Radial Basis Function–Finite Difference Solution Combined with Level-Set Embedded Boundary Method for Improving a Diffusive Logistic Model with a Free Boundary
Abstract
:1. Introduction
2. Problem Formulation
3. Embedded Boundary Method with RBF-FD Discretization
3.1. RBF-FD Discretization
3.2. Embedded Boundary Method
4. Level-Set Method with the HJ-WENO Scheme
Algorithm 1 |
|
5. Numerical Experiments
5.1. Convergence Test for Embedded Boundary Method
5.2. Numerical Tests for Diffusive Logistic Model with a Free Boundary
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
PHS | Polyharmonic splines |
TVD | Total-variation-diminishing |
IMEX | Implicit–explicit |
RBF-FD | Radial basis function–finite difference |
HJ-WENO | Hamilton–Jacobi weighted essentially nonoscillatory |
References
- Duffy, D.J. Finite Difference Methods in Financial Engineering: A Partial Differential Equation Approach; John Wiley & Sons: Hoboken, NJ, USA, 2013. [Google Scholar]
- Tayler, A.B. Free and moving boundary problems. J. Fluid Mech. 1985, 158, 532–533. [Google Scholar] [CrossRef]
- Du, Y.; Lin, Z. Spreading-vanishing dichotomy in the diffusive logistic model with a free boundary. SIAM J. Math. Anal. 2010, 42, 377–405. [Google Scholar] [CrossRef]
- Fisher, R.A. The wave of advance of advantageous genes. Ann. Eugen. 1937, 7, 355–369. [Google Scholar] [CrossRef]
- Kolmogorov, A. Étude de l’ équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologigue. Moscow Univ. Bull. Ser. Internat. Sect. A 1937, 1, 1. [Google Scholar]
- Du, Y.; Matano, H.; Wang, K. Regularity and asymptotic behavior of nonlinear Stefan problems. Arch. Ration. Mech. An. 2014, 212, 957–1010. [Google Scholar] [CrossRef]
- Johansen, H.; Colella, P.A. Cartesian grid embedded boundary method for Poisson’s equation on irregular domains. J. Comput. Phys. 1998, 147, 60–85. [Google Scholar] [CrossRef]
- Peng, Z.; Appelö, D.; Liu, S. Universal AMG accelerated embedded boundary method without small cell stiffness. J. Sci. Comput. 2023, 97, 1–29. [Google Scholar] [CrossRef]
- Kansa, E.J. Multiquadrics-A scattered data approximation scheme with applications to computational fluid-dynamics-I surface approximations and partial derivative estimates. Comput. Math. Appl. 1990, 19, 127–145. [Google Scholar] [CrossRef]
- Kansa, E.J. Multiquadrics-A scattered data approximation scheme with applications to computational fluid-dynamics-II solutions to parabolic, hyperbolic and elliptic partial differential equations. Comput. Math. Appl. 1990, 19, 147–161. [Google Scholar] [CrossRef]
- Bayona, V.; Moscoso, M.; Carretero, M.; Kindelan, M. RBF-FD formulas and convergence properties. J. Comput. Phys. 2010, 229, 8281–8295. [Google Scholar] [CrossRef]
- Bayona, V.; Moscoso, M.; Kindelan, M. Optimal constant shape parameter for multiquadric based RBF-FD method. J. Comput. Phys. 2011, 230, 7384–7399. [Google Scholar] [CrossRef]
- Cecil, T.; Qian, J.; Osher, S. Numerical methods for high dimensional Hamilton-Jacobi equations using radial basis functions. J. Comput. Phys. 2004, 196, 327–347. [Google Scholar] [CrossRef]
- Fornberg, B.; Flyer, N. Solving PDEs with radial basis functions. Acta Numer. 2015, 24, 215–258. [Google Scholar] [CrossRef]
- Álvarez, D.; González-Rodríguez, P.; Kindelan, M. A local radial basis function method for the Laplace-Beltrami operator. J. Sci. Comput. 2021, 86, 28. [Google Scholar]
- Flyer, N.; Fornberg, B.; Bayona, V.; Barnett, G.A. On the role of polynomials in RBF-FD approximations: I. Interpolation and accuracy. J. Comput. Phys. 2016, 321, 21–38. [Google Scholar] [CrossRef]
- Shaw, S.B. Radial Basis Function Finite Difference Approximations of the Laplace-Beltrami Operator. Master’s Thesis, Boise State University, Boise, ID, USA, 2019. [Google Scholar]
- Liu, S.; Liu, X. Numerical methods for a two-species competition-diffusion model with free boundaries. Mathematics 2018, 6, 72. [Google Scholar] [CrossRef]
- Liu, S. Numerical Methods for A Class of Reaction-Diffusion Equations with Free Boundaries. Ph.D. Thesis, University of South Carolina, Columbia, SC, USA, 2019. [Google Scholar]
- Piqueras, M.A.; Company, R.; Jódar, L. A front-fixing numerical method for a free boundary nonlinear diffusion logistic population model. J. Comput. Appl. Math. 2017, 309, 473–481. [Google Scholar] [CrossRef]
- Liu, S.; Du, Y.; Liu, X. Numerical studies of a class of reaction-diffusion equations with Stefan conditions. Int. J. Comput. Math. 2020, 97, 9597–9979. [Google Scholar] [CrossRef]
- Chen, S.; Merriman, B.; Osher, S.; Smereka, P. A simple level set method for solving Stefan problems. J. Comput. Phys. 1997, 135, 8–29. [Google Scholar] [CrossRef]
- Osher, S.; Fedkiw, R.P. Level set methods: An overview and some recent results. J. Comput. Phys. 2001, 169, 463–502. [Google Scholar] [CrossRef]
- Osher, S.; Sethian, J.A. Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys. 1988, 79, 12–49. [Google Scholar] [CrossRef]
- Liu, S.; Liu, X. Exponential Time Differencing Method for a Reaction-Diffusion System with Free Boundary. Com. Appl. Math. Comput. 2023, 6, 354–371. [Google Scholar] [CrossRef]
- Jiang, G.S.; Peng, D. Weighted ENO schemes for Hamilton-Jacobi equations. SIAM J. Sci. Comput. 2000, 21, 2126–2143. [Google Scholar] [CrossRef]
- Liu, Y.; Qiao, Y.; Feng, X. A stable radial basis function partition of unity method for solving convection-diffusion equations on surfaces. Eng. Anal. Bound. Elem. 2023, 155, 148–159. [Google Scholar] [CrossRef]
- Johnson, M.J. An error analysis for radial basis function interpolation. Numer. Math. 2004, 98, 675–694. [Google Scholar] [CrossRef]
- Fuselier, E.; Wright, G.B. Scattered data interpolation on embedded submanifolds with restricted positive definite kernels: Sobolev error estimates. SIAM J. Numer. Anal. 2012, 50, 1753–1776. [Google Scholar] [CrossRef]
- Barnett, G.A. A Robust RBF-FD Formulation Based on Polyharmonic Splines and Polynomials. Ph.D. Thesis, University of Colorado Boulder, Boulder, CO, USA, 2015. [Google Scholar]
N | Error | Rate | Error | Rate |
---|---|---|---|---|
40 | 6.0670 × 10−6 | - | 1.3948 × 10−5 | - |
80 | 1.4202 × 10−6 | 3.3572 × 10−6 | ||
160 | 3.4323 × 10−7 | 8.2027 × 10−7 | ||
320 | 8.3416 × 10−8 | 2.0084 × 10−7 | ||
640 | 2.0532 × 10−8 | 4.9634 × 10−8 | ||
1280 | 5.1003 × 10−9 | 1.2351 × 10−8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, C.; Qiao, Y. Radial Basis Function–Finite Difference Solution Combined with Level-Set Embedded Boundary Method for Improving a Diffusive Logistic Model with a Free Boundary. Axioms 2024, 13, 217. https://doi.org/10.3390/axioms13040217
Zhang C, Qiao Y. Radial Basis Function–Finite Difference Solution Combined with Level-Set Embedded Boundary Method for Improving a Diffusive Logistic Model with a Free Boundary. Axioms. 2024; 13(4):217. https://doi.org/10.3390/axioms13040217
Chicago/Turabian StyleZhang, Chunyan, and Yuanyang Qiao. 2024. "Radial Basis Function–Finite Difference Solution Combined with Level-Set Embedded Boundary Method for Improving a Diffusive Logistic Model with a Free Boundary" Axioms 13, no. 4: 217. https://doi.org/10.3390/axioms13040217
APA StyleZhang, C., & Qiao, Y. (2024). Radial Basis Function–Finite Difference Solution Combined with Level-Set Embedded Boundary Method for Improving a Diffusive Logistic Model with a Free Boundary. Axioms, 13(4), 217. https://doi.org/10.3390/axioms13040217