4. $x \odot \sigma(1) \preceq \sigma(x)$.
- 5. If *I* is a lower set of *A*, then $\sigma(x) \subseteq I$ holds for any $x \in I$.
- 6. Let $1 \in \sigma(1)$. Then, $x \in \sigma(x)$.

Proof. (1) Taking x = y = 0 in Equation (3), we obtain $\sigma(0) = \sigma(0 \odot 0) = (\sigma(0) \odot 0) \lor (0 \odot \sigma(0)) = \{0\}.$

(2) Since $x \odot x^* = 0$, we know that $\{0\} = \sigma(0) = \sigma(x \odot x^*) = (\sigma(x) \odot x^*) \lor (x \odot \sigma(x^*))$ by (1). So $\sigma(x) \odot x^* = \{0\}$ and we obtain $\sigma(x) \preceq \{x\}$.

(3) By Lemma 6 (3), we have $\sigma(x) \odot \sigma(y) \subseteq (\sigma(x) \odot \sigma(y)) \lor (\sigma(x) \odot \sigma(y))$. Moreover, $\sigma(x) \odot \sigma(y) \preceq \sigma(x) \odot y$ and $\sigma(x) \odot \sigma(y) \preceq x \odot \sigma(y)$ by (2) and Lemma 7 (1). Thus,

$$\sigma(x) \odot \sigma(y) \subseteq (\sigma(x) \odot \sigma(y)) \lor (\sigma(x) \odot \sigma(y)) \preceq (\sigma(x) \odot y) \lor (x \odot \sigma(y)) = \sigma(x \odot y)$$

by Lemma 6 (2). Moreover, by Lemma 7 (1) and Lemma 6 (2) we have

$$\sigma(x \odot y) = (\sigma(x) \odot y) \lor (x \odot \sigma(y)) \preceq \sigma(x) \lor \sigma(y).$$

(4) Since $x = 1 \odot x$, it follows that $\sigma(x) = \sigma(1 \odot x) = \sigma(x) \lor (x \odot \sigma(1))$ by Equation (3). Then, we can obtain $x \odot \sigma(1) \preceq \sigma(x)$ by Lemma 6 (6).

(5) For any $x \in I$, we know $\sigma(x) \preceq \{x\}$ by (2). It induces that $y \leq x$ holds for any $y \in \sigma(x)$. Then, $y \in I$ since *I* is a lower set. Thus, $\sigma(x) \subseteq I$.

(6) Since $1 \in \sigma(1)$, there must exist $y \in \sigma(x)$ such that $x = x \odot 1 \le y$ by (4). Moreover, by (2) we know $y \le x$ always holds for y. Hence, we obtain x = y and $x \in \sigma(x)$. \Box

Now, let us explore the relations between (\odot, \lor) -derivation *d* and (\odot, \lor) -multiderivation σ on *A*.

On the one hand, given an (\odot, \lor) -derivation *d* on *A*, how can we construct an (\odot, \lor) multiderivation on *A*? We get started with a direct construction. Assume $d \in \text{Der}(A)$.
Define a multifunction $\alpha : A \to \Delta(A)$ as follows:

$$\alpha(x) = \{d(x)\}$$
 for any $x \in A$.

Then, $\alpha \in MD(A)$.

Proposition 5. *If A is an* MV*-algebra and* $d \in Der(A)$ *, define a multifunction* $\beta : A \to \Delta(A)$ *on A as follows*

$$\beta(x) := \{0, d(x)\}.$$

Then, $\beta \in MD(A)$ iff $d(x) \odot y = x \odot d(y)$ holds for any $x, y \in A$ with $d(x) \odot y > 0$ and $x \odot d(y) > 0$.

Proof. Assuming $\beta \in MD(A)$, it follows that

$$\{0, d(x \odot y)\} = \beta(x \odot y)$$

= $(\beta(x) \odot y) \lor (x \odot \beta(y))$
= $(\{0, d(x)\} \odot y) \lor (x \odot \{0, d(y)\})$
= $\{0, d(x) \odot y\} \lor \{0, x \odot d(y)\}$
= $\{0, d(x) \odot y, x \odot d(y), d(x \odot y)\}$

for any $x, y \in A$. From the chain of equalities, we know that $d(x) \odot y, x \odot d(y) \in \{0, d(x \odot y)\}$. If both $d(x) \odot y > 0$ and $x \odot d(y) > 0$, then $d(x) \odot y = d(x \odot y) = x \odot d(y)$.

Conversely, let $x, y \in A$. Then,

$$\beta(x \odot y) = \{0, d(x \odot y)\}$$

and

$$(\beta(x) \odot y) \lor (x \odot \beta(y)) = \{0, d(x) \odot y, x \odot d(y), d(x \odot y)\}.$$

There are only two cases:

If $d(x) \odot y = 0$ or $x \odot d(y) = 0$, without loss of generality, assume that $d(x) \odot y = 0$. Then,

$$d(x \odot y) = 0 \lor (x \odot d(y)) = x \odot d(y).$$

Thus, $(\beta(x) \odot y) \lor (x \odot \beta(y)) = \{0, d(x \odot y)\} = \beta(x \odot y).$ If $d(x) \odot y = x \odot d(y)$, then

$$d(x \odot y) = d(x) \odot y = x \odot d(y).$$

Thus, $(\beta(x) \odot y) \lor (x \odot \beta(y)) = \{0, d(x \odot y)\} = \beta(x \odot y).$ Consequently, we infer $\beta \in MD(A)$. \Box

Corollary 1. *If A is an* MV*-algebra, and* $a \in A$ *, a multifunction* $\beta_a : A \to \Delta(A)$ *on A is defined as follows*

$$\beta_a(x) := \{0, d_a(x)\}.$$

Then $\beta_a \in MD(A)$ *.*

Proof. If $d = d_a$ in Proposition 5, then for any $x, y \in A$, we know $d(x) \odot y = a \odot x \odot y = x \odot d(y)$. Hence, we infer that $\beta_a \in MD(A)$ by Proposition 5. \Box

Remark 6. The conclusion is not necessarily true for general (\odot, \lor) -derivations. For example, $d = \begin{pmatrix} 0 & \frac{1}{3} & \frac{2}{3} & 1 \\ 0 & \frac{1}{3} & \frac{2}{3} & \frac{2}{3} \end{pmatrix}$ is an (\odot, \lor) -derivation on L_4 . But $\beta(\frac{2}{3} \odot 1) = \{0, \frac{2}{3}\} \neq \{0, \frac{1}{3}, \frac{2}{3}\} = \{0, \frac{2}{3}\} \lor \{0, \frac{1}{3}\} = (\{0, \frac{2}{3}\} \odot 1) \lor (\frac{2}{3} \odot \{0, \frac{2}{3}\}) = (\beta(\frac{2}{3}) \odot 1) \lor (\frac{2}{3} \odot \beta(1)).$

Proposition 6. Let A be an MV-algebra and $d \in Der(A)$. Define a multifunction $\gamma : A \to \Delta(A)$ on A as follows

$$\gamma(x) := [0, d(x)].$$

Then $\gamma \in MD(A)$.

Proof. Since $d \in \text{Der}(A)$, we obtain $\gamma(x \odot y) = [0, d(x \odot y)] = [0, (d(x) \odot y) \lor (x \odot d(y))]$. Moreover, we have

$$\begin{aligned} (\gamma(x) \odot y) \lor (x \odot \gamma(y)) &= ([0, d(x)] \odot y) \lor (x \odot [0, d(y)]) & (\text{Definition 3}) \\ &= [0, d(x) \odot y] \lor [0, x \odot d(y)] & (\text{Lemma 5 (3)}) \\ &= [0, (d(x) \odot y) \lor (x \odot d(y))]. & (\text{Lemma 5 (4)}) \end{aligned}$$

Hence, we conclude that $\gamma \in MD(A)$. \Box

On the other hand, if there is a given (\odot, \lor) -multiderivation σ on A, then we can construct a corresponding (\odot, \lor) -derivation d from σ . We need the following lemma to prepare.

Lemma 9. If A is an MV-algebra, and $M, N \in \Delta(A)$, if both sup(M) and sup(N) exist, then

1. $\sup(M \odot N)$ exists and $\sup(M \odot N) = \sup(M) \odot \sup(N)$.

2. $\sup(M \lor N)$ exists and $\sup(M \lor N) = \sup(M) \lor \sup(N)$.

Proof. Denote $m_0 = \sup(M)$ and $n_0 = \sup(N)$.

(1) Firstly, we prove that $m_0 \odot n_0$ is an upper bound of $M \odot N$. For any $m \in M$ and $n \in N$, we immediately have $m \odot n \le m_0 \odot n_0$ by Lemma 1 (4). Hence, it is enough to show that $m_0 \odot n_0$ is the least upper bound. Assume that $m \odot n \le x$ for all $m \in M$, $n \in N$. It tells us that $m \le n^* \oplus x$ and so $m_0 \le n^* \oplus x$ by Lemma 1 (8) and the definition of least upper bound. Then, we have $m_0 \odot n \le x$. Similarly, we obtain $n \le m_0^* \oplus x$ and $n_0 \le m_0^* \oplus x$. Thus, we can prove that $m_0 \odot n_0 \le x$. Finally, $\sup(M \odot N) = \sup(M) \odot \sup(N)$ holds.

(2) For any $m \in M$ and $n \in N$, we have $m \leq m_0$ and $n \leq n_0$. So, $m \lor n \leq m_0 \lor n_0$ and $\sup(M \lor N) \leq \sup(M) \lor \sup(N)$. Conversely, since $M \lor N \succeq M, N$, it implies that $\sup(M \lor N) \geq \sup(M), \sup(N)$ and thus $\sup(M \lor N) \geq \sup(M) \lor \sup(N)$. Therefore, $\sup(M \lor N) = \sup(M) \lor \sup(N)$. \Box

Proposition 7. *If A is an* MV*-algebra,* $\sigma \in MD(A)$ *, and* $\sup(\sigma(x))$ *exists for any* $x \in A$ *, define* $\sup \sigma : A \to A$ by $(\sup \sigma)(x) = \sup(\sigma(x))$. Then, $\sup \sigma \in Der(A)$.

Proof. For any $x, y \in A$, we have

$$(\sup \sigma)(x \odot y) = \sup(\sigma(x \odot y))$$
(Definition of sup σ)

$$= \sup((\sigma(x) \odot y) \lor (x \odot \sigma(y)))$$
(Equation (3))

$$= \sup(\sigma(x) \odot y) \lor \sup(x \odot \sigma(y))$$
(Lemma 9 (2))

$$= (\sup(\sigma(x)) \odot \sup\{y\}) \lor (\sup\{x\} \odot \sup(\sigma(y)))$$
(Lemma 9 (1))

$$= ((\sup \sigma)(x) \odot y) \lor (x \odot (\sup \sigma)(y)).$$
(Definition of sup σ)

Hence, sup $\sigma \in \text{Der}(A)$. \Box

Remark 7. (1) If MV-algebra A is complete, then $\sup \sigma$ is always an (\odot, \lor) -derivation on A for an arbitrary (\odot, \lor) -multiderivation σ on A.

(2) If $\sigma \in MD(A)$ and the image $\sigma(x)$ is finite for any $x \in A$, then $\sup \sigma$ is always an (\odot, \lor) -derivation on A.

Next, we construct (\odot, \lor) -multiderivations on subalgebras and direct products of MV-algebras from a given (\odot, \lor) -multiderivation.

Proposition 8. Let A be an MV-algebra and $\sigma \in MD(A)$. If S is a subalgebra of A and $\sigma(x) \subseteq S$ for any $x \in S$, then $\sigma|_S \in MD(S)$.

Proof. For any $x, y \in S$, we know that $\sigma(x), \sigma(y) \subseteq S$ and so $\sigma(x) \odot y, x \odot \sigma(y) \subseteq S$. Then,

$$\sigma|_{S}(x \odot y) = (\sigma(x) \odot y) \lor (x \odot \sigma(y)) = (\sigma|_{S}(x) \odot y) \lor (x \odot \sigma|_{S}(y)) \subseteq S \lor S = S$$

by Lemma 6 (3). Thus, $\sigma|_S \in MD(S)$. \Box

Definition 5. If Ω is a nonempty set, for each $i \in \Omega$, let σ_i be a multifunction on A_i . The **direct product of** $\{\sigma_i\}_{i\in\Omega} \prod_{i\in\Omega} \sigma_i : \prod_{i\in\Omega} A_i \to \Delta(\prod_{i\in\Omega} A_i)$ is defined by

$$\left(\prod_{i\in\Omega}\sigma_i\right)(g)=\prod_{i\in\Omega}\sigma_i(g(i))=\{(x_i)_{i\in\Omega}\mid x_i\in\sigma_i(g(i))\}$$

for all $g \in \prod_{i \in \Omega} A_i$.

Lemma 10. Let Ω be a nonempty set, $\{A_i\}_{i\in\Omega}$ be a family of MV-algebras, and $M_i, N_i \in \Delta(A_i)$. Then, $\prod_{i\in\Omega}(M_i \vee N_i) = \prod_{i\in\Omega} M_i \vee \prod_{i\in\Omega} N_i$.

Proof. We first show that $\prod_{i \in \Omega} (M_i \vee N_i) \subseteq \prod_{i \in \Omega} M_i \vee \prod_{i \in \Omega} N_i$. For any $x \in \prod_{i \in \Omega} (M_i \vee N_i)$, there are $m_i \in M_i$, $n_i \in N_i$ for any $i \in \Omega$ such that $x = (m_i \vee n_i)_{i \in \Omega}$. Denote $m = (m_i)_{i \in \Omega}$, $n = (n_i)_{i \in \Omega}$, we have $x = (m_i \vee n_i)_{i \in \Omega} = (m_i)_{i \in \Omega} \vee (n_i)_{i \in \Omega} = m \vee n \in \prod_{i \in \Omega} M_i \vee \prod_{i \in \Omega} N_i$. And vice versa. Therefore, $\prod_{i \in \Omega} (M_i \vee N_i) = \prod_{i \in \Omega} M_i \vee \prod_{i \in \Omega} N_i$. \Box

Proposition 9. Assume that Ω is a nonempty set and $\{A_i\}_{i\in\Omega}$ is a family of MV-algebras. Then, $\sigma_i \in MD(A_i)$ for any $i \in \Omega$ iff $\prod_{i\in\Omega} \sigma_i \in MD(\prod_{i\in\Omega} A_i)$.

Proof. Denote $A = \prod_{i \in \Omega} A_i$ and $\sigma = \prod_{i \in \Omega} \sigma_i$. For all $x = (x_i)_{i \in \Omega}, y = (y_i)_{i \in \Omega} \in A$, we have

$$\sigma(x \odot y) = \sigma((x_i)_{i \in \Omega} \odot (y_i)_{i \in \Omega}) = \prod_{i \in \Omega} \sigma_i(x_i \odot y_i),$$

$$(\sigma(x) \odot y) \lor (x \odot \sigma(y)) = \left(\prod_{i \in \Omega} \sigma_i(x_i) \odot (y_i)_{i \in \Omega} \right) \lor \left((x_i)_{i \in \Omega} \odot \prod_{i \in \Omega} \sigma_i(y_i) \right)$$

=
$$\prod_{i \in \Omega} (\sigma_i(x_i) \odot y_i) \lor \prod_{i \in \Omega} (x_i \odot \sigma_i(y_i))$$

=
$$\prod_{i \in \Omega} ((\sigma_i(x_i) \odot y_i) \lor (x_i \odot \sigma_i(y_i))).$$
 (Lemma 10)

We can immediately obtain $\sigma_i \in MD(A_i)$ for all $i \in \Omega$ iff $\sigma(x \odot y) = (\sigma(x) \odot y) \lor (x \odot \sigma(y))$ by Equation (3). \Box

Finally, we investigate the condition when an (\odot, \lor) -multiderivation σ is isotone.

Definition 6. *If A is an* MV*-algebra, and* $\sigma \in MD(A)$ *, we say* σ *is isotone if* $\sigma(x) \preceq \sigma(y)$ *whenever* $x \leq y$ *.*

Proposition 10. If A is an MV-algebra, and $\sigma \in MD(A)$, then σ is isotone iff $\sigma(x \land y) \preceq \sigma(x) \land y$ for all $x, y \in A$.

Proof. Assume σ is isotone, then,

$$\sigma(x \land y) \subseteq \sigma(x \land y) \land \sigma(x \land y) \preceq \sigma(x) \land \sigma(y) \preceq \sigma(x) \land y$$

by Lemma 6 (3) and (2). Conversely, assume that $\sigma(x \land y) \preceq \sigma(y) \land x$ for all $x, y \in A$. Let $x, y \in A$ with $x \leq y$. Then, $\sigma(x) = \sigma(y \land x) \preceq \sigma(y) \land x$. Thus, for every $a \in \sigma(x)$ there is $b \in \sigma(y)$ such that $a \leq b \land x$. Hence, $a \leq b$ and so $\sigma(x) \preceq \sigma(y)$. \Box

Corollary 2. *If A is an* MV*-algebra, and* $S \subseteq A$ *is a subalgebra of A, then the principal* (\odot, \lor) *-multiderivation* σ_S *is isotone.*

Proof. Method 1: Let $x, y \in A$ and $x \leq y$. For any $s \in S$, Lemma 1 (4) implies $x \odot s \leq y \odot s$. Thus, $\sigma_S(x) \leq \sigma_S(y)$.

Method 2: It is enough to verify that $\sigma_S(x \land y) \preceq \sigma_S(x) \land y$ for all $x, y \in A$ by Proposition 10. For any $s \in S$, Lemma 1 (6) implies

$$(x \wedge y) \odot s = (x \odot s) \wedge (y \odot s) \le (x \odot s) \wedge y.$$

Thus, $\sigma_S(x \land y) = (x \land y) \odot S \preceq (x \odot S) \land y = \sigma_S(x) \land y$. \Box

4. The Order Structure of (\odot, \lor) -Multiderivations on a Finite MV-Chain

Let MF(A) be the set of multifunctions on an MV-algebra A. Define \preccurlyeq on MF(A) by:

 $(\forall \sigma, \sigma' \in MF(A)) \quad \sigma \preccurlyeq \sigma' \text{ if } \sigma(x) \preceq \sigma'(x), \forall x \in A.$

Then, \preccurlyeq is a preorder on MF(*A*) and $\mathbf{0}_{MF(A)} \preccurlyeq \sigma \preccurlyeq \mathbf{1}_{MF(A)}$ for any $\sigma \in MF(A)$, where $\mathbf{0}_{MF(A)}$ and $\mathbf{1}_{MF(A)}$ are defined by $\mathbf{0}_{MF(A)}(x) := \{0\}$ and $\mathbf{1}_{MF(A)}(x) := \{1\}$ for any $x \in A$, respectively. For any $\sigma \in MD(A)$, we have $\mathbf{0}_{MF(A)} \preccurlyeq \sigma \preccurlyeq Id_{MF(A)}$, where $Id_{MF(A)}(x) = \{x\}$, and it is plain that $\{0\} \preceq \sigma(x) \preceq \{x\}$, $\forall x \in A$.

For $\sigma, \sigma' \in MF(A)$, set

$$(\sigma \boxtimes \sigma')(x) := \sigma(x) \boxtimes \sigma'(x), \tag{4}$$

for any $x \in A$ and $\boxtimes \in \{\lor, \land, \cup, \cap\}$.

Remark 8.

- 1. Note that $\sigma(x) \lor \sigma'(x)$ is meant in the sense of Definition 3, rather than the supremum of $\sigma(x)$ and $\sigma'(x)$.
- 2. Note that $\sigma \lor \sigma'$ is an upper bound of σ and σ' by Lemma 6 (1) but is not necessarily a least upper bound. For example, define $\sigma \in MF(B_4)$ by $\sigma(a) = \sigma(b) = \{a, b\}, \sigma(0) = \{0\}, \sigma(1) = \{1\}$. Then,

$$(\sigma \lor \sigma)(a) = (\sigma \lor \sigma)(b) = \{a, b, 1\}.$$

It is clear that both σ *and* $\sigma \lor \sigma$ *are upper bounds of* σ *and* σ *, but* $\sigma \prec \sigma \lor \sigma$ *. In a word,* $\sigma \lor \sigma$ *is not a least upper bound of* σ *and* σ *.*

More generally, let A be an MV*-algebra which is not an* MV*-chain with two incomparable elements a, b. Define* $\sigma \in MF(A)$ *as* $\sigma(a) = \sigma(b) = \{a, b\}, \sigma(x) = \{x\}$ *for* $x \in A \setminus \{a, b\}$ *.* $\sigma \lor \sigma$ *is not a least upper bound of* σ *and* σ *.*

In the sense of category theory, a preordered set *P* is called **complete** [27] (Section 8.5) if for every subset *S* of *P* both sup *S* and inf *S* exist (in *P*). Note that sup *S* and inf *S* need not be unique. For example, let $P = \{a, b\}$ and define a preorder \leq as follows: $a \leq b, b \leq a$. Take $S = \{a, b\}$. Then, both *a* and *b* are sup *S*, also inf *S*. Therefore, we use "a" rather than "the" concerning sup *S* and inf *S* in the following.

Let $\{\sigma_i\}_{i \in \Omega}$ be a nonempty family of multifunctions on an MV-algebra *A*. Define a multifunction $\bigcup_{i \in \Omega} \sigma_i$ on *A*, by

$$\left(\bigcup_{i\in\Omega}\sigma_i\right)(x):=\bigcup_{i\in\Omega}\sigma_i(x),$$

for any $x \in A$.

Analogue to [28] (Theorem I.4.2), we have the following.

Lemma 11. If A is an MV-algebra, then $(MF(A), \preccurlyeq, \mathbf{0}_{MF(A)}, \mathbf{1}_{MF(A)})$ is a complete bounded preordered set, where $\bigcup_{i \in \Omega} \sigma_i$ is a least upper bound of $\{\sigma_i\}_{i \in \Omega}$, and $\sigma \land \sigma'$ is a greatest lower bound of σ and σ' , respectively.

Proof. Note that $\mathbf{0}_{MF(A)} \preccurlyeq \sigma \preccurlyeq \mathbf{1}_{MF(A)}$ for any $\sigma \in MF(A)$.

Let $\{\sigma_i\}_{i\in\Omega}$ be a nonempty family of MF(A). Then, $\sigma_i \preccurlyeq \bigcup_{i\in\Omega} \sigma_i$. Now we will prove that $\bigcup_{i\in\Omega} \sigma_i$ is a least upper bound of $\{\sigma_i\}_{i\in\Omega}$. Assume that $\sigma_i \preccurlyeq \eta$ for every $i \in \Omega$. For any $y \in (\bigcup_{i\in\Omega} \sigma_i)(x)$ where $x \in A$, there exists $k \in \Omega$ such that $y \in \sigma_k(x)$. Since $\sigma_k(x) \preceq \eta(x)$, there is $z \in \eta(x)$ such that $y \le z$, which shows $\bigcup_{i\in\Omega} \sigma_i \preccurlyeq \eta$. Therefore, $\bigcup_{i\in\Omega} \sigma_i$ is a least upper bound of $\{\sigma_i\}_{i\in\Omega}$.

Let

$$X^{\ell} = \{\lambda \in \mathrm{MF}(A) \mid \lambda \preccurlyeq \sigma_i, \forall i \in \Omega\}$$

be the set of lower bounds of $\{\sigma_i\}_{i\in\Omega}$ in MF(A). Next, we verify that $\bigcup_{\lambda\in X^\ell} \lambda$ is indeed a greatest lower bound of $\{\sigma_i\}_{i\in\Omega}$. For any $i \in \Omega$ and $\lambda \in X^\ell$, we have $\lambda \preccurlyeq \sigma_i$. Thus, $\bigcup_{\lambda\in X^\ell} \lambda \preccurlyeq \sigma_i$ and $\bigcup_{\lambda\in X^\ell} \lambda \in X^\ell$. Hence, $\bigcup_{\lambda\in X^\ell} \lambda$ is a greatest lower bound of $\{\sigma_i\}_{i\in\Omega}$. Therefore, MF(A) is complete.

For any $\sigma, \sigma' \in MF(A)$, since $\sigma \land \sigma' \preccurlyeq \sigma, \sigma'$, it follows that $\sigma \land \sigma'$ is a lower bound of σ and σ' . To verify that $\sigma \land \sigma'$ is a greatest lower bound, let $\eta \preccurlyeq \sigma, \sigma'$. Then, for any $y \in \eta(x)$ $(x \in A)$, there are $z \in \sigma(x)$ and $w \in \sigma'(x)$ such that $y \le z$ and $y \le w$ by $\eta(x) \preceq \sigma(x), \sigma'(x)$. Hence,

$$y \le z \land w \in \sigma(x) \land \sigma'(x).$$

Therefore, $\eta(x) \preceq \sigma(x) \land \sigma'(x)$. Thus, $\eta \preccurlyeq \sigma \land \sigma'$. \Box

As already mentioned, \leq is not always a partial order on $\Delta(A)$, where $M \leq N$ iff for each $m \in M$ there exists $n \in N$ such that $m \leq n$. The binary relation \sim on $\Delta(A)$ defined by $M \sim N$ iff $M \leq N$ and $N \leq M$ is an equivalence relation. Given $M \in \Delta(A)$, the equivalence class of M with respect to \sim will be denoted by \overline{M} . If $M = \{x\}$ is a singleton, then we abbreviate $\overline{\{x\}}$ by \overline{x} . Thus, we can obtain a partial order \leq on $\Delta(A)/\sim$ defined by $\overline{M} \leq \overline{N}$ iff $M \leq N$. We claim that \leq is well defined. In fact, if $M \sim M', N \sim N'$ and $M \leq N$, then $M' \leq M \leq N'$.

Recall that for a subset M of A, the **lower set generated by** M [29] is the set

 $\downarrow M = \{x \in A \mid \text{there exists } m \in M \text{ such that } x \leq m\}.$

Lemma 12. Let $M, N \in \Delta(A)$. Then, $\overline{M} = \overline{N}$ iff $\downarrow M = \downarrow N$.

Proof. It is sufficient to show that $M \leq N$ iff $\downarrow M \subseteq \downarrow N$.

Let $M \leq N$. For every $x \in \downarrow M$, there is $m \in M$ such that $x \leq m$. Then, $M \leq N$ gives $m \leq n$ for some $n \in N$. Hence, $x \leq n$ and $x \in \downarrow N$. Therefore, $\downarrow M \subseteq \downarrow N$.

Conversely, assume that $\downarrow M \subseteq \downarrow N$. For any $m \in M$, we have $m \in \downarrow M \subseteq \downarrow N$. Thus, there exists $n \in N$ such that $m \leq n$. Hence, $M \preceq N$.

Similarly, $N \preceq M$ iff $\downarrow N \subseteq \downarrow M$. \Box

Corollary 3. In general, let A be an MV-algebra, $M \in \Delta(A)$, and $a \in A$. Then, $\overline{M} = \overline{a}$ iff sup M exists and sup $M = a \in M$.

Assume $M = \overline{a}$. Then *a* is an upper bound of *M* since $M \leq \{a\}$. To prove *a* is a least upper bound of *M*, let *b* be an upper bound of *M*. Since $\{a\} \leq M$, there exists $m \in M$ such that $a \leq m$. Hence, $a \leq m \leq b$, which shows sup $M = a \in M$.

Conversely, let $\sup M = a \in M$. It suffices to verify that $\downarrow M = \downarrow a$ by Lemma 12. If $x \in \downarrow M$, then there is $m \in M$ such that $x \leq m \leq a$. It follows that $x \in \downarrow a$ and $\downarrow M \subseteq \downarrow a$. If $x \in \downarrow a$, then $x \leq a \in M$. Thus, $x \in \downarrow M$ and $\downarrow a \subseteq \downarrow M$. Therefore, $\downarrow M = \downarrow a$.

Corollary 4. Let L_n with $n \ge 2$ and $M \in \Delta(L_n)$. Then, $\overline{M} = \overline{\sup M}$.

Proof. Observe that sup *M* is exactly $\frac{i}{n-1}$ for a certain $0 \le i \le n-1$. It suffices to verify that $\downarrow M = \downarrow \sup M$ by Lemma 12. Suppose $x \in \downarrow M$, there is $m \in M$ such that $x \le m$. Since $m \le \sup M$, it follows that $x \le \sup M$. Hence, $x \in \downarrow \sup M$. Conversely, assume $x \in \downarrow \sup M$, which means $x \le \sup M = \frac{i}{n-1}$. Since $\sup M \in M$, it follows that $x \in \downarrow M$. Therefore, $\downarrow M = \downarrow \sup M$ and $\overline{M} = \overline{\sup M}$. \Box

Note that the family of all lower sets of a poset *A* is a complete lattice by [30] (Example O-2.8). We will prove that the family of all nonempty lower sets of *A* is also a complete lattice, denoted by $(L_0(A), \subseteq)$.

Corollary 5. Let A be an MV-algebra, then $\Delta(A)/\sim$ is isomorphic to the complete lattice $(L_0(A), \subseteq)$.

Proof. Since *A* has a least element 0, the intersection of a family of nonempty lower sets of *A* is still a nonempty lower set. Therefore, $L_0(A)$ is a complete lattice.

Define $\varphi : \Delta(A)/\sim \to L_0(A)$ by $\overline{M} \mapsto \downarrow M$. Lemma 12 shows that φ is well defined and injective, and φ is also surjective since $M = \downarrow M$ if $M \in L_0(A)$. As discussed in the proof of Lemma 12, $\overline{M} \preceq \overline{N}$ iff $\downarrow M \subseteq \downarrow N$ for all $M, N \in \Delta(A)$, which gives both φ and φ^{-1} are order preserving. Hence, φ is an isomorphism. \Box

Next, we study the order structure on $\Delta(L_n)/\sim$. First, we need

Lemma 13. Let A be an MV-chain, $M, N \in \Delta(A)$, and $\sup M$, $\sup N$ exist.

- 1. If $\overline{M} \leq \overline{N}$, then $\sup M \leq \sup N$.
- 2. If sup $M < \sup N$, then $\overline{M} \preceq \overline{N}$.
- 3. $\overline{M} = \overline{N}$ iff the following conditions hold:
 - (a) $\sup M = \sup N$.
 - (b) $\sup M \in M \Leftrightarrow \sup N \in N$.

In particular, if A is a finite MV-chain, then $\overline{M} = \overline{N}$ iff (a) holds.

Proof. (1) Suppose $\overline{M} \leq \overline{N}$, then $M \leq N$. For any $m \in M$ there is $n \in N$ such that $m \leq n \leq \sup N$. According to the definition of $\sup M$, we have $\sup M \leq \sup N$.

(2) Let $\sup M < \sup N$. Assume on the contrary $M \not\preceq N$. Then, there is $m \in M$ such that m > n for any $n \in N$. The definition of $\sup N$ implies $m \ge \sup N$. Thus, $\sup N \le m \le \sup M$, which contradicts the fact that $\sup M < \sup N$.

(3) Assume that M = N. (a) follows from (1).

To prove that $\sup M \in M \Leftrightarrow \sup N \in N$, we assume $\sup M \in M$. Then, there exists $n_0 \in N$ such that $\sup M \leq n_0$ by $M \preceq N$. Since $N \preceq M$, we have $n_0 \leq \sup M$. Hence, $n_0 = \sup M$. Therefore, $\sup N = \sup M = n_0 \in N$ by (a). Symmetrically, $\sup N \in N \Rightarrow \sup M \in M$.

Conversely, assume that (a) and (b) hold, it suffices to show that $\downarrow M = \downarrow N$ by Lemma 12. Assume that $\downarrow M \neq \downarrow N$; without loss of generality, there is $y \in \downarrow M$ but $y \notin \downarrow N$. That is to say, for arbitrary $n \in N$ we have n < y. So, $\sup N \in N$ implies $\sup N < y$. Since $y \in \downarrow M$, there is $m \in M$ such that $y \leq m$. It follows $\sup N < y \leq m < \sup M$ by the definition of $\sup N$, which is contrary to $\sup M = \sup N$. Thus, $\overline{M} = \overline{N}$.

Assume *A* is a finite MV-chain, and (b) always holds. Hence, $\overline{M} = \overline{N}$ iff (a) holds.

Remark 9. Note that $\sup M = \sup N$ may not imply $\overline{M} \leq \overline{N}$. For example, let A = [0,1] be the standard MV-algebra and $\frac{1}{2} \in A$. Define $M = \downarrow \frac{1}{2}$ and $N = \{a \in A \mid 0 \leq a < \frac{1}{2}\}$. Then, $\sup M = \sup N = \frac{1}{2}$, but $\overline{M} \not\leq \overline{N}$, since $\frac{1}{2} \in M$, there is no $y \in N$ such that $\frac{1}{2} \leq y$.

Example 4. Consider the MV-chain L_n with $n \ge 2$. Then, $\Delta(L_n) / \sim$ is order isomorphic to L_n .

Proof. Define $f : L_n \to \Delta(L_n)/\sim$ by $f(x) = \overline{x}$ for any $x \in L_n$. If $\overline{x} = \overline{y}$, then $x = \sup\{x\} = \sup\{y\} = y$ by Lemma 13 (3). Thus, f is injective. To prove f is surjective, assume $\overline{M} \in \Delta(L_n)/\sim$, then $f(\sup M) = \overline{\sup M} = \overline{M}$ by Corollary 4.

It is enough to verify that f and f^{-1} are order preserving. If $x \le y$, then $f(x) = \overline{x} \le \overline{y} = f(y)$ since $\{x\} \le \{y\}$ and Corollary 4. Conversely, suppose $\overline{x} \le \overline{y}$, we have $x = \sup\{x\} \le \sup\{y\} = y$ by Lemma 13 (1). Therefore, f is an isomorphism. \Box

We next investigate the preorder on the set of (\odot, \lor) -multiderivations.

Similar to $\Delta(A)$, we can define an equivalence relation on MD(A) by $\sigma \sim \sigma'$ iff $\sigma \preccurlyeq \sigma'$ and $\sigma' \preccurlyeq \sigma$, and define $\overline{\sigma} \preccurlyeq \overline{\sigma'}$ in MD(A)/ \sim iff $\sigma \preccurlyeq \sigma'$. Observe that \preccurlyeq in MD(A)/ \sim is a well-defined partial order by the hereditary order of \preceq . Clearly, (MD(A)/ \sim , \preccurlyeq) is a poset. By the definition of \preceq , we know $\overline{\sigma} = \overline{\sigma'}$ iff $\overline{\sigma(x)} = \overline{\sigma'(x)}$ for any $x \in A$.

For any $\sigma \in MD(A)$, $\forall \sigma \colon A \to \Delta(A)$ is defined as $(\forall \sigma)(x) = \forall \sigma(x)$. We claim that $\overline{\sigma} = \overline{\forall \sigma}$. In fact, $\sigma \preccurlyeq \forall \sigma$ is trivial. For any $y \in \forall \sigma(x)$, there exists $z \in \sigma(x)$ such that $y \leq z$ by the definition of $\forall \sigma(x)$. Therefore, $\forall \sigma(x) \preceq \sigma(x)$ for any $x \in A$ and $\forall \sigma \preccurlyeq \sigma$.

Lemma 14. *If A is an* MV*-algebra, then:*

1. $\sigma \lor \sigma' \in MD(A)$ for all $\sigma, \sigma' \in MD(A)$. 2. $\downarrow \sigma \in MD(A)$ for any $\sigma \in MD(A)$.

Proof. (1) Let $\sigma, \sigma' \in MD(A)$ and $x, y \in A$. Then, we have

$$\begin{aligned} (\sigma \lor \sigma')(x \odot y) &= \sigma(x \odot y) \lor \sigma'(x \odot y) & \text{(Definition of } \sigma \lor \sigma') \\ &= ((\sigma(x) \odot y) \lor (x \odot \sigma(y))) \lor ((\sigma'(x) \odot y) \lor (x \odot \sigma'(y))) & (\sigma, \sigma' \in \text{MD}(A)) \\ &= ((\sigma(x) \odot y) \lor (\sigma'(x) \odot y)) \lor ((x \odot \sigma(y)) \lor (x \odot \sigma'(y))) & \text{(Lemma 6 (4) and (5))} \\ &= ((\sigma(x) \lor \sigma'(x)) \odot y) \lor (x \odot (\sigma(y) \lor \sigma'(y))) & \text{(Lemma 7 (2))} \\ &= ((\sigma \lor \sigma')(x) \odot y) \lor (x \odot (\sigma \lor \sigma')(y)) & \text{(Definition of } \sigma \lor \sigma') \end{aligned}$$

and so $\sigma \lor \sigma' \in MD(A)$.

(2) Assume $\sigma \in MD(A)$. Let $a \in (\downarrow \sigma)(x \odot y) = \downarrow \sigma(x \odot y) = \downarrow ((\sigma(x) \odot y) \lor (x \odot \sigma(y)))$. There exist $x_1 \in \sigma(x)$ and $y_1 \in \sigma(y)$ such that $a \leq (x_1 \odot y) \lor (x \odot y_1)$. It follows that

 $a = a \land ((x_1 \odot y) \lor (x \odot y_1))$ = $(a \land (x_1 \odot y)) \lor (a \land (x \odot y_1))$ (Distributivity of A) = $(b \odot y) \lor (x \odot c)$, (Lemma 5 (1))

where $b \le x_1$ and $c \le y_1$. Hence, $a \in ((\downarrow \sigma)(x) \odot y) \lor (x \odot (\downarrow \sigma)(y))$.

Conversely, let $a \in ((\downarrow \sigma)(x) \odot y) \lor (x \odot (\downarrow \sigma)(y))$. There exist $x_1 \in \sigma(x)$ and $y_1 \in \sigma(y)$ such that

ii tilat

$$a = (b \odot y) \lor (x \odot c) \le (x_1 \odot y) \lor (x \odot y_1),$$

where $b \le x_1$ and $c \le y_1$. Thus, $a \in (\downarrow \sigma)(x \odot y)$. Therefore, $\downarrow \sigma \in MD(A)$. \Box

Remark 10. When A is an MV-chain, $\sigma \lor \sigma' \in MD(A)$ is a least upper bound of σ and σ' in MD(A). We know $\sigma \cup \sigma'$ is a least upper bound of σ and σ' in MF(A). Note that MD(A) \subseteq MF(A) and the preordered on MF(A). It suffices to verify that $\sigma \lor \sigma' \sim \sigma \cup \sigma'$. For all $x \in A$, $(\sigma \cup \sigma')(x) \preceq (\sigma \lor \sigma')(x)$ is trivial. For any $y \in (\sigma \lor \sigma')(x)$, there exist $z \in \sigma(x)$ and $z' \in \sigma'(x)$ such that $y = z \lor z'$. Since A is an MV-chain, y = z or y = z'. Hence, $y \in (\sigma \cup \sigma')(x)$, which implies $(\sigma \lor \sigma')(x) \preceq (\sigma \cup \sigma')(x)$. Therefore, $(\sigma \cup \sigma')(x) \sim (\sigma \lor \sigma')(x)$ for all $x \in A$, and hence, $\sigma \lor \sigma' \in MD(A)$ is a least upper bound of σ and σ' in MD(A).

At the end of this section, we characterize the lattice $MD(L_n)/\sim (n \ge 2)$.

Theorem 1. If L_n is the *n*-element MV-chain with $n \ge 2$, then the lattices $MD(L_n)/\sim$ and $Der(L_n)$ are isomorphic.

Proof. Define a map $f : MD(L_n) / \sim \rightarrow Der(L_n)$ by

$$f(\overline{\sigma}) = \sup \sigma.$$

By Proposition 7 we know $\sup \sigma \in \text{Der}(L_n)$. The order \leq on $\text{Der}(L_n)$ is defined as $d \leq d'$ iff $d(x) \leq d'(x), \forall x \in L_n$.

Firstly, we prove that *f* is well defined. Suppose $\overline{\sigma} = \overline{\sigma'}$, that is, $\overline{\sigma(x)} = \overline{\sigma'(x)}$ for any $x \in L_n$. We get

$$(\sup \sigma)(x) = \sup(\sigma(x)) = \sup(\sigma'(x)) = (\sup \sigma')(x)$$

for any $x \in L_n$ by Lemma 13 (3). Thus, $f(\overline{\sigma}) = \sup(\sigma) = \sup(\sigma') = f(\overline{\sigma'})$.

If $f(\overline{\sigma}) = f(\overline{\sigma'})$, that is, $\sup(\sigma) = \sup(\sigma')$, then $\sup(\sigma(x)) = \sup(\sigma'(x))$ for any $x \in L_n$. Lemma 13 (3) implies $\overline{\sigma(x)} = \overline{\sigma'(x)}$ for any $x \in L_n$ and thus $\overline{\sigma} = \overline{\sigma'}$. Hence, f is injective. For any $d \in \operatorname{Der}(L_n)$, there is $\gamma_d \in \operatorname{MD}(L_n)$ where $\gamma_d(x) := [0, d(x)]$ such that

$$f(\overline{\gamma_d})(x) = (\sup \gamma_d)(x) = \sup(\gamma_d(x)) = \sup[0, d(x)] = d(x)$$

for all $x \in L_n$ by Propositions 6 and 7. Thus, $f(\overline{\gamma_d}) = d$ and f is surjective.

To prove that *f* is an order-isomorphism, let $\overline{\sigma} \preccurlyeq \overline{\sigma'}$, that is, for any $x \in L_n$, $\sigma(x) \preceq \overline{\sigma'(x)}$. Corollary 4 implies that $\overline{\sigma(x)} = \overline{\sup(\sigma(x))}$ for any $x \in L_n$. It follows that

$$\overline{(\sup \sigma)(x)} = \overline{\sup(\sigma(x))} \preceq \overline{\sup(\sigma'(x))} = \overline{(\sup \sigma')(x)}$$

and thus $(\sup \sigma)(x) \leq (\sup \sigma')(x)$ for any $x \in L_n$ since $(\sup \sigma)(x)$ is a singleton. Hence, $f(\overline{\sigma}) = \sup \sigma \leq \sup \sigma' = f(\overline{\sigma'})$. Conversely, assume $d, d' \in \text{Der}(L_n)$ and $d \leq d'$, which means $d(x) \leq d'(x)$ for all $x \in L_n$. Now the construction in Proposition 6 gives $\gamma_d = f^{-1}$: $A \to \Delta(A)$, where $\gamma_d(x) = [0, d(x)]$. Furthermore, we have

$$\gamma_d(x) = [0, d(x)] \preceq [0, d'(x)] = \gamma_{d'}(x)$$

for any $x \in L_n$ by the definition of \leq . Thus, $\gamma_d \preccurlyeq \gamma_{d'}$ and $f^{-1}(d) = \overline{\gamma_d} \preccurlyeq \overline{\gamma_{d'}} = f^{-1}(d')$. \Box

Proposition 11. If L_n is the n-element MV-chain with $n \ge 2$, then the lattices $\Delta(L_n \times L_2)/\sim$ and $\text{Der}(L_{n+1})$ are isomorphic.

Proof. Recall that $\text{Der}(L_{n+1})$ is isomorphic to the lattice $(\mathcal{A}(L_{n+1}), \leq)$ where $\mathcal{A}(L_{n+1}) = \{(x,y) \in L_{n+1} \times L_{n+1} \mid y \leq x\} \setminus \{(0,0)\}$ [16, Theorem 5.6] and \leq is defined by: for any $(x_1, y_1), (x_2, y_2) \in L_{n+1} \times L_{n+1}, (x_1, y_1) \leq (x_2, y_2)$ iff $x_1 \leq x_2$ and $y_1 \leq y_2$. Moreover, $\Delta(L_n \times L_2)/\sim$ is isomorphic to the lattice $L_0(L_n \times L_2)$ by Corollary 5.

Define a map $f : \mathcal{A}(L_{n+1}) \to L_0(L_n \times L_2)$ by:

$$f\left(\frac{k}{n},\frac{\ell}{n}\right) = \begin{cases} \downarrow(\frac{k-1}{n-1},0), & \text{if } \ell = 0;\\ \downarrow(\frac{k-1}{n-1},0) \cup \downarrow(\frac{\ell-1}{n-1},1), & \text{if } \ell > 0, \end{cases}$$

where $0 \le k, \ell \le n-1$. It is easy to see that f is injective. Now we show that f is surjective. For any $M \in L_0(L_n \times L_2)$, we claim M has at most two maximal elements. By way of contradiction, assume M has three different maximal elements denoted by $(a_n, b_n), n = 1, 2, 3$; then, there exist $1 \le i < j \le 3$ such that $b_i = b_j$ since $b_n \in L_2$. Thus, (a_i, b_i) and (a_j, b_j) are comparable, which contradicts the fact that (a_i, b_i) and (a_j, b_j) are different maximal elements. If M has only one maximal element denoted by $(\frac{k}{n-1}, a)$, then

$$M = \downarrow(\frac{k}{n-1}, a) = \begin{cases} f\left(\frac{k+1}{n}, 0\right), & \text{if } a = 0; \\ f\left(\frac{k+1}{n}, \frac{k+1}{n}\right), & \text{if } a = 1. \end{cases}$$

If *M* has exactly two maximal elements denoted by $(\frac{k}{n-1}, 0)$ and $(\frac{\ell}{n-1}, 1)$, then

$$M = \downarrow(\frac{k}{n-1}, 0) \cup \downarrow(\frac{\ell}{n-1}, 1) = f\left(\frac{k+1}{n}, \frac{\ell+1}{n}\right).$$

Therefore, f is surjective.

Since a bijection with supremum preserving is an order isomorphism, it suffices to verify that *f* preserves the supremum, that is,

$$f\left(\left(\frac{k}{n},\frac{\ell}{n}\right)\vee\left(\frac{p}{n},\frac{q}{n}\right)\right)=f\left(\frac{k}{n},\frac{\ell}{n}\right)\cup f\left(\frac{p}{n},\frac{q}{n}\right)$$

for all $(\frac{k}{n}, \frac{\ell}{n}), (\frac{p}{n}, \frac{q}{n}) \in \mathcal{A}(L_{n+1})$. Case 1. If $\ell = q = 0$, then

$$f\left(\frac{k}{n},0\right) \cup f\left(\frac{p}{n},0\right) = \downarrow\left(\frac{k-1}{n-1},0\right) \cup \downarrow\left(\frac{p-1}{n-1},0\right)$$
$$= \downarrow\left(\max\{\frac{k-1}{n-1},\frac{p-1}{n-1}\},0\right)$$
$$= \downarrow\left(\frac{\max\{k,p\}-1}{n-1},0\right)$$
$$= f\left(\left(\frac{k}{n},0\right) \lor \left(\frac{p}{n},0\right)\right).$$

Case 2. If $\ell = 0$, q > 0, then

$$f\left(\frac{k}{n},0\right) \cup f\left(\frac{p}{n},\frac{q}{n}\right) = \downarrow\left(\frac{k-1}{n-1},0\right) \cup \left(\downarrow\left(\frac{p-1}{n-1},0\right) \cup \downarrow\left(\frac{q-1}{n-1},1\right)\right)$$
$$= \downarrow\left(\frac{\max\{k,p\}-1}{n-1},0\right) \cup \downarrow\left(\frac{q-1}{n-1},1\right)$$
$$= f\left(\left(\frac{k}{n},0\right) \lor \left(\frac{p}{n},\frac{q}{n}\right)\right).$$

The case $\ell > 0$, q = 0 is similar.

Case 3. If $\ell > 0$, q > 0, then

$$\begin{split} f\left(\frac{k}{n},\frac{\ell}{n}\right) \cup f\left(\frac{p}{n},\frac{q}{n}\right) &= \left(\downarrow\left(\frac{k-1}{n-1},0\right) \cup \downarrow\left(\frac{\ell-1}{n-1},1\right)\right) \cup \left(\downarrow\left(\frac{p-1}{n-1},0\right) \cup \downarrow\left(\frac{q-1}{n-1},1\right)\right) \\ &= \downarrow\left(\frac{\max\{k,p\}-1}{n-1},0\right) \cup \downarrow\left(\frac{\max\{\ell,q\}-1}{n-1},1\right) \\ &= f\left(\frac{\max\{k,p\}}{n},\frac{\max\{\ell,q\}}{n}\right) \\ &= f\left(\left(\frac{k}{n},\frac{\ell}{n}\right) \vee \left(\frac{p}{n},\frac{q}{n}\right)\right). \end{split}$$

Now we verify that *f* is an isomorphism of posets and hence an isomorphism of lattices. For all $x, y \in \mathcal{A}(L_{n+1})$,

$$x \leq y \Leftrightarrow x \lor y = y \Leftrightarrow f(x) \cup f(y) = f(x \lor y) = f(y) \Leftrightarrow f(x) \subseteq f(y).$$

Hence, f is an isomorphism of lattices.

Therefore, $\mathcal{A}(L_{n+1}) \cong L_0(L_n \times L_2)$ and then $\Delta(L_n \times L_2) / \sim \cong \text{Der}(L_{n+1})$. \Box

Corollary 6. If L_n is the n-element MV-chain with $n \ge 2$, then $MD(L_{n+1})/\sim$ is isomorphic to the lattice $\Delta(L_n \times L_2)/\sim$.

Proof. It follows from Theorem 1 and Proposition 11. \Box

Note that according to the isomorphism in Theorem 1, $|MD(L_n)/\sim| = |Der(L_n)| =$ $\frac{(n-1)(n+2)}{2}$ by [16] (Theorem 3.11). However, the following Example 5 shows that the cardinalities of different equivalence classes with respect to the equivalence relation \sim are different in general.

Example 5. Let n = 2 and define $\delta \in MF(L_2)$ by $\delta(0) = \{0\}, \delta(1) = \{0, 1\}$. Then, it is easy to check that

$$\mathrm{MD}(L_2) = \{\mathbf{0}_{\mathrm{MF}(L_2)}, \mathrm{Id}_{\mathrm{MF}(L_2)}, \delta\},\$$

$$MD(L_2)/\sim = \{\{\mathbf{0}_{MF(L_2)}\}, \{Id_{MF(L_2)}, \delta\}\}.$$

$$\begin{split} \text{MD}(L_2)/\sim &= \{\{\mathbf{0}_{\text{MF}(L_2)}\}, \{\text{Id}_{\text{MF}(L_2)}, \delta\}\}.\\ \text{It is clear that } \left| \overline{\mathbf{0}_{\text{MF}(L_2)}} \right| &= 1 \text{ but } \left| \overline{\text{Id}_{\text{MF}(L_2)}} \right| &= 2. \text{ Hence, } 2 = |\text{MD}(L_2)/\sim | \nmid |\text{MD}(L_2)| = 3. \end{split}$$

So, the cardinality of $MD(L_n)$ is not easy to deduce from Theorem 1. In the next section, we will investigate the enumeration of the set of (\odot, \lor) -multiderivations on L_n by constructing a counting principle (Theorem 3).

5. The Enumeration of (\odot, \lor) -Multiderivations on a Finite MV-Chain

In this section, we determine the cardinality of $MD(L_n)$. For small values of *n*, this can be performed with calculations using Python (see the Appendix A Figure A1) in Table 1:

Table 1. The cardinality of $MD(L_n)$.

п	2	3	4	5	6
$ MD(L_n) $	3	16	63	220	723

The result cannot be obtained after $n \ge 6$ due to the limitation of computing resources. But we have shown the following general formula.

Theorem 2. Let
$$n \ge 2$$
 be a positive integer. Then, $|MD(L_n)| = \frac{7 \cdot 3^{n-1} - 2^{n+2} + 1}{2}$.

In order to prove Theorem 2, we need the following Lemmas.

Lemma 15. Assume that A is an MV-chain and $\sigma \in MD(A)$; then, the following results hold: If $M \subseteq A$, then $M = M \lor M$. 1.

For any $x \in A$, $n \in \mathbb{N}_+$, we have $\sigma(x^n) = x^{n-1} \odot \sigma(x)$, where $x^0 = 1$, $x^n = \underbrace{x \odot x \odot \cdots \odot x}_{x^{n-1}}$. 2.

Proof. (1) It follows immediately from Lemma 6 (3), as *M* is a sublattice.

(2) We prove $\sigma(x^n) = x^{n-1} \odot \sigma(x)$ by induction on *n*. Obviously, $\sigma(x^1) = \sigma(x) = \sigma(x)$ $1 \odot \sigma(x) = x^{1-1} \odot \sigma(x).$

Now, assume that $\sigma(x^n) = x^{n-1} \odot \sigma(x)$. By Equation (3), we have

$$\sigma(x^{n+1}) = \sigma(x^n \odot x)$$

= $(\sigma(x^n) \odot x) \lor (x^n \odot \sigma(x))$
= $(x^{n-1} \odot \sigma(x) \odot x) \lor (x^n \odot \sigma(x))$
= $x^n \odot \sigma(x)$,

so (2) holds. \Box

Note that an MV-chain can be completely characterized by (1). That is, if A is an MV-algebra, then *A* is an MV-chain iff $M = M \lor M$ for every $M \subseteq A$. In fact, by way of contraposition, assume that $x, y \in A$ and x, y are incomparable, denote $z = x \lor y$. Let $M = \{x, y\}$. Then, $z = x \lor y \in M \lor M$ but $z \notin M$. This leads to a contradiction.

Let $n \in \mathbb{N}_+$ and $n \ge 2$. In L_n , we know $\frac{n-m-1}{n-1} = (\frac{n-2}{n-1})^m$ for every $m \in \{1, 2, \dots, n-1\}$. So, any $x \in L_n \setminus \{1\}$ has a representation as a power of $\frac{n-2}{n-1}$.

Next, we give a counting principle for (\odot, \lor) -multiderivations on a finite MV-chain L_n .

Theorem 3. Let σ be a multifunction on L_n and $v = \frac{n-2}{n-1}$. Then, $\sigma \in MD(L_n)$ iff σ satisfies the following conditions:

1. $\sigma(v^m) = v^{m-1} \odot \sigma(v), \forall m \in \{1, 2, \cdots, n-1\}.$ 2. $\sigma(v) = \sigma(v) \lor (v \odot \sigma(1)).$ 3. $\sigma(v) \preceq \{v\}.$

Proof. Assume $\sigma \in MD(L_n)$; then, for each $m \in \{1, 2, \dots, n-1\}$, we have $\sigma(v^m) = v^{m-1} \odot \sigma(v)$ by Lemma 15 (2), and $\sigma(v) = \sigma(v \odot 1) = \sigma(v) \lor (v \odot \sigma(1))$ by Equation (3). Thus, σ satisfies (1) and (2). Furthermore, (3) holds by Proposition 4 (2).

Conversely, suppose that σ satisfies (1), (2) and (3). Let $x, y \in L_n$. There are four cases:

If x = y = 1, then it is easy to see that $\sigma(1 \odot 1) = \sigma(1) = \sigma(1) \lor \sigma(1)$ by Lemma 15 (1). If x = 1 or y = 1, and $x \neq y$. With out loss of generality, suppose that $x \neq 1$ and y = 1, then $x = v^k$ for some $k \in \{1, 2, \dots, n-1\}$. By (1), we have $\sigma(x \odot 1) = \sigma(x) = \sigma(v^k) = v^{k-1} \odot \sigma(v)$. Also, we have

$$\sigma(x) \lor (x \odot \sigma(1)) = (v^{k-1} \odot \sigma(v)) \lor (v^k \odot \sigma(1))$$

= $(v^{k-1} \odot \sigma(v)) \lor (v^{k-1} \odot (v \odot \sigma(1)))$
= $v^{k-1} \odot (\sigma(v) \lor (v \odot \sigma(1))$ (Lemma 7 (2))
= $v^{k-1} \odot \sigma(v)$. ((2) of Theorem 3)

Hence, $\sigma(x \odot 1) = \sigma(x) = (\sigma(x) \odot 1) \lor (x \odot \sigma(1)).$

If $x \neq 1$ and $y \neq 1$, then assume that $x = v^k$ and $y = v^\ell$ for some $k, \ell \in \{1, 2, \dots, n-1\}$. We have

$$\sigma(x \odot y) = \sigma(v^k \odot v^\ell) = \sigma(v^{k+\ell})$$

and

$$(\sigma(x) \odot y) \lor (x \odot \sigma(y)) = ((v^{k-1} \odot \sigma(v)) \odot v^{\ell}) \lor (v^k \odot (v^{\ell-1} \odot \sigma(v))) = v^{k+\ell-1} \odot \sigma(v)$$

by Lemma 15 (1). Then, there are three cases:

For $k + \ell < n - 1$, by (1) we obtain $\sigma(v^{k+\ell}) = v^{k+\ell-1} \odot \sigma(v)$.

For $k + \ell = n - 1$, by (3) we have $\sigma(v^{k+\ell}) = \sigma(v^{n-1}) = \sigma(0) \leq \{0\}$ and so $\sigma(0) = \{0\}$. And $v^{k+\ell-1} \odot \sigma(v) = v^{n-2} \odot \sigma(v) = v^* \odot \sigma(v) = \{0\}$. Thus, $\sigma(x \odot y) = (\sigma(x) \odot y) \lor (x \odot \sigma(y))$.

For $n-1 < k + \ell \le 2n-2$, we have $\sigma(v^{k+\ell}) = \sigma(0) = \{0\} = 0 \odot \sigma(v) = v^{k+\ell-1} \odot \sigma(v)$ by (3) and thus Equation (3) holds.

Therefore, we conclude that $\sigma \in MD(L_n)$. \Box

Lemma 16. Let $P, Q \in \Delta(L_n)$. Then, the following results hold:

1. $P \subseteq P \lor Q$ iff min $Q \leq \min P$.

2. $P \lor Q \subseteq P$ iff $[\min P, 1] \cap Q \subseteq P$.

Proof. Denote $p_0 = \min P$, $q_0 = \min Q$.

(1) Assume $P \subseteq P \lor Q$, then there exist $p \in P$, $q \in Q$ such that $p_0 = p \lor q \ge q$. Thus, $q_0 \le q \le p_0$.

Conversely, suppose $q_0 \leq p_0$, then $p = p \lor q_0$ for any $p \in P$ since $p_0 \leq p$. Hence, $P \subseteq P \lor Q$.

(2) Assume $P \lor Q \subseteq P$; then, for all $q \in [p_0, 1] \cap Q$, we have $q = p_0 \lor q \in P \lor Q \subseteq P$. Thus, $[p_0, 1] \cap Q \subseteq P$. Conversely, assume $[p_0, 1] \cap Q \subseteq P$ and $p \in P$, $q \in Q$. If $q \leq p$, then $p \lor q = p \in P$. If q > p, then $p \lor q = q \in [p_0, 1] \cap Q \subseteq P$. In either case, $p \lor q \in P$ and so $P \lor Q \subseteq P$. \Box

Lemma 17. Let $Q, Q' \in \Delta(L_n)$ and $1 \notin Q$. Denote $v = \frac{n-2}{n-1}$. Then, the following results hold:

- 1. If $0 \notin Q$, then $Q = v \odot Q'$ iff $Q' = Q \oplus v^*$.
- 2. If $0 \in Q$, denote $Q_1 = Q \setminus \{0\}$. Then, $Q = v \odot Q'$ iff $Q' = \{0\} \sqcup (Q_1 \oplus v^*), \{v^*\} \sqcup (Q_1 \oplus v^*)$ or $\{0, v^*\} \sqcup (Q_1 \oplus v^*)$.

Proof. (1) Let $0 \notin Q$ and $Q = v \odot Q'$. Then, $0 \notin Q'$, otherwise, $0 = v \odot 0 \in v \odot Q' = Q$, a contradiction. Thus, $0 \notin Q'$, which implies $\{v^*\} \preceq Q'$. Hence, we have

$$Q' = Q' \lor v^* = \{q' \lor v^* \mid q' \in Q'\} \\= \{(q' \odot v) \oplus v^* \mid q' \in Q'\} \\= (Q' \odot v) \oplus v^* \\= Q \oplus v^*.$$

Conversely, assume $Q' = Q \oplus v^*$. Since $1 \notin Q$, we have $Q \preceq \{v\}$. Hence,

$$Q = Q \land v = \{q \land v \mid n \in Q\}$$

= $\{v \odot (q \oplus v^*) \mid n \in Q\}$
= $v \odot (Q \oplus v^*)$
= $v \odot Q'$.

(2) Assume $0 \in Q$ and $Q = v \odot Q'$; then, $0 = v \odot q'$ for some $q' \in Q'$. Thus, $0 \in Q'$ or $v^* \in Q'$. Denote $Q'_0 = \{0, v^*\} \cap Q'$ and $Q'_1 = Q' \setminus Q'_0$. By $v \odot Q'_0 = \{0\}$ and $\{v^*\} \leq v \odot Q'_1$, we have

$$Q_{1} = Q \setminus \{0\} = (v \odot Q') \setminus \{0\}$$

= $(v \odot (Q'_{0} \cup Q'_{1})) \setminus \{0\}$
= $((v \odot Q'_{0}) \cup (v \odot Q'_{1})) \setminus \{0\}$ (Lemma 7 (3))
= $(\{0\} \cup (v \odot Q'_{1})) \setminus \{0\}$
= $v \odot Q'_{1}$.

Since $0 \notin Q_1$, we obtain $Q'_1 = Q_1 \oplus v^*$ by (1). Therefore,

$$Q'=Q_0'\sqcup Q_1'=Q_0'\sqcup (Q_1\oplus v^*),$$

where $Q'_0 = \{0\}, \{v^*\}$ or $\{0, v^*\}$.

Conversely, assume $0 \in Q$ and $Q' = Q'_0 \sqcup (Q_1 \oplus v^*)$, where $Q'_0 = \{0\}, \{v^*\}$ or $\{0, v^*\}$. From $1 \notin Q_1$, it follows that $Q_1 \preceq \{v\}$ and

$$v \odot Q' = v \odot (Q'_0 \cup (Q_1 \oplus v^*)) = (v \odot Q'_0) \cup (v \odot (Q_1 \oplus v^*))$$
(Lemma 7 (3))
= $\{0\} \cup (Q_1 \land v) = \{0\} \cup Q_1 = Q.$

Hence, we complete the proof. \Box

We are now in a position to prove Theorem 2:

Proof of Theorem 2. Assume that σ is a multifunction on L_n and denote $\frac{n-2}{n-1}$ by v. According to Theorem 3, σ is uniquely determined by $\sigma(v)$ and $\sigma(1)$ if $\sigma \in MD(L_n)$. Hence, it is enough to consider the values of $\sigma(v)$ and $\sigma(1)$. By Theorem 3, $\sigma \in MD(L_n)$ iff

$$\sigma(v) \preceq \{v\},\tag{5}$$

$$\sigma(v) = \sigma(v) \lor (v \odot \sigma(1)). \tag{6}$$

For convenience, we denote $P = \sigma(v)$, $Q' = \sigma(1)$, $Q = v \odot \sigma(1)$, $p_0 = \min P$ and $q_0 = \min Q$. Equation (5) implies $1 \notin P$. By Lemma 16, we know Equation (6) implies that $q_0 \leq p_0$ and $[p_0, 1] \cap Q \subseteq P$. Assume that $p_0 = \frac{k}{n-1}$ and $|P| = \ell$, where $0 \leq k \leq n-2$ and $1 \leq \ell \leq n-k-1$. Then, $P \setminus \{p_0\} \subseteq \left[\frac{k+1}{n-1}, \frac{n-2}{n-1}\right]$. Thus, P has $C_{n-k-2}^{\ell-1}$ choices with respect to k and ℓ . Now, we will determine all choices of Q and Q'.

Case 1. If $q_0 = p_0$, then $Q = [q_0, 1] \cap Q = [p_0, 1] \cap Q \subseteq P$. Hence, $Q \setminus \{q_0\}$ can take any subset of $P \setminus \{p_0\}$ and so Q has $2^{\ell-1}$ choices.

If $q_0 > 0$, then $0 \notin Q$, and by Lemma 17 (1) and $Q = v \odot Q'$ we know $Q' = Q \oplus v^*$. Hence, Q' has $2^{\ell-1}$ choices.

If $q_0 = 0$, then $0 \in Q$, by Lemma 17 (2) and $Q = v \odot Q'$ we have $Q' = \{0\} \sqcup (Q_1 \oplus v^*)$, $\{v^*\} \sqcup (Q_1 \oplus v^*)$ or $\{0, v^*\} \sqcup (Q_1 \oplus v^*)$. Thus, Q' has $3 \cdot 2^{\ell-1}$ choices.

Case 2. If $0 < q_0 < p_0$, denote $Q_1 = (0, p_0) \cap Q$ and $Q_2 = [p_0, 1] \cap Q$. Since $0 \notin Q$, we have $Q = Q_1 \sqcup Q_2$. Notice that $Q_1 \neq \emptyset$, so there are $2^{k-1} - 1$ choices of Q_1 . Furthermore, since $Q_2 = [p_0, 1] \cap Q \subseteq P$, Q_2 can take any subset of P and so has 2^{ℓ} choices. Thus, there are $(2^{k-1} - 1) \cdot 2^{\ell}$ choices of Q in this case. Since $0 \notin Q$, it follows that Q' has also $(2^{k-1} - 1) \cdot 2^{\ell}$ choices by Lemma 17 (1).

Case 3. If $0 = q_0 < p_0$, denote $Q_1 = (0, p_0) \cap Q$ and $Q_2 = [p_0, 1] \cap Q$, so we have $Q = \{0\} \sqcup Q_1 \sqcup Q_2$. Since $Q_1 \subset (0, p_0)$, there are 2^{k-1} choices of Q_1 . Moreover, Q_2 has 2^{ℓ} choices as in Case 2. Thus, there are $2^{k+\ell-1}$ choices of Q in this case. Since $0 \in Q$, it follows that Q' has $3 \cdot 2^{k+\ell-1}$ choices by Lemma 17 (2).

According to Theorem 3, we can determine the unique (\odot, \lor) -multiderivation for each choices of $\sigma(1)$ and $\sigma(v)$.

Therefore, it follows

$$\begin{split} |\operatorname{MD}(L_n)| &= \sum_{k=1}^{n-2} \sum_{\ell=1}^{n-k-1} \binom{n-k-2}{\ell-1} (2^{\ell-1} + (2^{k-1}-1) \cdot 2^{\ell} + 3 \cdot 2^{k-1} \cdot 2^{\ell}) + \sum_{\ell=1}^{n-1} \binom{n-2}{\ell-1} (3 \cdot 2^{\ell-1}) \\ &= \sum_{k=0}^{n-2} \sum_{\ell=1}^{n-k-1} \binom{n-k-2}{\ell-1} (2^{k+\ell+1} - 2^{\ell-1}) \\ &= \sum_{k=0}^{n-2} \left((2^{k+2}-1) \sum_{\ell=1}^{n-k-1} \binom{n-k-2}{\ell-1} \cdot 2^{\ell-1} \right) \\ &= \sum_{k=0}^{n-2} (2^{k+2}-1)(2+1)^{n-k-2} \\ &= 3^n \sum_{k=0}^{n-2} \left(\left(\frac{2}{3}\right)^{k+2} - \left(\frac{1}{3}\right)^{k+2} \right) \\ &= \frac{7 \cdot 3^{n-1} - 2^{n+2} + 1}{2}. \quad \Box \end{split}$$

6. Conclusions and Questions

In this paper, the point-to-point (\odot, \lor) -derivations on MV-algebras have been extended to point-to-set (\odot, \lor) -multiderivations. We show that $(MD(L_n)/\sim, \preccurlyeq)$ is isomorphic to the complete lattice $Der(L_n)$, the underlying set of (\odot, \lor) -derivations on L_n . This unveils a certain relevance between (\odot, \lor) -multiderivations and (\odot, \lor) -derivations. Moreover, by building a counting principle, we obtain the enumeration of $MD(L_n)$.

This general study of (\odot, \lor) -multiderivations has the advantage of developing into a system theory of sets and has potential wide applications: other logical algebras, control theory, interval analysis, and artificial intelligence.

We list three questions to be considered in the future:

and

(1) We have found two ways to construct (\odot, \lor) -multiderivations from (\odot, \lor) -derivations in Propositions 5 and 6. Are there other ways?

(2) We ask whether the equivalent characterization and enumeration of (\odot, \lor) - multiderivations on finite MV-chains can be extended to finite MV-algebras.

(3) We ask whether MV-algebras *A* and *A'* are isomorphic if $(MD(A), \preccurlyeq)$ and $(MD(A'), \preccurlyeq)$ are order isomorphic.

Author Contributions: Conceptualization, X.Z. and Y.Y.; methodology, X.Z., K.D. A.G., and Y. Y.; software, K,D.; validation, X.Z. and K.D.; investigation, X.Z. and Y.Y.; writing—original draft preparation, X.Z.; writing—review and editing, Y.Y.; supervision, Y.Y. All authors have read and agreed to the published version of the manuscript.

Funding: The work is partially supported by CNNSF (Grants: 12171022, 62250001).

Data Availability Statement: Data sharing is not applicable to this article as no new data were created or analyzed in this study.

Conflicts of Interest: The authors declare that they have no conflicts of interest.

Appendix A. Calculation Program by Python in Table 1

```
from itertools import product
#the set of MV-chain Ln
n = 6 \# Adjust n as needed
L = list(range(n))
# operators on Ln
def omul(a, b):
    return max(a + b + 1 - n, 0)
def join(a, b):
    return max(a, b)
# operators on Delta(Ln)
def Omul(A, B):
    C = []
    for i in A:
        for j in B:
            k = omul(i, j)
            if k not in C:
                C. append(k)
    return C
def Join(A, B):
    C = []
    for i in A:
        for j in B:
            k = join(i, j)
           if k not in C:
```

Figure A1. Cont.

```
C. append(k)
    return C
# judge whether F is a multiderivation
def IsMulDer(F):
    for i in range(n):
        for j in range(n):
            if set(F[omul(i, j)]) != set(Join(Omul(F[i], [j
                ]), Omul([i], F[j]))):
                 return False
    return True
# get the list of all multifunctions on Ln
def powerset(s):
    for i in range (1 \ll \text{len}(s)):
        yield [s[j] \text{ for } j \text{ in } range(len(s)) \text{ if } (i \& (1 \ll j))
           1
def generate_PLn(n):
    elements = []
    for i in range (1, n+1):
        a = list(powerset(range(i)))
        if [] in a:
             a.remove([])
        elements.append(a)
    return list (product (* elements))
def find_MulDer():
    MulDer = 0
    for F in generate_PLn(n):
        if IsMulDer(F):
             MulDer += 1
             print(F)
    return MulDer
MulDer_count = find_MulDer()
print(MulDer_count)
```

Figure A1. $MD(L_n)$.py.

References

- 1. Posner, E. Derivations in prime rings. Proc. Amer. Math Soc. 1957, 8, 1093–1100. [CrossRef]
- 2. Szász, G. Derivations of lattices. *Acta Sci. Math.* **1975**, *37*, 149–154.
- 3. Ferrari, L. On derivations of lattices. *Pure Math Appl.* 2001, 12, 365–382.
- 4. Xin, X.L.; Li, T.Y.; Lu, J.H. On derivations of lattices. Inf. Sci. 2008, 178, 307–316. [CrossRef]
- 5. Xin, X.L. The fixed set of a derivation in lattices. Fixed Point Theory Appl. 2012, 218, 218. [CrossRef]
- 6. Gan, A.P.; Guo, L. On differential lattices. Soft Comput. 2022, 26, 7043–7058. [CrossRef]
- 7. Jun, Y.B.; Xin, X.L. On derivations on BCI-algebras. Inf. Sci. 2004, 159, 167–176. [CrossRef]
- 8. He, P.F.; Xin, X.L.; Zhan, J.M. On derivations and their fixed point sets in residuated lattices. *Fuzzy Sets Syst.* **2016**, 303, 97–113. [CrossRef]
- 9. Krňávek, J.; Kühr, J. A note on derivations on basic algebras. Soft Comput. 2015, 19, 1765–1771. [CrossRef]
- 10. Hua, X.J. State L-algebras and derivations of L-algebras. Soft Comput. 2021, 25, 4201–4212. [CrossRef]
- 11. Alshehri, N.O. Derivations of MV-algebras. Int. J. Math. Math. Sci. 2010, 2010, 312027. [CrossRef]
- 12. Hamal, A. Additive derivative and multiplicative coderivative operators on MV-algebras. *Turk. J. Math.* **2019**, *43*, 879–893. [CrossRef]
- 13. Wang, J.T.; He, P.F.; She, Y.H. Some results on derivations of MV-algebras. *Appl. Math. J. Chin. Univ. Ser. B* 2023, *38*, 126–143. [CrossRef]

- 14. Yazarli, H. A note on derivations in MV-algebras. Miskolc Math. Notes 2013, 14, 345–354. [CrossRef]
- 15. Rachůnek, J.; Šalounová, D. Derivations on algebras of a non-commutative generalization of the Łukasiewicz logic. *Fuzzy Sets Syst.* **2018**, 333, 11–16. [CrossRef]
- 16. Zhao, X.T.; Gan, A.P.; Yang, Y.C. (⊙, ∨)-derivations on MV-algebras. *Soft Comput.* **2024**, *28*, 1833–1849. [CrossRef]
- 17. Eilenberg, S.; Montgomery, D. Fixed Point Theorems for Multi-Valued Transformations. Amer. J. Math. 1946, 68, 214. [CrossRef]
- 18. Aumann, R.J. Integrals of set-valued functions. J. Math. Anal. Appl. 1965, 12, 1–12. [CrossRef]
- 19. Filippov, A.F. Classical solutions of differential equations with multivalued right-hand side. *SIAM J. Control* **1967**, *5*, 609–621. [CrossRef]
- 20. Hermes, H. Calculus of set valued functions and control. J. Math. Mech. 1968, 18, 47-60. [CrossRef]
- 21. Aumann, R.J. Existence of a competitive equilibrium in markets with a continuum of traders. *Econometrica* **1966**, *34*, 1–17. [CrossRef]
- 22. Neumann, J.V.; Morgenstern, O. Theory of Games and Economic Behavior; Princeton: Princeton, NJ, USA, 1944.
- 23. Rezapour, S.; Sami, S. Some properties of isotone and joinitive multiderivations on lattices. Filomat 2016, 30, 2743–2748. [CrossRef]
- 24. Cignoli, R.; D'Ottaviano, I.M.L.; Mundici, D. *Algebraic Foundations of Many-Valued Reasoning*; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2000.
- 25. Chang, C.C. Algebraic analysis of many-valued logic. Trans. Am. Math. Soc. 1958, 88, 467–490. [CrossRef]
- 26. Ansari, Q.H.; Köbis, E.; Yao, J.C. Vector Variational Inequalities and Vector Optimization; Springer International Publishing: Cham, Switzerland, 2018.
- 27. Awodey, S. Category Theory; Oxford University Press: New York, NY, USA, 2010.
- 28. Burris, S.; Sankappanavar, H.P. A Course in Universal Algebra; Springer: New York, NY, USA, 2012.
- 29. Almeida, J.; Cano, A.; Klíma, O.; Pin, J.E. On fixed points of the lower set operator. *Internat. J. Algebra Comput.* 2015, 25, 259–292. [CrossRef]
- Gierz, G.; Hofmann, K.H.; Keimel, K.; Lawson, J.D.; Mislove, M.; Scott, D.S. Continuous Lattices and Domains; Cambridge University Press: Cambridge, UK, 2003.

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.