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Abstract: In this paper, (⊙,∨)-multiderivations on an MV-algebra A are introduced, the relations
between (⊙,∨)-multiderivations and (⊙,∨)-derivations are discussed. The set MD(A) of (⊙,∨)-
multiderivations on A can be equipped with a preorder, and (MD(A)/∼,≼) can be made into a
partially ordered set with respect to some equivalence relation ∼. In particular, for any finite MV-
chain Ln, (MD(Ln)/∼,≼) becomes a complete lattice. Finally, a counting principle is built to obtain
the enumeration of MD(Ln).
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1. Introduction

The concept of derivation originating from analysis has been delineated for a variety
of algebraic structures which come in analogy with the Leibniz rule

d
dx

( f g) =
d

dx
( f )g + f

d
dx

(g).

Posner [1] introduced the derivation on prime rings (R,+, ·) as a mapping d from R
to R such that for all x, y ∈ R:

(1) d(x · y) = d(x) · y + x · d(y), (2) d(x + y) = d(x) + d(y).

It implies that
(3) d(1) = 0, (4) d(0) = 0,

which are the 0-ary version of (1) and (2), respectively.
The derivations on lattices (L,∨,∧) were defined in [2] by Szász and were developed

in [3] by Ferrari as a map d from L to L such that for all elements x, y in L:

(i) d(x ∧ y) = (d(x) ∧ y) ∨ (x ∧ d(y)), (ii) d(x ∨ y) = d(x) ∨ d(y).

Xin et al. [4,5] investigated the derivations on a lattice satisfying only condition (i). In
fact, a derivation d on L with both the Leibniz rule (i) and the linearity (ii) implies that
d(x) = x ∧ u for some u ∈ L [6] (Proposition 2.5). If u is the maximum of a lattice, then
such a derivation is actually the identity. It seems that this is an important reason for
the derivations on, for instance, BCI-algebra [7], residuated lattices [8], basic algebra [9],
L-algebra [10], and differential lattices [6], which are defined with the unique requirement
of the Leibniz rule (i) (for the discussion in detail, cf. Section 2).

The derivation on an MV-algebra (A,⊕, ∗, 0) was firstly introduced by Alshehri [11]
as a mapping d from A to A satisfying an (⊙, ⊕)-condition: ∀x, y ∈ A,
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d(x ⊙ y) = (d(x)⊙ y)⊕ (x ⊙ d(y)),

where x ⊙ y is defined to be (x∗ ⊕ y∗)∗. Then, several derivations on MV-algebras have
been considered in [12–15]. However, the interplay of the ring operations · and + is
more similar to the interplay between the MV-operations ⊙ and ∨ rather than that between
the MV-operations ⊙ and ⊕. In fact, the main interplay between · and + in rings is the
distributivity of · over +. In MV-algebras, ⊙ distributes over ∨, as in rings, while it is not
true that ⊙ distributes over ⊕. It is also true that ⊙ distributes over ∧, but ∨ is preferable
because the identity element of ∨ is absorbing for ⊙, that is, 0 ⊙ x = 0 for any element x
in an MV-algebra A, as in rings, while the same is not true for ∧. Therefore, the (⊙, ∨)-
derivation on MV-algebras [16] is a nature improvement of Alshehri’s celebrated work [11]
of the (⊙, ⊕)-derivation (cf. Section 2 for more discussion).

Let E and F be nonempty sets. A multifunction f : E → ∆(F) is a map (or function)
from E into ∆(F), the collection of nonempty subsets of F. The multifunction [17] is also
known as set-valued function [18]. Significantly, multifunctions have many diverse and
interesting applications in control problems [19,20] and mathematical economics [21,22].
Motivated by the role played by derivations on MV-algebras and the work of multideriva-
tions on lattices [23], it is imperative to undertake a systematic study of the corresponding
algebraic structure for derivations on MV-algebras.

This article is a continuation of work on (⊙,∨)-multiderivations based on the nature
(⊙, ∨)-derivation on MV-algebras [16], that is, a set-valued generalization of point-valued
(⊙,∨)-derivations. Section 2 starts with a review of the (⊙,∨)-derivations on an MV-
algebra A. In Section 3, we first define a natural preorder on ∆(A) that M ⪯ N iff for every
m ∈ M there exists n ∈ N such that m ≤ n. Then, we introduce (⊙,∨)-multiderivations
on MV-algebras. The relations between (⊙,∨)-derivations and (⊙,∨)-multiderivations
on an MV-algebra are given (Propositions 5–7). In Section 4, we investigate the set of
(⊙,∨)-multiderivations MD(A) on an MV-algebra A. Let σ, σ′ ∈ MD(A). Define σ ≼ σ′

if σ(x) ⪯ σ′(x) for any x ∈ A, and an equivalence relation ∼ on MD(A) by σ ∼ σ′ iff
σ ≼ σ′ and σ′ ≼ σ. Then, (MD(A)/∼,≼) is a poset. For an n-element MV-chain Ln, we
show that (MD(Ln)/∼,≼) is isomorphic to the complete lattice Der(Ln), the underlying
set of (⊙,∨)-derivations on Ln (Theorem 1), so we deduce that |MD(Ln)/∼| = |Der(Ln)|,
then [16] (Theorem 3.11) can be applied. Moreover, we define an equivalence relation ∼ on
∆(A), and present the fact that the poset ∆(Ln × L2)/∼ is isomorphic to the complete lattice
Der(Ln+1) (Proposition 11). However, the cardinalities of different equivalence classes
with respect to the equivalence relation ∼ are different in general (Example 5). In Section 5,
by building a counting principle (Theorem 3) for (⊙,∨)-multiderivations on an n-element
MV-chain Ln, we finally obtain the enumeration of MD(Ln): (7 · 3n−1 − 2n+2 + 1)/2.

Notation. Throughout this paper, A denotes an MV-algebra; |X| denotes the cardinal-
ity of a set X; ∆(X) denotes the set of nonempty subsets of a set X; ⊔ means disjoint union;
N denotes the set of natural numbers; “iff” is the abbreviation for “if and only if”.

2. Preliminaries

Definition 1 ([24]). An algebra (A,⊕, ∗, 0) is an MV-algebra if the following axioms are satisfied:
(MV1) (associativity) x ⊕ (y ⊕ z) = (x ⊕ y)⊕ z.
(MV2) (commutativity) x ⊕ y = y ⊕ x.
(MV3) (existence of the unit 0) x ⊕ 0 = x.
(MV4) (involution) x∗∗ = x.
(MV5) (maximal element 0∗) x ⊕ 0∗ = 0∗.
(MV6) (Łukasiewicz axiom) (x∗ ⊕ y)∗ ⊕ y = (y∗ ⊕ x)∗ ⊕ x.

Define 1 = 0∗ and the natural order on A as follows: y ≥ x iff x ⊙ y∗ = 0. Then, the
interval [a, b] = {r ∈ A | a ≤ r ≤ b} for any a, b ∈ A and a ≤ b. Note that A is a bounded
distributive lattice with respect to the natural order [24] (Proposition 1.5.1) with 0, 1, and

x ∨ y = (x ⊙ y∗)⊕ y , x ∧ y = x ⊙ (x∗ ⊕ y). (1)
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An MV-chain is an MV-algebra which is linearly ordered with respect to the natural order.

Example 1 ([24]). Let L = [0, 1] be the real unit interval. Define

x ⊕ y = min{1, x + y} and x∗ = 1 − x for any x, y ∈ L.

Then (L,⊕, ∗, 0) is an MV-chain. Note that x ⊙ y = max{0, x + y − 1}.

Example 2. For every 2 ≤ n ∈ N+, let

Ln =

{
0,

1
n − 1

,
2

n − 1
, · · · ,

n − 2
n − 1

, 1
}

.

Then the n-element subset Ln is an MV-subalgebra of L.

Lemma 1 ([24,25]). If A is an MV-algebra, then the following statements are true ∀x, y, z ∈ A:

1. x ⊕ y ≥ x ∨ y ≥ x ≥ x ∧ y ≥ x ⊙ y.
2. x ⊕ y = 0 iff x = y = 0. x ⊙ y = 1 iff x = y = 1.
3. If y ≥ x, then y ∨ z ≥ x ∨ z, y ∧ z ≥ x ∧ z.
4. If y ≥ x, then y ⊕ z ≥ x ⊕ z, y ⊙ z ≥ x ⊙ z.
5. y ≥ x iff x∗ ≥ y∗.
6. x ⊙ (y ∧ z) = (x ⊙ y) ∧ (x ⊙ z).
7. x ⊙ (y ∨ z) = (x ⊙ y) ∨ (x ⊙ z).
8. x ⊙ y ≤ z iff x ≤ y∗ ⊕ z.

Let Ω be an index set. The direct product ∏i∈Ω Ai [24] of a family of MV-algebras {Ai}i∈Ω
is the MV-algebra with cartesian product of the family and pointwise MV-operations. We
denote A1 × A2 × · · · × An when Ω is a positive integer n. We call a ∈ A idempotent if
a ⊕ a = a. Let B(A) be the set of idempotent elements of A and B2n be the 2n-element
Boolean algebra. Note that B4 is actually L2 × L2 [24].

Lemma 2 ([24], Proposition 3.5.3). Let A be a subalgebra of [0, 1]. Let A+ = {x ∈ A | x > 0}
and a = inf A+ be the infimum of A+. If a = 0, then A is a dense subchain of [0, 1]. If a > 0, then
A = Ln for some n ≥ 2.

Definition 2 ([16]). If A is an MV-algebra, then a map d from A to A is an (⊙,∨)-derivation
on A if ∀x, y ∈ A,

d(x ⊙ y) = (d(x)⊙ y) ∨ (x ⊙ d(y)). (2)

Let Der(A) be the set of (⊙,∨)-derivations on A. For X = {x1, x2, · · · , xn} and a map d : X → X,
we shall write d as (

x1 x2 · · · xn
d(x1) d(x2) · · · d(xn)

)
.

The mappings IdA and 0A, defined by IdA(x) = x and 0A(x) = 0 (∀x ∈ A), respec-

tively, are (⊙,∨)-derivations on A. For u ∈ A, the operator χ(u)(x) :=

{
u, if x = 1
x. otherwise

∈

Der(A). More examples are given in [16].

Proposition 1 ([16]). If A is an MV-algebra and d ∈ Der(A), then the followings hold for all
x, y ∈ A:

1. 0 = d(0).
2. x ≥ d(x).
3. If d(x) = x, then d(y) = y for y ≤ x.
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Remark 1. Now let us give some explanations of the naturality of an (⊙,∨)-derivation in Defi-
nition 2. The interplay of the ring operations · and + is more similar to the interplay between the
MV-operations ⊙ and ∨ rather than that between the MV-operations ⊙ and ⊕.

Next we discuss why we include only Equation (2). Recall that d(0) = 0 is the 0-ary version of
d(x + y) = d(x) + d(y) in derivations on a ring. For MV-algebras, d(0) = 0 is the 0-ary version
of (a); see Proposition 1 (1). d(1) = 0 is the 0-ary version of d(x · y) = d(x) · d(y) in derivations
on a ring. Hence, it seems that the most faithful and natural derivation notion on A as a translation
of the ring-theoretic notion of derivation (cf. Introduction) would include:

(a) d(x ⊙ y) = (d(x)⊙ y) ∨ (x ⊙ d(y)),
(b) d(1) = 0,
(c) d(x ∨ y) = d(x) ∨ d(y),
(d) d(0) = 0.

However, (b) and (c) imply that d is trivial (note that (a) is automatically assumed).

Lemma 3. If A is an MV-algebra and d : A → A is a map satisfying (a), (b) and (c) for any
x, y ∈ A. Then, d = 0A.

Proof. Assume x ≤ y, it follows from (c) that d(y) = d(x ∨ y) = d(x) ∨ d(y) and thus
d(x) ≤ d(y). Together with (b) d(1) = 0, we have d(x) = 0 for any x ∈ A since x ≤ 1.
Hence, d = 0A.

Next, we consider what will happen if the condition (b′) d(1) = 1 replaces (b) d(1) = 0.

Lemma 4. If d : A → A is a mapping from an MV-algebra A to A with (a) and (b′) for any
x, y ∈ A, then, d = IdA.

Proof. Assume d satisfies (a) and (b′). We obtain that d satisfies Proposition 1 (3) since
d satisfies (a). Both with (b′) d(1) = 1, we obtain d(x) = x for any x ∈ A. Therefore,
d = IdA.

Recall that for a given a ∈ A, a principal (⊙,∨)-derivation da on A [16] is defined
by da(x) := a ⊙ x for all x ∈ A. An (⊙,∨)-derivation d is isotone [16] if ∀x, y ∈ A, y ≥ x
implies that d(y) ≥ d(x). Note that 0A and IdA are both principal and isotone. More
generally, we obtain the following.

Proposition 2 ([16] (Proposition 3.19)). Let A be an MV-algebra and d be a map satisfying (a)
and (b”). Then, the followings are equivalent:

1. d is isotone;
2. d(1)⊙ x = d(x) for all x ∈ A;
3. d(x) ∨ d(y) = d(x ∨ y).

If d satisfies (b), then the principal derivations on MV-algebra A will not be included,
expect 0A. Even identity derivations IdA will not be within our scope of consideration.
Hence, the scope of the study will be significantly narrowed.

Remark 2. Note that d is isotone if d satisfies (c). In fact, if x ≤ y, then d(y) = d(x ∨ y) =
d(x)∨ d(y) and thus d(x) ≤ d(y). The isotone case is a special case of d, thus the scope of research
will be narrowed. This case has been partially studied in [16], Section 3.3.

Therefore, we use the derivation meaning from Definition 2 in our series papers since [16] on.

3. (⊙,∨)-Multiderivations on an MV-Algebra

Let X and Y be two nonempty sets. Recall that a set-valued function or multivalued
function (for short, multifunction) F between X and Y is a map F : X → ∆(Y). The set
F(x) is called the image of x under F (cf. [26], Appendix A).
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Definition 3. Let A be an MV-algebra and M, N ∈ ∆(A). We define four binary operations
⊕,⊙,∨,∧ and an unary operation ∗ on ∆(A) by:

M ⋆ N = {m ⋆ n | m ∈ M, n ∈ N} and M∗ = {m∗ | m ∈ M}

where ⋆ ∈ {⊕,⊙,∨,∧}.

Remark 3.

1. Note that M ∨ N means the pointwise m ∨ n operation from Equation (1) of sets, which is
different from the supremum of M and N. M ∧ N has a similar meaning.

2. We abbreviate M ⋆ {x} and {x}∗ by M ⋆ x and x∗, respectively. But if {x} appears by itself
such as M ⪯ {x}, we still use {x}.

We define a binary relation M ⪯ N iff for every m ∈ M there exists n ∈ N such that
m ≤ n. Denote M ≺ N if M ⪯ N and M ̸= N.

Then, ⪯ is a preorder on ∆(A). In fact, the reflexivity and transitivity of ⪯ are clear.
However, ⪯ does not satisfy antisymmetry in general. In fact, ⪯ satisfies antisymmetry iff
the MV-algebra A is trivial: If A is trivial, we have ∆(A) = {{0}} and {0} ⪯ {0}. Hence, ⪯
satisfies antisymmetry. Conversely, suppose A is nontrivial, we have A ̸= {1}, but {1} ⪯ A
and A ⪯ {1}, a contradiction.

Lemma 5. Let A be an MV-algebra and x, a, b, c, e, f ∈ A. Then, the followings hold:

1. If x ≤ b ⊙ c, then there exists t ∈ A such that t ≤ b and x = t ⊙ c.
2. If x ≤ b ∨ c, then there exist t, s ∈ A such that t ≤ b, s ≤ c and x = t ∨ s.
3. [a, b]⊙ c = [a ⊙ c, b ⊙ c].
4. [a, b] ∨ [e, f ] = [a ∨ e, b ∨ f ].

Proof. (1) Assume x ≤ b ⊙ c, then

x = (b ⊙ c) ∧ x = (b ⊙ c)⊙ ((b ⊙ c)∗ ⊕ x) = b ⊙ ((b ⊙ c)∗ ⊕ x)⊙ c.

Thus, we may choose t = b ⊙ ((b ⊙ c)∗ ⊕ x).
(2) Assume x ≤ b ∨ c. Recall that A is a distributive lattice. So

x = (b ∨ c) ∧ x = (b ∧ x) ∨ (c ∧ x).

Hence, we can obtain x = t ∨ s by taking t = b ∧ x, s = c ∧ x.
(3) For each x ∈ [a, b], we obtain a ⊙ c ≤ x ⊙ c ≤ b ⊙ c by Lemma 1 (4). Thus,

[a, b] ⊙ c ⊆ [a ⊙ c, b ⊙ c]. It suffices to prove that [a ⊙ c, b ⊙ c] ⊆ [a, b] ⊙ c. For any
a ⊙ c ≤ x ≤ b ⊙ c, by (1) there is t = b ⊙ ((b ⊙ c)∗ ⊕ x) ≤ b such that x = t ⊙ c. If we can
prove a ≤ t, then the result follows immediately. Note that

t = b ⊙ ((b ⊙ c)∗ ⊕ x) = b ⊙ (b∗ ⊕ c∗ ⊕ x) = b ∧ (c∗ ⊕ x).

Since a ⊙ c ≤ x, we have a ≤ c∗ ⊕ x by Lemma 1 (8). Together with a ≤ b, we obtain
a ≤ b ∧ (c∗ ⊕ x) = t. Thus, we conclude that [a, b]⊙ c = [a ⊙ c, b ⊙ c].

(4) For any t ∈ [a, b], s ∈ [e, f ], we have a ∨ e ≤ t ∨ s ≤ b ∨ f by Lemma 1 (3). Thus,
[a, b] ∨ [e, f ] ⊆ [a ∨ e, b ∨ f ]. It is enough to prove that [a ∨ e, b ∨ f ] ⊆ [a, b] ∨ [e, f ]. For any
a ∨ e ≤ x ≤ b ∨ f , there exist t, s ∈ A such that

t = b ∧ x ≤ b, s = f ∧ x ≤ f and x = t ∨ s

by (2). If we can prove a ≤ t and e ≤ s, then the result follows. Note that since a ≤ b
and a ≤ a ∨ e ≤ x, we have a ≤ b ∧ x = t. Similarly, e ≤ s. Therefore, [a ∨ e, b ∨ f ] =
[a, b] ∨ [e, f ].

The following result holds for any MV-algebra A since it is a distributive lattice under
the natural order.
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Lemma 6 ([23] (Lemma 2.1)). Let L be a lattice and M, N, P, Q ∈ ∆(L). Then, the following
statements hold:

1. M ∧ N ⪯ M ⪯ M ∨ N.
2. If M ⪯ N and P ⪯ Q, then M ∧ P ⪯ N ∧ Q and M ∨ P ⪯ N ∨ Q. In particular, M ⪯ N

implies M ∧ P ⪯ N ∧ P.
3. M ⊆ M ∧ M, M ⊆ M ∨ M. If M is a sublattice of L, then M = M ∨ M.
4. M ∨ N = N ∨ M.
5. (M ∨ N) ∨ P = M ∨ (N ∨ P).
6. If M ∨ N ⊆ M, then N ⪯ M.
7. If L is distributive, then (M ∨ N) ∧ P ⊆ (M ∧ P) ∨ (N ∧ P).

Remark 4.

1. Note that the converse inclusion of Lemma 6 (3), i.e., M ∧ M ⊆ M and M ∨ M ⊆ M, does
not hold in general. For example, consider the Boolean lattice B4 = {0, a, b, 1} (see Figure 1),
M = {a, b} ⊆ B4, then 0 = a ∧ b ∈ M ∧ M and 1 = a ∨ b ∈ M ∨ M, but 0, 1 /∈ M.

2. The converse of Lemma 6 (6), i.e., N ⪯ M implies M ∨ N ⊆ M may not hold. For example,
in L3, let N = {0, 1

2}, M = {0, 1}. We have N ⪯ M but M ∨ N = {0, 1
2 , 1} ⊈ M.

3. The converse inclusion of Lemma 6 (7) holds if P is a singleton but need not hold in gen-
eral. This is slightly different from [23]. For example, let B8 = {0, a, b, c, u, v, w, 1} be the
8-element Boolean lattice as Figure 2, M = {u}, N = {w} and P = {a, b, c}. We can check
that u = a ∨ b = (u ∧ a) ∨ (w ∧ b) ∈ (M ∧ P) ∨ (N ∧ P) but u /∈ P = (M ∨ N) ∧ P.

THE ENUMERATION OF (�,∨)-MULTIDERIVATIONS ON A FINITE MV-CHAIN 7

check that u = a ∨ b = (u ∧ a) ∨ (w ∧ b) ∈ (M ∧ P) ∨ (N ∧ P) but u < P = (M ∨ N) ∧ P.

1

a b

0

Figure 1. Hasse diagram of B4

1

vu w

a b c

0

Figure 2. Hasse diagram of B8

According to Lemma 2.4, one gets

Lemma 3.6. Assume that A is an MV-algebra, M,N, P,Q ∈ ∆(A), and m ∈ M. Then the following
statements hold:

(1) If M � N and P � Q, then M ⊕ P � N ⊕ Q and M � P � N � Q. In particular, M � N
implies M ⊕ P � N ⊕ P and M � P � N � P.

(2) m � (P ∨ Q) = (m � P) ∨ (m � Q).
(3) m � (P ∪ Q) = (m � P) ∪ (m � Q).
(4) M � N � M ∧ N � M � M ∨ N � M ⊕ N.
(5) If M ⊕ N ⊆ M, then N � M.

Proof. (1) Suppose M � N and P � Q. For any x = m ⊕ p ∈ M ⊕ P, there are n ∈ N and q ∈ Q
such that m ≤ n and p ≤ q. It follows from Lemma 2.4 (4) that m ⊕ p ≤ m ⊕ q ≤ n ⊕ q, where
n ⊕ q ∈ N ⊕ Q. Thus, M ⊕ P � N ⊕ Q. Similarly, we have M � P � N � Q. In particular, we get
M ⊕ P � N ⊕ P and M � P � N � P.

(2) For any p ∈ P and q ∈ Q, we have m � (p ∨ q) = (m � p) ∨ (m � q) ∈ (m � P) ∨ (m � Q)
by Lemma 2.4 (7). Thus, m� (P∨Q) ⊆ (m� P)∨ (m�Q). The reverse inclusion can be verified
similarly. Therefore, m � (P ∨ Q) = (m � P) ∨ (m � Q).

(3) We have x ∈ m � (P ∪ Q), iff there is y ∈ P ∪ Q such that x = m � y, iff there is y ∈ P
or y ∈ Q such that x = m � y, iff x ∈ m � P or x ∈ m � Q, iff x ∈ (m � P) ∪ (m � Q). Hence
m � (P ∪ Q) = (m � P) ∪ (m � Q).

(4) For any m ∈ M and n ∈ N, we know m � n ≤ m ∧ n ≤ m ≤ m ∨ n ≤ m ⊕ n by Lemma 2.4
(1). The result follows immediately.

(5) Assume M ⊕ N ⊆ M, then for any n ∈ N, there exists m ∈ M such that m ⊕ n ∈ M. So by
Lemma 2.4 (1) we get n ≤ m ⊕ n. Therefore, N � M. �

To study whether (∆(A),⊕, ∗, {0}) is an MV-algebra, we first give

Lemma 3.7. If A is an MV-algebra. Then for any M,N, P ∈ ∆(A), the followings hold:
(1) (M ⊕ N) ⊕ P = M ⊕ (N ⊕ P).
(2) M ⊕ N = N ⊕ M.
(3) M ⊕ 0 = M.
(4) M∗∗ = M.
(5) M ⊕ 0∗ = {0∗}.

Proof. (1)-(5) follow from (MV1)-(MV5), respectively. �

Remark 3.8. Since (MV1)-(MV5) are satisfied on ∆(A), it is natural to consider whether (MV6)
(M∗ ⊕ N)∗ ⊕ N = (N∗ ⊕ M)∗ ⊕ M holds on ∆(A). The answer is no. For example, let M = { 12 } and
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According to Lemma 2.4, one gets

Lemma 3.6. Assume that A is an MV-algebra, M,N, P,Q ∈ ∆(A), and m ∈ M. Then the following
statements hold:

(1) If M � N and P � Q, then M ⊕ P � N ⊕ Q and M � P � N � Q. In particular, M � N
implies M ⊕ P � N ⊕ P and M � P � N � P.

(2) m � (P ∨ Q) = (m � P) ∨ (m � Q).
(3) m � (P ∪ Q) = (m � P) ∪ (m � Q).
(4) M � N � M ∧ N � M � M ∨ N � M ⊕ N.
(5) If M ⊕ N ⊆ M, then N � M.

Proof. (1) Suppose M � N and P � Q. For any x = m ⊕ p ∈ M ⊕ P, there are n ∈ N and q ∈ Q
such that m ≤ n and p ≤ q. It follows from Lemma 2.4 (4) that m ⊕ p ≤ m ⊕ q ≤ n ⊕ q, where
n ⊕ q ∈ N ⊕ Q. Thus, M ⊕ P � N ⊕ Q. Similarly, we have M � P � N � Q. In particular, we get
M ⊕ P � N ⊕ P and M � P � N � P.

(2) For any p ∈ P and q ∈ Q, we have m � (p ∨ q) = (m � p) ∨ (m � q) ∈ (m � P) ∨ (m � Q)
by Lemma 2.4 (7). Thus, m� (P∨Q) ⊆ (m� P)∨ (m�Q). The reverse inclusion can be verified
similarly. Therefore, m � (P ∨ Q) = (m � P) ∨ (m � Q).

(3) We have x ∈ m � (P ∪ Q), iff there is y ∈ P ∪ Q such that x = m � y, iff there is y ∈ P
or y ∈ Q such that x = m � y, iff x ∈ m � P or x ∈ m � Q, iff x ∈ (m � P) ∪ (m � Q). Hence
m � (P ∪ Q) = (m � P) ∪ (m � Q).

(4) For any m ∈ M and n ∈ N, we know m � n ≤ m ∧ n ≤ m ≤ m ∨ n ≤ m ⊕ n by Lemma 2.4
(1). The result follows immediately.

(5) Assume M ⊕ N ⊆ M, then for any n ∈ N, there exists m ∈ M such that m ⊕ n ∈ M. So by
Lemma 2.4 (1) we get n ≤ m ⊕ n. Therefore, N � M. �

To study whether (∆(A),⊕, ∗, {0}) is an MV-algebra, we first give

Lemma 3.7. If A is an MV-algebra. Then for any M,N, P ∈ ∆(A), the followings hold:
(1) (M ⊕ N) ⊕ P = M ⊕ (N ⊕ P).
(2) M ⊕ N = N ⊕ M.
(3) M ⊕ 0 = M.
(4) M∗∗ = M.
(5) M ⊕ 0∗ = {0∗}.

Proof. (1)-(5) follow from (MV1)-(MV5), respectively. �

Remark 3.8. Since (MV1)-(MV5) are satisfied on ∆(A), it is natural to consider whether (MV6)
(M∗ ⊕ N)∗ ⊕ N = (N∗ ⊕ M)∗ ⊕ M holds on ∆(A). The answer is no. For example, let M = { 12 } and

Figure 2. Hasse diagram of B8.

According to Lemma 1, one obtains
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Lemma 7. Assume that A is an MV-algebra, M, N, P, Q ∈ ∆(A), and m ∈ M. Then, the
following statements hold:

1. If M ⪯ N and P ⪯ Q, then M ⊕ P ⪯ N ⊕ Q and M ⊙ P ⪯ N ⊙ Q. In particular, M ⪯ N
implies M ⊕ P ⪯ N ⊕ P and M ⊙ P ⪯ N ⊙ P.

2. m ⊙ (P ∨ Q) = (m ⊙ P) ∨ (m ⊙ Q).
3. m ⊙ (P ∪ Q) = (m ⊙ P) ∪ (m ⊙ Q).
4. M ⊙ N ⪯ M ∧ N ⪯ M ⪯ M ∨ N ⪯ M ⊕ N.
5. If M ⊕ N ⊆ M, then N ⪯ M.

Proof. (1) Suppose M ⪯ N and P ⪯ Q. For any x = m ⊕ p ∈ M ⊕ P, there are n ∈ N and
q ∈ Q such that m ≤ n and p ≤ q. It follows from Lemma 1 (4) that m ⊕ p ≤ m ⊕ q ≤ n ⊕ q,
where n ⊕ q ∈ N ⊕ Q. Thus, M ⊕ P ⪯ N ⊕ Q. Similarly, we have M ⊙ P ⪯ N ⊙ Q.
In particular, we obtain M ⊕ P ⪯ N ⊕ P and M ⊙ P ⪯ N ⊙ P.

(2) For any p ∈ P and q ∈ Q, we have m ⊙ (p ∨ q) = (m ⊙ p) ∨ (m ⊙ q) ∈ (m ⊙ P) ∨
(m ⊙ Q) by Lemma 1 (7). Thus, m ⊙ (P ∨ Q) ⊆ (m ⊙ P) ∨ (m ⊙ Q). The reverse inclusion
can be verified similarly. Therefore, m ⊙ (P ∨ Q) = (m ⊙ P) ∨ (m ⊙ Q).

(3) We have x ∈ m ⊙ (P ∪ Q), iff there is y ∈ P ∪ Q such that x = m ⊙ y, iff there is
y ∈ P or y ∈ Q such that x = m ⊙ y, iff x ∈ m ⊙ P or x ∈ m ⊙ Q, iff x ∈ (m ⊙ P) ∪ (m ⊙ Q).
Hence, m ⊙ (P ∪ Q) = (m ⊙ P) ∪ (m ⊙ Q).

(4) For any m ∈ M and n ∈ N, we know m ⊙ n ≤ m ∧ n ≤ m ≤ m ∨ n ≤ m ⊕ n by
Lemma 1 (1). The result follows immediately.

(5) Assume M ⊕ N ⊆ M, then for any n ∈ N, there exists m ∈ M such that m⊕ n ∈ M.
So by Lemma 1 (1) we obtain n ≤ m ⊕ n. Therefore, N ⪯ M.

To study whether (∆(A),⊕, ∗, {0}) is an MV-algebra, we first give

Lemma 8. If A is an MV-algebra, then, for any M, N, P ∈ ∆(A), the followings hold:

1. (M ⊕ N)⊕ P = M ⊕ (N ⊕ P).
2. M ⊕ N = N ⊕ M.
3. M ⊕ 0 = M.
4. M∗∗ = M.
5. M ⊕ 0∗ = {0∗}.

Proof. (1)–(5) follow from (MV1)–(MV5), respectively.

Remark 5. Since (MV1)–(MV5) are satisfied on ∆(A), it is natural to consider whether (MV6)
(M∗ ⊕ N)∗ ⊕ N = (N∗ ⊕ M)∗ ⊕ M holds on ∆(A). The answer is no. For example, let M = { 1

2}
and N = {0, 1} on three-element MV-chain L3. It is easy to see that ( 1

2
∗ ⊕ {0, 1})∗ ⊕ {0, 1} =

{0, 1
2} ⊕ {0, 1} = {0, 1

2 , 1} ̸= { 1
2 , 1} = ({0, 1}∗ ⊕ 1

2 )
∗ ⊕ 1

2 . That is, (M∗ ⊕ N)∗ ⊕ N ̸=
(N∗ ⊕ M)∗ ⊕ M.

If A is a nontrivial MV-algebra, and φ : A → ∆(A) is a multifunction on A. φ is called
additive and negative, if φ(x ⊕ y) = φ(x)⊕ φ(y) and φ(x∗) = (φ(x))∗ for all x, y ∈ A,
respectively.

Proposition 3. Let A be an MV-algebra and φ : A → ∆(A) be a multifunction on A. If φ is
additive and negative, then (φ(A),⊕, ∗, φ(0)) is an MV-algebra, where φ(A) = {φ(x) | x ∈ A}.

Proof. It is sufficient to prove (MV3), (MV5) and (MV6), since we know that (φ(A),⊕, ∗, φ(0))
satisfies (MV1), (MV2) and (MV4) by Lemma 8. Since φ is additive and negative, it
follows that φ(x)⊕ φ(0) = φ(x ⊕ 0) = φ(x) and φ(x)⊕ φ(0)∗ = φ(x ⊕ 0∗) = φ(0∗) =
φ(0)∗. Furthermore, (φ(x)∗ ⊕ φ(y))∗ ⊕ φ(y) = φ(x∗ ⊕ y)∗ ⊕ φ(y) = φ((x∗ ⊕ y)∗ ⊕ y) =
φ((y∗ ⊕ x)∗ ⊕ x) = φ(y∗ ⊕ x)∗ ⊕ φ(x) = (φ(y)∗ ⊕ φ(x))∗ ⊕ φ(x) for any x, y ∈ A. Thus,
(φ(A),⊕, ∗, φ(0)) is an MV-algebra.
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Now let us define the (⊙,∨)-multiderivation.

Definition 4. If A is an MV-algebra, a multifunction σ : A → ∆(A) is called an (⊙,∨)-
multiderivation on A if

σ(x ⊙ y) = (σ(x)⊙ y) ∨ (x ⊙ σ(y)) (3)

for all x, y ∈ A. Denote the set of (⊙,∨)-multiderivations on A by MD(A).

Example 3. (i) Consider the MV-chain L4. We define a multifunction σ on L4 by σ(0) = {0},
σ( 1

3 ) = {0, 1
3}, σ( 2

3 ) = {0, 2
3}, σ(1) = {0, 1}. Then, we can check σ is an (⊙,∨)-multiderivation

on L4. In fact, σ = β1 (see Corollary 1).
(ii) Consider the standard MV-algebra L = [0, 1]. We define a multifunction σ : L → ∆(L)

by σ(x) = [0, x] for all x ∈ L. Then, we can verify that σ is an (⊙,∨)-multiderivation on L (see
Proposition 6).

(iii) Let A be an MV-algebra and S ⊆ A be a subalgebra of A. Define a multifunction
σS on A by σS(x) = x ⊙ S, ∀x ∈ A, then σS ∈ MD(A), which is called a principal (⊙,∨)-
multiderivation. In fact, for any x, y ∈ A, since the subalgebra S must be a sublattice of A, it
follows that S = S ∨ S by Lemma 6 (3). According to Lemma 7 (2), we immediately have σS(x ⊙
y) = x ⊙ y ⊙ S = x ⊙ y ⊙ (S ∨ S) = (x ⊙ y ⊙ S) ∨ (x ⊙ y ⊙ S) = (σS(x)⊙ y) ∨ (x ⊙ σS(y)).

Proposition 4. If A is an MV-algebra and σ ∈ MD(A). Then, the followings hold for all x, y ∈ A,

1. σ(0) = {0}.
2. σ(x) ⪯ {x}.
3. σ(x)⊙ σ(y) ⪯ σ(x ⊙ y) ⪯ σ(x) ∨ σ(y).
4. x ⊙ σ(1) ⪯ σ(x).
5. If I is a lower set of A, then σ(x) ⊆ I holds for any x ∈ I.
6. Let 1 ∈ σ(1). Then, x ∈ σ(x).

Proof. (1) Taking x = y = 0 in Equation (3), we obtain σ(0) = σ(0 ⊙ 0) = (σ(0)⊙ 0) ∨
(0 ⊙ σ(0)) = {0}.

(2) Since x ⊙ x∗ = 0, we know that {0} = σ(0) = σ(x ⊙ x∗) = (σ(x)⊙ x∗) ∨ (x ⊙
σ(x∗)) by (1). So σ(x)⊙ x∗ = {0} and we obtain σ(x) ⪯ {x}.

(3) By Lemma 6 (3), we have σ(x)⊙ σ(y) ⊆ (σ(x)⊙ σ(y)) ∨ (σ(x)⊙ σ(y)). Moreover,
σ(x)⊙ σ(y) ⪯ σ(x)⊙ y and σ(x)⊙ σ(y) ⪯ x ⊙ σ(y) by (2) and Lemma 7 (1). Thus,

σ(x)⊙ σ(y) ⊆ (σ(x)⊙ σ(y)) ∨ (σ(x)⊙ σ(y)) ⪯ (σ(x)⊙ y) ∨ (x ⊙ σ(y)) = σ(x ⊙ y)

by Lemma 6 (2). Moreover, by Lemma 7 (1) and Lemma 6 (2) we have

σ(x ⊙ y) = (σ(x)⊙ y) ∨ (x ⊙ σ(y)) ⪯ σ(x) ∨ σ(y).

(4) Since x = 1⊙ x, it follows that σ(x) = σ(1⊙ x) = σ(x)∨ (x⊙ σ(1)) by Equation (3).
Then, we can obtain x ⊙ σ(1) ⪯ σ(x) by Lemma 6 (6).

(5) For any x ∈ I, we know σ(x) ⪯ {x} by (2). It induces that y ≤ x holds for any
y ∈ σ(x). Then, y ∈ I since I is a lower set. Thus, σ(x) ⊆ I.

(6) Since 1 ∈ σ(1), there must exist y ∈ σ(x) such that x = x ⊙ 1 ≤ y by (4). Moreover,
by (2) we know y ≤ x always holds for y. Hence, we obtain x = y and x ∈ σ(x).

Now, let us explore the relations between (⊙,∨)-derivation d and (⊙,∨)-multiderivation
σ on A.

On the one hand, given an (⊙,∨)-derivation d on A, how can we construct an (⊙,∨)-
multiderivation on A? We get started with a direct construction. Assume d ∈ Der(A).
Define a multifunction α : A → ∆(A) as follows:

α(x) = {d(x)} for any x ∈ A.
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Then, α ∈ MD(A).

Proposition 5. If A is an MV-algebra and d ∈ Der(A), define a multifunction β : A → ∆(A)
on A as follows

β(x) := {0, d(x)}.

Then, β ∈ MD(A) iff d(x) ⊙ y = x ⊙ d(y) holds for any x, y ∈ A with d(x) ⊙ y > 0 and
x ⊙ d(y) > 0.

Proof. Assuming β ∈ MD(A), it follows that

{0, d(x ⊙ y)} = β(x ⊙ y)

= (β(x)⊙ y) ∨ (x ⊙ β(y))

= ({0, d(x)} ⊙ y) ∨ (x ⊙ {0, d(y)})
= {0, d(x)⊙ y} ∨ {0, x ⊙ d(y)}
= {0, d(x)⊙ y, x ⊙ d(y), d(x ⊙ y)}

for any x, y ∈ A. From the chain of equalities, we know that d(x)⊙ y, x ⊙ d(y) ∈ {0, d(x ⊙
y)}. If both d(x)⊙ y > 0 and x ⊙ d(y) > 0, then d(x)⊙ y = d(x ⊙ y) = x ⊙ d(y).

Conversely, let x, y ∈ A.
Then,

β(x ⊙ y) = {0, d(x ⊙ y)}

and
(β(x)⊙ y) ∨ (x ⊙ β(y)) = {0, d(x)⊙ y, x ⊙ d(y), d(x ⊙ y)}.

There are only two cases:
If d(x)⊙ y = 0 or x ⊙ d(y) = 0, without loss of generality, assume that d(x)⊙ y = 0.

Then,
d(x ⊙ y) = 0 ∨ (x ⊙ d(y)) = x ⊙ d(y).

Thus, (β(x)⊙ y) ∨ (x ⊙ β(y)) = {0, d(x ⊙ y)} = β(x ⊙ y).
If d(x)⊙ y = x ⊙ d(y), then

d(x ⊙ y) = d(x)⊙ y = x ⊙ d(y).

Thus, (β(x)⊙ y) ∨ (x ⊙ β(y)) = {0, d(x ⊙ y)} = β(x ⊙ y).
Consequently, we infer β ∈ MD(A).

Corollary 1. If A is an MV-algebra, and a ∈ A, a multifunction βa : A → ∆(A) on A is defined
as follows

βa(x) := {0, da(x)}.

Then βa ∈ MD(A).

Proof. If d = da in Proposition 5, then for any x, y ∈ A, we know d(x)⊙ y = a ⊙ x ⊙ y =
x ⊙ d(y). Hence, we infer that βa ∈ MD(A) by Proposition 5.

Remark 6. The conclusion is not necessarily true for general (⊙,∨)-derivations. For example,

d =

(
0 1

3
2
3 1

0 1
3

2
3

2
3

)
is an (⊙,∨)-derivation on L4. But β( 2

3 ⊙ 1) = {0, 2
3} ̸= {0, 1

3 , 2
3} =

{0, 2
3} ∨ {0, 1

3} = ({0, 2
3} ⊙ 1) ∨ ( 2

3 ⊙ {0, 2
3}) = (β( 2

3 )⊙ 1) ∨ ( 2
3 ⊙ β(1)).

Proposition 6. Let A be an MV-algebra and d ∈ Der(A). Define a multifunction γ : A → ∆(A)
on A as follows

γ(x) := [0, d(x)].
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Then γ ∈ MD(A).

Proof. Since d ∈ Der(A), we obtain γ(x ⊙ y) = [0, d(x ⊙ y)] = [0, (d(x)⊙ y) ∨ (x ⊙ d(y))].
Moreover, we have

(γ(x)⊙ y) ∨ (x ⊙ γ(y)) = ([0, d(x)]⊙ y) ∨ (x ⊙ [0, d(y)]) (Definition 3)

= [0, d(x)⊙ y] ∨ [0, x ⊙ d(y)] (Lemma 5 (3))

= [0, (d(x)⊙ y) ∨ (x ⊙ d(y))]. (Lemma 5 (4))

Hence, we conclude that γ ∈ MD(A).

On the other hand, if there is a given (⊙,∨)-multiderivation σ on A, then we can
construct a corresponding (⊙,∨)-derivation d from σ. We need the following lemma
to prepare.

Lemma 9. If A is an MV-algebra, and M, N ∈ ∆(A), if both sup(M) and sup(N) exist, then

1. sup(M ⊙ N) exists and sup(M ⊙ N) = sup(M)⊙ sup(N).
2. sup(M ∨ N) exists and sup(M ∨ N) = sup(M) ∨ sup(N).

Proof. Denote m0 = sup(M) and n0 = sup(N).
(1) Firstly, we prove that m0 ⊙ n0 is an upper bound of M ⊙ N. For any m ∈ M and

n ∈ N, we immediately have m ⊙ n ≤ m0 ⊙ n0 by Lemma 1 (4). Hence, it is enough to show
that m0 ⊙ n0 is the least upper bound. Assume that m ⊙ n ≤ x for all m ∈ M, n ∈ N. It tells
us that m ≤ n∗ ⊕ x and so m0 ≤ n∗ ⊕ x by Lemma 1 (8) and the definition of least upper
bound. Then, we have m0 ⊙ n ≤ x. Similarly, we obtain n ≤ m∗

0 ⊕ x and n0 ≤ m∗
0 ⊕ x.

Thus, we can prove that m0 ⊙ n0 ≤ x. Finally, sup(M ⊙ N) = sup(M)⊙ sup(N) holds.
(2) For any m ∈ M and n ∈ N, we have m ≤ m0 and n ≤ n0. So, m ∨ n ≤ m0 ∨ n0

and sup(M ∨ N) ≤ sup(M) ∨ sup(N). Conversely, since M ∨ N ⪰ M, N, it implies that
sup(M ∨ N) ≥ sup(M), sup(N) and thus sup(M ∨ N) ≥ sup(M) ∨ sup(N). Therefore,
sup(M ∨ N) = sup(M) ∨ sup(N).

Proposition 7. If A is an MV-algebra, σ ∈ MD(A), and sup(σ(x)) exists for any x ∈ A, define
sup σ : A → A by (sup σ)(x) = sup(σ(x)). Then, sup σ ∈ Der(A).

Proof. For any x, y ∈ A, we have

(sup σ)(x ⊙ y) = sup(σ(x ⊙ y)) (Definition of sup σ)

= sup((σ(x)⊙ y) ∨ (x ⊙ σ(y))) (Equation (3))

= sup(σ(x)⊙ y) ∨ sup(x ⊙ σ(y)) (Lemma 9 (2))

= (sup(σ(x))⊙ sup{y}) ∨ (sup{x} ⊙ sup(σ(y))) (Lemma 9 (1))

= ((sup σ)(x)⊙ y) ∨ (x ⊙ (sup σ)(y)). (Definition of sup σ)

Hence, sup σ ∈ Der(A).

Remark 7. (1) If MV-algebra A is complete, then sup σ is always an (⊙,∨)-derivation on A for
an arbitrary (⊙,∨)-multiderivation σ on A.

(2) If σ ∈ MD(A) and the image σ(x) is finite for any x ∈ A, then sup σ is always an
(⊙,∨)-derivation on A.

Next, we construct (⊙,∨)-multiderivations on subalgebras and direct products of
MV-algebras from a given (⊙,∨)-multiderivation.

Proposition 8. Let A be an MV-algebra and σ ∈ MD(A). If S is a subalgebra of A and σ(x) ⊆ S
for any x ∈ S, then σ|S ∈ MD(S).
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Proof. For any x, y ∈ S, we know that σ(x), σ(y) ⊆ S and so σ(x)⊙ y, x ⊙ σ(y) ⊆ S. Then,

σ|S(x ⊙ y) = (σ(x)⊙ y) ∨ (x ⊙ σ(y)) = (σ|S(x)⊙ y) ∨ (x ⊙ σ|S(y)) ⊆ S ∨ S = S

by Lemma 6 (3). Thus, σ|S ∈ MD(S).

Definition 5. If Ω is a nonempty set, for each i ∈ Ω, let σi be a multifunction on Ai. The
direct product of {σi}i∈Ω ∏i∈Ω σi : ∏i∈Ω Ai → ∆(∏i∈Ω Ai) is defined by(

∏
i∈Ω

σi

)
(g) = ∏

i∈Ω
σi(g(i)) = {(xi)i∈Ω | xi ∈ σi(g(i))}

for all g ∈ ∏i∈Ω Ai.

Lemma 10. Let Ω be a nonempty set, {Ai}i∈Ω be a family of MV-algebras, and Mi, Ni ∈ ∆(Ai).
Then, ∏i∈Ω(Mi ∨ Ni) = ∏i∈Ω Mi ∨ ∏i∈Ω Ni.

Proof. We first show that ∏i∈Ω(Mi ∨ Ni) ⊆ ∏i∈Ω Mi ∨ ∏i∈Ω Ni. For any x ∈ ∏i∈Ω(Mi ∨
Ni), there are mi ∈ Mi, ni ∈ Ni for any i ∈ Ω such that x = (mi ∨ ni)i∈Ω. Denote
m = (mi)i∈Ω, n = (ni)i∈Ω, we have x = (mi ∨ ni)i∈Ω = (mi)i∈Ω ∨ (ni)i∈Ω = m ∨ n ∈
∏i∈Ω Mi ∨ ∏i∈Ω Ni. And vice versa. Therefore, ∏i∈Ω(Mi ∨ Ni) = ∏i∈Ω Mi ∨ ∏i∈Ω Ni.

Proposition 9. Assume that Ω is a nonempty set and {Ai}i∈Ω is a family of MV-algebras. Then,
σi ∈ MD(Ai) for any i ∈ Ω iff ∏i∈Ω σi ∈ MD(∏i∈Ω Ai).

Proof. Denote A = ∏i∈Ω Ai and σ = ∏i∈Ω σi. For all x = (xi)i∈Ω, y = (yi)i∈Ω ∈ A,
we have

σ(x ⊙ y) = σ((xi)i∈Ω ⊙ (yi)i∈Ω) = ∏
i∈Ω

σi(xi ⊙ yi),

(σ(x)⊙ y) ∨ (x ⊙ σ(y)) =

(
∏
i∈Ω

σi(xi)⊙ (yi)i∈Ω

)
∨
(
(xi)i∈Ω ⊙ ∏

i∈Ω
σi(yi)

)
= ∏

i∈Ω
(σi(xi)⊙ yi) ∨ ∏

i∈Ω
(xi ⊙ σi(yi))

= ∏
i∈Ω

((σi(xi)⊙ yi) ∨ (xi ⊙ σi(yi))). (Lemma 10)

We can immediately obtain σi ∈ MD(Ai) for all i ∈ Ω iff σ(x ⊙ y) = (σ(x)⊙ y)∨ (x ⊙
σ(y)) by Equation (3).

Finally, we investigate the condition when an (⊙,∨)-multiderivation σ is isotone.

Definition 6. If A is an MV-algebra, and σ ∈ MD(A), we say σ is isotone if σ(x) ⪯ σ(y)
whenever x ≤ y.

Proposition 10. If A is an MV-algebra, and σ ∈ MD(A), then σ is isotone iff σ(x ∧ y) ⪯
σ(x) ∧ y for all x, y ∈ A.

Proof. Assume σ is isotone, then,

σ(x ∧ y) ⊆ σ(x ∧ y) ∧ σ(x ∧ y) ⪯ σ(x) ∧ σ(y) ⪯ σ(x) ∧ y

by Lemma 6 (3) and (2). Conversely, assume that σ(x ∧ y) ⪯ σ(y) ∧ x for all x, y ∈ A. Let
x, y ∈ A with x ≤ y. Then, σ(x) = σ(y ∧ x) ⪯ σ(y) ∧ x. Thus, for every a ∈ σ(x) there is
b ∈ σ(y) such that a ≤ b ∧ x. Hence, a ≤ b and so σ(x) ⪯ σ(y).
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Corollary 2. If A is an MV-algebra, and S ⊆ A is a subalgebra of A, then the principal (⊙,∨)-
multiderivation σS is isotone.

Proof. Method 1: Let x, y ∈ A and x ≤ y. For any s ∈ S, Lemma 1 (4) implies x ⊙ s ≤ y ⊙ s.
Thus, σS(x) ⪯ σS(y).

Method 2: It is enough to verify that σS(x ∧ y) ⪯ σS(x) ∧ y for all x, y ∈ A by
Proposition 10. For any s ∈ S, Lemma 1 (6) implies

(x ∧ y)⊙ s = (x ⊙ s) ∧ (y ⊙ s) ≤ (x ⊙ s) ∧ y.

Thus, σS(x ∧ y) = (x ∧ y)⊙ S ⪯ (x ⊙ S) ∧ y = σS(x) ∧ y.

4. The Order Structure of (⊙,∨)-Multiderivations on a Finite MV-Chain

Let MF(A) be the set of multifunctions on an MV-algebra A. Define ≼ on MF(A) by:

(∀ σ, σ′ ∈ MF(A)) σ ≼ σ′ if σ(x) ⪯ σ′(x), ∀x ∈ A.

Then, ≼ is a preorder on MF(A) and 0MF(A) ≼ σ ≼ 1MF(A) for any σ ∈ MF(A), where
0MF(A) and 1MF(A) are defined by 0MF(A)(x) := {0} and 1MF(A)(x) := {1} for any x ∈ A,
respectively. For any σ ∈ MD(A), we have 0MF(A) ≼ σ ≼ IdMF(A), where IdMF(A)(x) =
{x}, and it is plain that {0} ⪯ σ(x) ⪯ {x}, ∀x ∈ A.

For σ, σ′ ∈ MF(A), set (
σ ⊠ σ′)(x) := σ(x)⊠ σ′(x), (4)

for any x ∈ A and ⊠ ∈ {∨,∧,∪,∩}.

Remark 8.

1. Note that σ(x) ∨ σ′(x) is meant in the sense of Definition 3, rather than the supremum of
σ(x) and σ′(x).

2. Note that σ ∨ σ′ is an upper bound of σ and σ′ by Lemma 6 (1) but is not necessarily a
least upper bound. For example, define σ ∈ MF(B4) by σ(a) = σ(b) = {a, b}, σ(0) =
{0}, σ(1) = {1}. Then,

(σ ∨ σ)(a) = (σ ∨ σ)(b) = {a, b, 1}.

It is clear that both σ and σ ∨ σ are upper bounds of σ and σ, but σ ≺ σ ∨ σ. In a word, σ ∨ σ
is not a least upper bound of σ and σ.
More generally, let A be an MV-algebra which is not an MV-chain with two incomparable
elements a, b. Define σ ∈ MF(A) as σ(a) = σ(b) = {a, b}, σ(x) = {x} for x ∈ A\{a, b}.
σ ∨ σ is not a least upper bound of σ and σ.

In the sense of category theory, a preordered set P is called complete [27] (Section 8.5)
if for every subset S of P both sup S and inf S exist (in P). Note that sup S and inf S need
not be unique. For example, let P = {a, b} and define a preorder ⪯ as follows: a ⪯ b, b ⪯ a.
Take S = {a, b}. Then, both a and b are sup S, also inf S. Therefore, we use “a” rather than
“the” concerning sup S and inf S in the following.

Let {σi}i∈Ω be a nonempty family of multifunctions on an MV-algebra A. Define a
multifunction

⋃
i∈Ω σi on A, by (⋃

i∈Ω

σi

)
(x) :=

⋃
i∈Ω

σi(x),

for any x ∈ A.
Analogue to [28] (Theorem I.4.2), we have the following.
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Lemma 11. If A is an MV-algebra, then (MF(A),≼, 0MF(A), 1MF(A)) is a complete bounded
preordered set, where

⋃
i∈Ω σi is a least upper bound of {σi}i∈Ω, and σ ∧ σ′ is a greatest lower

bound of σ and σ′, respectively.

Proof. Note that 0MF(A) ≼ σ ≼ 1MF(A) for any σ ∈ MF(A).
Let {σi}i∈Ω be a nonempty family of MF(A). Then, σi ≼

⋃
i∈Ω σi. Now we will prove

that
⋃

i∈Ω σi is a least upper bound of {σi}i∈Ω. Assume that σi ≼ η for every i ∈ Ω. For any
y ∈ (

⋃
i∈Ω σi)(x) where x ∈ A, there exists k ∈ Ω such that y ∈ σk(x). Since σk(x) ⪯ η(x),

there is z ∈ η(x) such that y ≤ z, which shows
⋃

i∈Ω σi ≼ η. Therefore,
⋃

i∈Ω σi is a least
upper bound of {σi}i∈Ω.

Let
Xℓ = {λ ∈ MF(A) | λ ≼ σi, ∀i ∈ Ω}

be the set of lower bounds of {σi}i∈Ω in MF(A). Next, we verify that
⋃

λ∈Xℓ λ is indeed
a greatest lower bound of {σi}i∈Ω. For any i ∈ Ω and λ ∈ Xℓ, we have λ ≼ σi. Thus,⋃

λ∈Xℓ λ ≼ σi and
⋃

λ∈Xℓ λ ∈ Xℓ. Hence,
⋃

λ∈Xℓ λ is a greatest lower bound of {σi}i∈Ω.
Therefore, MF(A) is complete.

For any σ, σ′ ∈ MF(A), since σ ∧ σ′ ≼ σ, σ′, it follows that σ ∧ σ′ is a lower bound of σ
and σ′. To verify that σ ∧ σ′ is a greatest lower bound, let η ≼ σ, σ′. Then, for any y ∈ η(x)
(x ∈ A), there are z ∈ σ(x) and w ∈ σ′(x) such that y ≤ z and y ≤ w by η(x) ⪯ σ(x), σ′(x).
Hence,

y ≤ z ∧ w ∈ σ(x) ∧ σ′(x).

Therefore, η(x) ⪯ σ(x) ∧ σ′(x). Thus, η ≼ σ ∧ σ′.

As already mentioned, ⪯ is not always a partial order on ∆(A), where M ⪯ N iff
for each m ∈ M there exists n ∈ N such that m ≤ n. The binary relation ∼ on ∆(A)
defined by M ∼ N iff M ⪯ N and N ⪯ M is an equivalence relation. Given M ∈ ∆(A),
the equivalence class of M with respect to ∼ will be denoted by M. If M = {x} is a
singleton, then we abbreviate {x} by x. Thus, we can obtain a partial order ⪯ on ∆(A)/∼
defined by M ⪯ N iff M ⪯ N. We claim that ⪯ is well defined. In fact, if M ∼ M′, N ∼ N′

and M ⪯ N, then M′ ⪯ M ⪯ N ⪯ N′.
Recall that for a subset M of A, the lower set generated by M [29] is the set

↓M = {x ∈ A | there exists m ∈ M such that x ≤ m}.

Lemma 12. Let M, N ∈ ∆(A). Then, M = N iff ↓M = ↓N.

Proof. It is sufficient to show that M ⪯ N iff ↓M ⊆ ↓N.
Let M ⪯ N. For every x ∈ ↓M, there is m ∈ M such that x ≤ m. Then, M ⪯ N gives

m ≤ n for some n ∈ N. Hence, x ≤ n and x ∈ ↓N. Therefore, ↓M ⊆ ↓N.
Conversely, assume that ↓M ⊆ ↓N. For any m ∈ M, we have m ∈ ↓M ⊆ ↓N. Thus,

there exists n ∈ N such that m ≤ n. Hence, M ⪯ N.
Similarly, N ⪯ M iff ↓N ⊆ ↓M.

Corollary 3. In general, let A be an MV-algebra, M ∈ ∆(A), and a ∈ A. Then, M = a iff sup M
exists and sup M = a ∈ M.

Assume M = a. Then a is an upper bound of M since M ⪯ {a}. To prove a is a least upper
bound of M, let b be an upper bound of M. Since {a} ⪯ M, there exists m ∈ M such that a ≤ m.
Hence, a ≤ m ≤ b, which shows sup M = a ∈ M.

Conversely, let sup M = a ∈ M. It suffices to verify that ↓M = ↓a by Lemma 12. If x ∈ ↓M,
then there is m ∈ M such that x ≤ m ≤ a. It follows that x ∈ ↓a and ↓M ⊆ ↓a. If x ∈ ↓a, then
x ≤ a ∈ M. Thus, x ∈ ↓M and ↓a ⊆ ↓M. Therefore, ↓M = ↓a.

Corollary 4. Let Ln with n ≥ 2 and M ∈ ∆(Ln). Then, M = sup M.
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Proof. Observe that sup M is exactly i
n−1 for a certain 0 ≤ i ≤ n − 1. It suffices to verify

that ↓M = ↓ sup M by Lemma 12. Suppose x ∈ ↓M, there is m ∈ M such that x ≤ m.
Since m ≤ sup M, it follows that x ≤ sup M. Hence, x ∈ ↓ sup M. Conversely, assume
x ∈ ↓ sup M, which means x ≤ sup M = i

n−1 . Since sup M ∈ M, it follows that x ∈ ↓M.
Therefore, ↓M = ↓ sup M and M = sup M.

Note that the family of all lower sets of a poset A is a complete lattice by [30] (Example
O-2.8). We will prove that the family of all nonempty lower sets of A is also a complete
lattice, denoted by (L0(A),⊆).

Corollary 5. Let A be an MV-algebra, then ∆(A)/∼ is isomorphic to the complete lattice
(L0(A),⊆).

Proof. Since A has a least element 0, the intersection of a family of nonempty lower sets of
A is still a nonempty lower set. Therefore, L0(A) is a complete lattice.

Define φ : ∆(A)/∼ → L0(A) by M 7→ ↓M. Lemma 12 shows that φ is well defined
and injective, and φ is also surjective since M = ↓M if M ∈ L0(A). As discussed in the
proof of Lemma 12, M ⪯ N iff ↓M ⊆ ↓N for all M, N ∈ ∆(A), which gives both φ and φ−1

are order preserving. Hence, φ is an isomorphism.

Next, we study the order structure on ∆(Ln)/∼. First, we need

Lemma 13. Let A be an MV-chain, M, N ∈ ∆(A), and sup M, sup N exist.

1. If M ⪯ N, then sup M ≤ sup N.
2. If sup M < sup N, then M ⪯ N.
3. M = N iff the following conditions hold:

(a) sup M = sup N.
(b) sup M ∈ M ⇔ sup N ∈ N.

In particular, if A is a finite MV-chain, then M = N iff (a) holds.

Proof. (1) Suppose M ⪯ N, then M ⪯ N. For any m ∈ M there is n ∈ N such that
m ≤ n ≤ sup N. According to the definition of sup M, we have sup M ≤ sup N.

(2) Let sup M < sup N. Assume on the contrary M ⪯̸ N. Then, there is m ∈ M
such that m > n for any n ∈ N. The definition of sup N implies m ≥ sup N. Thus,
sup N ≤ m ≤ sup M, which contradicts the fact that sup M < sup N.

(3) Assume that M = N. (a) follows from (1).
To prove that sup M ∈ M ⇔ sup N ∈ N, we assume sup M ∈ M. Then, there exists

n0 ∈ N such that sup M ≤ n0 by M ⪯ N. Since N ⪯ M, we have n0 ≤ sup M. Hence,
n0 = sup M. Therefore, sup N = sup M = n0 ∈ N by (a). Symmetrically, sup N ∈ N ⇒
sup M ∈ M.

Conversely, assume that (a) and (b) hold, it suffices to show that ↓M = ↓N by
Lemma 12. Assume that ↓M ̸= ↓N; without loss of generality, there is y ∈ ↓M but y /∈ ↓N.
That is to say, for arbitrary n ∈ N we have n < y. So, sup N ∈ N implies sup N < y. Since
y ∈ ↓M, there is m ∈ M such that y ≤ m. It follows sup N < y ≤ m < sup M by the
definition of sup N, which is contrary to sup M = sup N. Thus, M = N.

Assume A is a finite MV-chain, and (b) always holds. Hence, M = N iff (a) holds.

Remark 9. Note that sup M = sup N may not imply M ⪯ N. For example, let A = [0, 1] be
the standard MV-algebra and 1

2 ∈ A. Define M = ↓ 1
2 and N = {a ∈ A | 0 ≤ a < 1

2}. Then,
sup M = sup N = 1

2 , but M ⪯̸ N, since 1
2 ∈ M, there is no y ∈ N such that 1

2 ≤ y.

Example 4. Consider the MV-chain Ln with n ≥ 2. Then, ∆(Ln)/∼ is order isomorphic to Ln.
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Proof. Define f : Ln → ∆(Ln)/∼ by f (x) = x for any x ∈ Ln. If x = y, then x = sup{x} =
sup{y} = y by Lemma 13 (3). Thus, f is injective. To prove f is surjective, assume
M ∈ ∆(Ln)/∼, then f (sup M) = sup M = M by Corollary 4.

It is enough to verify that f and f−1 are order preserving. If x ≤ y, then f (x) =
x ⪯ y = f (y) since {x} ⪯ {y} and Corollary 4. Conversely, suppose x ⪯ y, we have
x = sup{x} ≤ sup{y} = y by Lemma 13 (1). Therefore, f is an isomorphism.

We next investigate the preorder on the set of (⊙,∨)-multiderivations.
Similar to ∆(A), we can define an equivalence relation on MD(A) by σ ∼ σ′ iff σ ≼ σ′

and σ′ ≼ σ, and define σ ≼ σ′ in MD(A)/∼ iff σ ≼ σ′. Observe that ≼ in MD(A)/∼ is a
well-defined partial order by the hereditary order of ⪯. Clearly, (MD(A)/∼,≼) is a poset.
By the definition of ⪯, we know σ = σ′ iff σ(x) = σ′(x) for any x ∈ A.

For any σ ∈ MD(A), ↓σ : A → ∆(A) is defined as (↓σ)(x) = ↓σ(x). We claim that
σ = ↓σ. In fact, σ ≼ ↓σ is trivial. For any y ∈ ↓σ(x), there exists z ∈ σ(x) such that y ≤ z
by the definition of ↓σ(x). Therefore, ↓σ(x) ⪯ σ(x) for any x ∈ A and ↓σ ≼ σ.

Lemma 14. If A is an MV-algebra, then:

1. σ ∨ σ′ ∈ MD(A) for all σ, σ′ ∈ MD(A).
2. ↓σ ∈ MD(A) for any σ ∈ MD(A).

Proof. (1) Let σ, σ′ ∈ MD(A) and x, y ∈ A. Then, we have

(σ ∨ σ′)(x ⊙ y) = σ(x ⊙ y) ∨ σ′(x ⊙ y) (Definition of σ ∨ σ′)

= ((σ(x)⊙ y) ∨ (x ⊙ σ(y))) ∨ ((σ′(x)⊙ y) ∨ (x ⊙ σ′(y))) (σ, σ′ ∈ MD(A))

= ((σ(x)⊙ y) ∨ (σ′(x)⊙ y)) ∨ ((x ⊙ σ(y)) ∨ (x ⊙ σ′(y))) (Lemma 6 (4) and (5))

= ((σ(x) ∨ σ′(x))⊙ y) ∨ (x ⊙ (σ(y) ∨ σ′(y))) (Lemma 7 (2))

= ((σ ∨ σ′)(x)⊙ y) ∨ (x ⊙ (σ ∨ σ′)(y)) (Definition of σ ∨ σ′)

and so σ ∨ σ′ ∈ MD(A).
(2) Assume σ ∈ MD(A). Let a ∈ (↓σ)(x ⊙ y) = ↓σ(x ⊙ y) = ↓((σ(x) ⊙ y) ∨ (x ⊙

σ(y))). There exist x1 ∈ σ(x) and y1 ∈ σ(y) such that a ≤ (x1 ⊙ y)∨ (x⊙ y1). It follows that

a = a ∧ ((x1 ⊙ y) ∨ (x ⊙ y1))

= (a ∧ (x1 ⊙ y)) ∨ (a ∧ (x ⊙ y1)) (Distributivity of A)

= (b ⊙ y) ∨ (x ⊙ c), (Lemma 5 (1))

where b ≤ x1 and c ≤ y1. Hence, a ∈ ((↓σ)(x)⊙ y) ∨ (x ⊙ (↓σ)(y)).
Conversely, let a ∈ ((↓σ)(x)⊙ y)∨ (x ⊙ (↓σ)(y)). There exist x1 ∈ σ(x) and y1 ∈ σ(y)

such that
a = (b ⊙ y) ∨ (x ⊙ c) ≤ (x1 ⊙ y) ∨ (x ⊙ y1),

where b ≤ x1 and c ≤ y1. Thus, a ∈ (↓σ)(x ⊙ y).
Therefore, ↓σ ∈ MD(A).

Remark 10. When A is an MV-chain, σ ∨ σ′ ∈ MD(A) is a least upper bound of σ and σ′ in
MD(A). We know σ ∪ σ′ is a least upper bound of σ and σ′ in MF(A). Note that MD(A) ⊆
MF(A) and the preordered on MF(A). It suffices to verify that σ ∨ σ′ ∼ σ ∪ σ′. For all x ∈ A,
(σ ∪ σ′)(x) ⪯ (σ ∨ σ′)(x) is trivial. For any y ∈ (σ ∨ σ′)(x), there exist z ∈ σ(x) and z′ ∈ σ′(x)
such that y = z ∨ z′. Since A is an MV-chain, y = z or y = z′. Hence, y ∈ (σ ∪ σ′)(x), which
implies (σ∨ σ′)(x) ⪯ (σ∪ σ′)(x). Therefore, (σ∪ σ′)(x) ∼ (σ∨ σ′)(x) for all x ∈ A, and hence,
σ ∨ σ′ ∈ MD(A) is a least upper bound of σ and σ′ in MD(A).

At the end of this section, we characterize the lattice MD(Ln)/∼ (n ≥ 2).
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Theorem 1. If Ln is the n-element MV-chain with n ≥ 2, then the lattices MD(Ln)/∼ and
Der(Ln) are isomorphic.

Proof. Define a map f : MD(Ln)/∼ → Der(Ln) by

f (σ) = sup σ.

By Proposition 7 we know sup σ ∈ Der(Ln). The order ≦ on Der(Ln) is defined as d ≦ d′

iff d(x) ≤ d′(x), ∀x ∈ Ln.
Firstly, we prove that f is well defined. Suppose σ = σ′, that is, σ(x) = σ′(x) for any

x ∈ Ln. We get

(sup σ)(x) = sup(σ(x)) = sup(σ′(x)) = (sup σ′)(x)

for any x ∈ Ln by Lemma 13 (3). Thus, f (σ) = sup(σ) = sup(σ′) = f (σ′).
If f (σ) = f (σ′), that is, sup(σ) = sup(σ′), then sup(σ(x)) = sup(σ′(x)) for any

x ∈ Ln. Lemma 13 (3) implies σ(x) = σ′(x) for any x ∈ Ln and thus σ = σ′. Hence, f is
injective. For any d ∈ Der(Ln), there is γd ∈ MD(Ln) where γd(x) := [0, d(x)] such that

f (γd)(x) = (sup γd)(x) = sup(γd(x)) = sup[0, d(x)] = d(x)

for all x ∈ Ln by Propositions 6 and 7. Thus, f (γd) = d and f is surjective.
To prove that f is an order-isomorphism, let σ ≼ σ′, that is, for any x ∈ Ln, σ(x) ⪯

σ′(x). Corollary 4 implies that σ(x) = sup(σ(x)) for any x ∈ Ln. It follows that

(sup σ)(x) = sup(σ(x)) ⪯ sup(σ′(x)) = (sup σ′)(x)

and thus (sup σ)(x) ≤ (sup σ′)(x) for any x ∈ Ln since (sup σ)(x) is a singleton. Hence,
f (σ) = sup σ ≦ sup σ′ = f (σ′). Conversely, assume d, d′ ∈ Der(Ln) and d ≦ d′, which
means d(x) ≤ d′(x) for all x ∈ Ln. Now the construction in Proposition 6 gives γd = f−1 :
A → ∆(A), where γd(x) = [0, d(x)]. Furthermore, we have

γd(x) = [0, d(x)] ⪯ [0, d′(x)] = γd′(x)

for any x ∈ Ln by the definition of ⪯. Thus, γd ≼ γd′ and f−1(d) = γd ≼ γd′ = f−1(d′).

Proposition 11. If Ln is the n-element MV-chain with n ≥ 2, then the lattices ∆(Ln × L2)/∼
and Der(Ln+1) are isomorphic.

Proof. Recall that Der(Ln+1) is isomorphic to the lattice (A(Ln+1),≦) where A(Ln+1) =
{(x, y) ∈ Ln+1 × Ln+1 | y ≤ x}\{(0, 0)} [16, Theorem 5.6] and ≦ is defined by: for any
(x1, y1), (x2, y2) ∈ Ln+1 × Ln+1, (x1, y1) ≦ (x2, y2) iff x1 ≤ x2 and y1 ≤ y2. Moreover,
∆(Ln × L2)/∼ is isomorphic to the lattice L0(Ln × L2) by Corollary 5.

Define a map f : A(Ln+1) → L0(Ln × L2) by:

f
(

k
n , ℓ

n

)
=

{
↓( k−1

n−1 , 0), if ℓ = 0;
↓( k−1

n−1 , 0) ∪ ↓( ℓ−1
n−1 , 1), if ℓ > 0,

where 0 ≤ k, ℓ ≤ n − 1. It is easy to see that f is injective. Now we show that f is
surjective. For any M ∈ L0(Ln × L2), we claim M has at most two maximal elements.
By way of contradiction, assume M has three different maximal elements denoted by
(an, bn), n = 1, 2, 3; then, there exist 1 ≤ i < j ≤ 3 such that bi = bj since bn ∈ L2. Thus,
(ai, bi) and (aj, bj) are comparable, which contradicts the fact that (ai, bi) and (aj, bj) are
different maximal elements. If M has only one maximal element denoted by ( k

n−1 , a), then
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M = ↓( k
n−1 , a) =

 f
(

k+1
n , 0

)
, if a = 0;

f
(

k+1
n , k+1

n

)
, if a = 1.

If M has exactly two maximal elements denoted by ( k
n−1 , 0) and ( ℓ

n−1 , 1), then

M = ↓( k
n−1 , 0) ∪ ↓( ℓ

n−1 , 1) = f
(

k+1
n , ℓ+1

n

)
.

Therefore, f is surjective.
Since a bijection with supremum preserving is an order isomorphism, it suffices to

verify that f preserves the supremum, that is,

f
(
( k

n , ℓ
n ) ∨ ( p

n , q
n )
)
= f

(
k
n , ℓ

n

)
∪ f
( p

n , q
n
)

for all ( k
n , ℓ

n ), (
p
n , q

n ) ∈ A(Ln+1).
Case 1. If ℓ = q = 0, then

f
(

k
n , 0
)
∪ f
( p

n , 0
)
= ↓( k−1

n−1 , 0) ∪ ↓( p−1
n−1 , 0)

= ↓(max{ k−1
n−1 , p−1

n−1}, 0)

= ↓(max{k,p}−1
n−1 , 0)

= f
(
( k

n , 0) ∨ ( p
n , 0)

)
.

Case 2. If ℓ = 0, q > 0, then

f
(

k
n , 0
)
∪ f
( p

n , q
n
)
= ↓( k−1

n−1 , 0) ∪
(
↓( p−1

n−1 , 0) ∪ ↓( q−1
n−1 , 1)

)
= ↓(max{k,p}−1

n−1 , 0) ∪ ↓( q−1
n−1 , 1)

= f
(
( k

n , 0) ∨ ( p
n , q

n )
)

.

The case ℓ > 0, q = 0 is similar.
Case 3. If ℓ > 0, q > 0, then

f
(

k
n , ℓ

n

)
∪ f
( p

n , q
n
)
=
(
↓( k−1

n−1 , 0) ∪ ↓( ℓ−1
n−1 , 1)

)
∪
(
↓( p−1

n−1 , 0) ∪ ↓( q−1
n−1 , 1)

)
= ↓(max{k,p}−1

n−1 , 0) ∪ ↓(max{ℓ,q}−1
n−1 , 1)

= f
(

max{k,p}
n , max{ℓ,q}

n

)
= f

(
( k

n , ℓ
n ) ∨ ( p

n , q
n )
)

.

Now we verify that f is an isomorphism of posets and hence an isomorphism of
lattices. For all x, y ∈ A(Ln+1),

x ≦ y ⇔ x ∨ y = y ⇔ f (x) ∪ f (y) = f (x ∨ y) = f (y) ⇔ f (x) ⊆ f (y).

Hence, f is an isomorphism of lattices.
Therefore, A(Ln+1) ∼= L0(Ln × L2) and then ∆(Ln × L2)/∼ ∼= Der(Ln+1).

Corollary 6. If Ln is the n-element MV-chain with n ≥ 2, then MD(Ln+1)/∼ is isomorphic to
the lattice ∆(Ln × L2)/∼.

Proof. It follows from Theorem 1 and Proposition 11.
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Note that according to the isomorphism in Theorem 1, |MD(Ln)/∼ | = |Der(Ln) | =
(n−1)(n+2)

2 by [16] (Theorem 3.11). However, the following Example 5 shows that the
cardinalities of different equivalence classes with respect to the equivalence relation ∼ are
different in general.

Example 5. Let n = 2 and define δ ∈ MF(L2) by δ(0) = {0}, δ(1) = {0, 1}. Then, it is easy to
check that

MD(L2) = {0MF(L2)
, IdMF(L2)

, δ},

MD(L2)/∼ = {{0MF(L2)
}, {IdMF(L2)

, δ}}.

It is clear that
∣∣ 0MF(L2)

∣∣ = 1 but
∣∣ IdMF(L2)

∣∣ = 2. Hence, 2 = |MD(L2)/∼ | ∤ |MD(L2) | = 3.

So, the cardinality of MD(Ln) is not easy to deduce from Theorem 1. In the next
section, we will investigate the enumeration of the set of (⊙,∨)-multiderivations on Ln by
constructing a counting principle (Theorem 3).

5. The Enumeration of (⊙,∨)-Multiderivations on a Finite MV-Chain

In this section, we determine the cardinality of MD(Ln). For small values of n, this can
be performed with calculations using Python (see the Appendix A Figure A1) in Table 1:

Table 1. The cardinality of MD(Ln).

n 2 3 4 5 6

|MD(Ln)| 3 16 63 220 723

The result cannot be obtained after n ≥ 6 due to the limitation of computing resources.
But we have shown the following general formula.

Theorem 2. Let n ≥ 2 be a positive integer. Then, |MD(Ln)| =
7 · 3n−1 − 2n+2 + 1

2
.

In order to prove Theorem 2, we need the following Lemmas.

Lemma 15. Assume that A is an MV-chain and σ ∈ MD(A); then, the following results hold:

1. If M ⊆ A, then M = M ∨ M.
2. For any x ∈ A, n ∈ N+, we have σ(xn) = xn−1 ⊙ σ(x), where x0 = 1, xn = x ⊙ x ⊙ · · · ⊙ x︸ ︷︷ ︸

n

.

Proof. (1) It follows immediately from Lemma 6 (3), as M is a sublattice.
(2) We prove σ(xn) = xn−1 ⊙ σ(x) by induction on n. Obviously, σ(x1) = σ(x) =

1 ⊙ σ(x) = x1−1 ⊙ σ(x).
Now, assume that σ(xn) = xn−1 ⊙ σ(x). By Equation (3), we have

σ(xn+1) = σ(xn ⊙ x)

= (σ(xn)⊙ x) ∨ (xn ⊙ σ(x))

= (xn−1 ⊙ σ(x)⊙ x) ∨ (xn ⊙ σ(x))

= xn ⊙ σ(x),

so (2) holds.

Note that an MV-chain can be completely characterized by (1). That is, if A is an
MV-algebra, then A is an MV-chain iff M = M ∨ M for every M ⊆ A. In fact, by way
of contraposition, assume that x, y ∈ A and x, y are incomparable, denote z = x ∨ y. Let
M = {x, y}. Then, z = x ∨ y ∈ M ∨ M but z /∈ M. This leads to a contradiction.
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Let n ∈ N+ and n ≥ 2. In Ln, we know n−m−1
n−1 = ( n−2

n−1)
m for every m ∈ {1, 2, · · · , n− 1}.

So, any x ∈ Ln\{1} has a representation as a power of n−2
n−1 .

Next, we give a counting principle for (⊙,∨)-multiderivations on a finite MV-chain Ln.

Theorem 3. Let σ be a multifunction on Ln and v = n−2
n−1 . Then, σ ∈ MD(Ln) iff σ satisfies the

following conditions:

1. σ(vm) = vm−1 ⊙ σ(v), ∀m ∈ {1, 2, · · · , n − 1}.
2. σ(v) = σ(v) ∨ (v ⊙ σ(1)).
3. σ(v) ⪯ {v}.

Proof. Assume σ ∈ MD(Ln); then, for each m ∈ {1, 2, · · · , n − 1}, we have σ(vm) =
vm−1 ⊙ σ(v) by Lemma 15 (2), and σ(v) = σ(v ⊙ 1) = σ(v) ∨ (v ⊙ σ(1)) by Equation (3).
Thus, σ satisfies (1) and (2). Furthermore, (3) holds by Proposition 4 (2).

Conversely, suppose that σ satisfies (1), (2) and (3). Let x, y ∈ Ln. There are four
cases:

If x = y = 1, then it is easy to see that σ(1 ⊙ 1) = σ(1) = σ(1)∨ σ(1) by Lemma 15 (1).
If x = 1 or y = 1, and x ̸= y. With out loss of generality, suppose that x ̸= 1 and y = 1,

then x = vk for some k ∈ {1, 2, · · · , n − 1}. By (1), we have σ(x ⊙ 1) = σ(x) = σ(vk) =
vk−1 ⊙ σ(v). Also, we have

σ(x) ∨ (x ⊙ σ(1)) = (vk−1 ⊙ σ(v)) ∨ (vk ⊙ σ(1))

= (vk−1 ⊙ σ(v)) ∨ (vk−1 ⊙ (v ⊙ σ(1)))

= vk−1 ⊙ (σ(v) ∨ (v ⊙ σ(1)) (Lemma 7 (2))

= vk−1 ⊙ σ(v). ((2) of Theorem 3)

Hence, σ(x ⊙ 1) = σ(x) = (σ(x)⊙ 1) ∨ (x ⊙ σ(1)).
If x ̸= 1 and y ̸= 1, then assume that x = vk and y = vℓ for some k, ℓ ∈ {1, 2, · · · , n − 1}.

We have
σ(x ⊙ y) = σ(vk ⊙ vℓ) = σ(vk+ℓ)

and

(σ(x)⊙ y) ∨ (x ⊙ σ(y)) = ((vk−1 ⊙ σ(v))⊙ vℓ) ∨ (vk ⊙ (vℓ−1 ⊙ σ(v))) = vk+ℓ−1 ⊙ σ(v)

by Lemma 15 (1). Then, there are three cases:
For k + ℓ < n − 1, by (1) we obtain σ(vk+ℓ) = vk+ℓ−1 ⊙ σ(v).
For k+ ℓ = n− 1, by (3) we have σ(vk+ℓ) = σ(vn−1) = σ(0) ⪯ {0} and so σ(0) = {0}.

And vk+ℓ−1 ⊙ σ(v) = vn−2 ⊙ σ(v) = v∗ ⊙ σ(v) = {0}. Thus, σ(x ⊙ y) = (σ(x)⊙ y) ∨ (x ⊙
σ(y)).

For n − 1 < k + ℓ ≤ 2n − 2, we have σ(vk+ℓ) = σ(0) = {0} = 0 ⊙ σ(v) = vk+ℓ−1 ⊙
σ(v) by (3) and thus Equation (3) holds.

Therefore, we conclude that σ ∈ MD(Ln).

Lemma 16. Let P, Q ∈ ∆(Ln). Then, the following results hold:

1. P ⊆ P ∨ Q iff min Q ≤ min P.
2. P ∨ Q ⊆ P iff [min P, 1] ∩ Q ⊆ P.

Proof. Denote p0 = min P, q0 = min Q.
(1) Assume P ⊆ P ∨ Q, then there exist p ∈ P, q ∈ Q such that p0 = p ∨ q ≥ q. Thus,

q0 ≤ q ≤ p0.
Conversely, suppose q0 ≤ p0, then p = p ∨ q0 for any p ∈ P since p0 ≤ p. Hence,

P ⊆ P ∨ Q.
(2) Assume P ∨ Q ⊆ P; then, for all q ∈ [p0, 1] ∩ Q, we have q = p0 ∨ q ∈ P ∨ Q ⊆ P.

Thus, [p0, 1] ∩ Q ⊆ P.



Axioms 2024, 13, 250 20 of 24

Conversely, assume [p0, 1] ∩ Q ⊆ P and p ∈ P, q ∈ Q. If q ≤ p, then p ∨ q = p ∈ P. If
q > p, then p ∨ q = q ∈ [p0, 1] ∩ Q ⊆ P. In either case, p ∨ q ∈ P and so P ∨ Q ⊆ P.

Lemma 17. Let Q, Q′ ∈ ∆(Ln) and 1 /∈ Q. Denote v = n−2
n−1 . Then, the following results hold:

1. If 0 /∈ Q, then Q = v ⊙ Q′ iff Q′ = Q ⊕ v∗.
2. If 0 ∈ Q, denote Q1 = Q \ {0}. Then, Q = v ⊙ Q′ iff Q′ = {0} ⊔ (Q1 ⊕ v∗), {v∗} ⊔

(Q1 ⊕ v∗) or {0, v∗} ⊔ (Q1 ⊕ v∗).

Proof. (1) Let 0 /∈ Q and Q = v ⊙ Q′. Then, 0 /∈ Q′, otherwise, 0 = v ⊙ 0 ∈ v ⊙ Q′ = Q,
a contradiction. Thus, 0 /∈ Q′, which implies {v∗} ⪯ Q′. Hence, we have

Q′ = Q′ ∨ v∗ = {q′ ∨ v∗ | q′ ∈ Q′}
= {(q′ ⊙ v)⊕ v∗ | q′ ∈ Q′}
= (Q′ ⊙ v)⊕ v∗

= Q ⊕ v∗.

Conversely, assume Q′ = Q ⊕ v∗. Since 1 /∈ Q, we have Q ⪯ {v}. Hence,

Q = Q ∧ v = {q ∧ v | n ∈ Q}
= {v ⊙ (q ⊕ v∗) | n ∈ Q}
= v ⊙ (Q ⊕ v∗)

= v ⊙ Q′.

(2) Assume 0 ∈ Q and Q = v ⊙ Q′; then, 0 = v ⊙ q′ for some q′ ∈ Q′. Thus, 0 ∈ Q′ or
v∗ ∈ Q′. Denote Q′

0 = {0, v∗} ∩ Q′ and Q′
1 = Q′ \ Q′

0. By v⊙ Q′
0 = {0} and {v∗} ⪯ v⊙ Q′

1,
we have

Q1 = Q \ {0} = (v ⊙ Q′) \ {0}
= (v ⊙ (Q′

0 ∪ Q′
1)) \ {0}

= ((v ⊙ Q′
0) ∪ (v ⊙ Q′

1)) \ {0} (Lemma 7 (3))

= ({0} ∪ (v ⊙ Q′
1)) \ {0}

= v ⊙ Q′
1.

Since 0 /∈ Q1, we obtain Q′
1 = Q1 ⊕ v∗ by (1). Therefore,

Q′ = Q′
0 ⊔ Q′

1 = Q′
0 ⊔ (Q1 ⊕ v∗),

where Q′
0 = {0}, {v∗} or {0, v∗}.

Conversely, assume 0 ∈ Q and Q′ = Q′
0 ⊔ (Q1 ⊕ v∗), where Q′

0 = {0}, {v∗} or {0, v∗}.
From 1 /∈ Q1, it follows that Q1 ⪯ {v} and

v ⊙ Q′ = v ⊙ (Q′
0 ∪ (Q1 ⊕ v∗))

= (v ⊙ Q′
0) ∪ (v ⊙ (Q1 ⊕ v∗)) (Lemma 7 (3))

= {0} ∪ (Q1 ∧ v) = {0} ∪ Q1 = Q.

Hence, we complete the proof.

We are now in a position to prove Theorem 2:

Proof of Theorem 2. Assume that σ is a multifunction on Ln and denote n−2
n−1 by v. Accord-

ing to Theorem 3, σ is uniquely determined by σ(v) and σ(1) if σ ∈ MD(Ln). Hence, it is
enough to consider the values of σ(v) and σ(1). By Theorem 3, σ ∈ MD(Ln) iff

σ(v) ⪯ {v}, (5)
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and
σ(v) = σ(v) ∨ (v ⊙ σ(1)). (6)

For convenience, we denote P = σ(v), Q′ = σ(1), Q = v ⊙ σ(1), p0 = min P and
q0 = min Q. Equation (5) implies 1 /∈ P. By Lemma 16, we know Equation (6) implies that
q0 ≤ p0 and [p0, 1] ∩ Q ⊆ P. Assume that p0 = k

n−1 and |P| = ℓ, where 0 ≤ k ≤ n − 2 and

1 ≤ ℓ ≤ n − k − 1. Then, P \ {p0} ⊆
[

k+1
n−1 , n−2

n−1

]
. Thus, P has Cℓ−1

n−k−2 choices with respect

to k and ℓ. Now, we will determine all choices of Q and Q′.
Case 1. If q0 = p0, then Q = [q0, 1] ∩ Q = [p0, 1] ∩ Q ⊆ P. Hence, Q \ {q0} can take

any subset of P \ {p0} and so Q has 2ℓ−1 choices.
If q0 > 0, then 0 /∈ Q, and by Lemma 17 (1) and Q = v ⊙ Q′ we know Q′ = Q ⊕ v∗.

Hence, Q′ has 2ℓ−1 choices.
If q0 = 0, then 0 ∈ Q, by Lemma 17 (2) and Q = v ⊙ Q′ we have Q′ = {0} ⊔ (Q1 ⊕ v∗),

{v∗} ⊔ (Q1 ⊕ v∗) or {0, v∗} ⊔ (Q1 ⊕ v∗). Thus, Q′ has 3 · 2ℓ−1 choices.
Case 2. If 0 < q0 < p0, denote Q1 = (0, p0) ∩ Q and Q2 = [p0, 1] ∩ Q. Since 0 /∈ Q, we

have Q = Q1 ⊔ Q2. Notice that Q1 ̸= ∅, so there are 2k−1 − 1 choices of Q1. Furthermore,
since Q2 = [p0, 1] ∩ Q ⊆ P, Q2 can take any subset of P and so has 2ℓ choices. Thus,
there are (2k−1 − 1) · 2ℓ choices of Q in this case. Since 0 /∈ Q, it follows that Q′ has also
(2k−1 − 1) · 2ℓ choices by Lemma 17 (1).

Case 3. If 0 = q0 < p0, denote Q1 = (0, p0) ∩ Q and Q2 = [p0, 1] ∩ Q, so we have
Q = {0} ⊔ Q1 ⊔ Q2. Since Q1 ⊂ (0, p0), there are 2k−1 choices of Q1. Moreover, Q2 has 2ℓ

choices as in Case 2. Thus, there are 2k+ℓ−1 choices of Q in this case. Since 0 ∈ Q, it follows
that Q′ has 3 · 2k+ℓ−1 choices by Lemma 17 (2).

According to Theorem 3, we can determine the unique (⊙,∨)-multiderivation for each
choices of σ(1) and σ(v).

Therefore, it follows

|MD(Ln)| =
n−2

∑
k=1

n−k−1

∑
ℓ=1

(
n − k − 2
ℓ− 1

)
(2ℓ−1 + (2k−1 − 1) · 2ℓ + 3 · 2k−1 · 2ℓ) +

n−1

∑
ℓ=1

(
n − 2
ℓ− 1

)
(3 · 2ℓ−1)

=
n−2

∑
k=0

n−k−1

∑
ℓ=1

(
n − k − 2
ℓ− 1

)
(2k+ℓ+1 − 2ℓ−1)

=
n−2

∑
k=0

(
(2k+2 − 1)

n−k−1

∑
ℓ=1

(
n − k − 2
ℓ− 1

)
· 2ℓ−1

)

=
n−2

∑
k=0

(2k+2 − 1)(2 + 1)n−k−2

= 3n
n−2

∑
k=0

((
2
3

)k+2
−
(

1
3

)k+2
)

=
7 · 3n−1 − 2n+2 + 1

2
.

6. Conclusions and Questions

In this paper, the point-to-point (⊙,∨)-derivations on MV-algebras have been ex-
tended to point-to-set (⊙,∨)-multiderivations. We show that (MD(Ln)/∼,≼) is isomor-
phic to the complete lattice Der(Ln), the underlying set of (⊙,∨)-derivations on Ln. This
unveils a certain relevance between (⊙,∨)-multiderivations and (⊙,∨)-derivations. More-
over, by building a counting principle, we obtain the enumeration of MD(Ln).

This general study of (⊙,∨)-multiderivations has the advantage of developing into a
system theory of sets and has potential wide applications: other logical algebras, control
theory, interval analysis, and artificial intelligence.

We list three questions to be considered in the future:
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(1) We have found two ways to construct (⊙,∨)-multiderivations from (⊙,∨)-derivations
in Propositions 5 and 6. Are there other ways?

(2) We ask whether the equivalent characterization and enumeration of (⊙,∨)- multi-
derivations on finite MV-chains can be extended to finite MV-algebras.

(3) We ask whether MV-algebras A and A′ are isomorphic if (MD(A),≼) and (MD(A′),≼)
are order isomorphic.
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Appendix. Calculation program by Python in Table 1

Listing 1. MD(Ln).py
1 from i t e r t o o l s i m p o r t p r o d u c t
2
3 # t h e s e t o f MV−c h a i n Ln
4 n = 6 # A d j u s t n as needed
5 L = l i s t ( r a n g e ( n ) )
6
7 # o p e r a t o r s on Ln
8 d e f omul ( a , b ) :
9 r e t u r n max ( a + b + 1 − n , 0 )

10
11 d e f j o i n ( a , b ) :
12 r e t u r n max ( a , b )
13
14 # o p e r a t o r s on D e l t a ( Ln )
15 d e f Omul (A, B) :
16 C = [ ]
17 f o r i i n A:
18 f o r j i n B :
19 k = omul ( i , j )
20 i f k n o t i n C :
21 C . append ( k )
22 r e t u r n C
23
24 d e f J o i n (A, B) :
25 C = [ ]
26 f o r i i n A:
27 f o r j i n B :
28 k = j o i n ( i , j )
29 i f k n o t i n C :

Figure A1. Cont.
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30 C . append ( k )
31 r e t u r n C
32
33 # j u d g e whe the r F i s a m u l t i d e r i v a t i o n
34 d e f IsMulDer ( F ) :
35 f o r i i n r a n g e ( n ) :
36 f o r j i n r a n g e ( n ) :
37 i f s e t ( F [ omul ( i , j ) ] ) != s e t ( J o i n ( Omul ( F [ i ] , [ j

] ) , Omul ( [ i ] , F [ j ] ) ) ) :
38 r e t u r n F a l s e
39 r e t u r n True
40
41 # g e t t h e l i s t o f a l l m u l t i f u n c t i o n s on Ln
42 d e f p o w e r s e t ( s ) :
43 f o r i i n r a n g e (1 << l e n ( s ) ) :
44 y i e l d [ s [ j ] f o r j i n r a n g e ( l e n ( s ) ) i f ( i & (1 << j ) )

]
45
46 d e f g e n e r a t e P L n ( n ) :
47 e l e m e n t s = [ ]
48 f o r i i n r a n g e ( 1 , n +1) :
49 a = l i s t ( p o w e r s e t ( r a n g e ( i ) ) )
50 i f [ ] i n a :
51 a . remove ( [ ] )
52 e l e m e n t s . append ( a )
53 r e t u r n l i s t ( p r o d u c t (∗ e l e m e n t s ) )
54
55 d e f f ind MulDer ( ) :
56 MulDer = 0
57 f o r F i n g e n e r a t e P L n ( n ) :
58 i f IsMulDer ( F ) :
59 MulDer += 1
60 p r i n t ( F )
61 r e t u r n MulDer
62
63 MulDer count = f i nd MulDer ( )
64 p r i n t ( MulDer count )

Figure A1. MD(Ln).py.
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