Cross Curvature Solitons of Lorentzian Three-Dimensional Lie Groups
Abstract
:1. Introduction
2. Lorentzian Lie Groups in Dimension 3
2.1. Unimodular Lie Groups
2.2. Non-Unimodular Lie Groups
- IV.1
- is orthonormal and ; also, the constants of structure satisfy .
- IV.2
- is orthonormal and ; also, the constants of structure satisfy .
- IV.3
- is a pseudo-orthonormal basis and
- (1)
- is locally symmetric and
- (1a)
- of Type Ia with or any cyclic permutation of ,
- (1b)
- of Type II with
- (1c)
- of Type IV.1 with constant sectional curvature, or otherwise and , or and
- (1d)
- of Type IV.2 with constant sectional curvature, or otherwise and , or and
- (1e)
- of Type IV.3 and flat, or otherwise and
- (1f)
- of Type and therefore of constant sectional curvature.
- (2)
- is not locally symmetric and
- (2a)
- of Type Ib with and
- (2b)
- of Type III with
- (2c)
- of Type IV.3 with and .
3. Lorentzian Cross Curvature Solitons on Lorentzian 3-Dimensional Lie Groups
- (1)
- , , and for all , and γ such that and .
- (2)
- , , , , , and for all δ, and such that and .
- (3)
- , , and such that for all .
- (4)
- , , , , and .
- (1)
- , , for all and δ such that and .
- (2)
- , , , and .
- (3)
- , , , , and .
- (4)
- , , , , , and .
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hamilton, R.S. The Ricci flow on surfaces, Mathematics and general relativity. Am. Math. Soc. 1988, 71, 237–262. [Google Scholar]
- Glickenstein, D. Riemannian groupoids and solitons for three-dimensional homogeneous Ricci and cross-curvature flows. Int. Math. Res. Not. 2008, 12, rnn034. [Google Scholar] [CrossRef]
- Ho, P.T.; Shin, J. On the cross curvature flow. Differ. Geom. Appl. 2020, 71, 101636. [Google Scholar] [CrossRef]
- Chow, B.; Hamilton, R.S. The cross curvature flow of 3-dimensional flow of 3-manifolds with negative sectional curvature. Turkish J. Math. 2004, 28, 1–10. [Google Scholar]
- Buckland, J.A. Short-time existence of the solutions to the cross curvature flow on 3-manifolds. Proc. Am. Math. Soc. 2006, 134, 1803–1807. [Google Scholar] [CrossRef]
- Cao, X.; Ni, Y.; Saloff-Coste, L. Cross curvature flow on locally homogeneous three-manifolds, I. Pac. J. Math. 2008, 236, 263–281. [Google Scholar]
- Cao, X.; Saloff-Coste, L. Cross curvature flow on locally homogeneous three-manifolds, II. Asian J. Math. 2009, 13, 421–458. [Google Scholar] [CrossRef]
- Cao, X.; Guckenheimer, J.; Saloff-Coste, L. The backward behavior of the Ricci and cross curvature flows on SL(2, ). Commun. Anal. Geom. 2009, 17, 777–796. [Google Scholar] [CrossRef]
- DeBlois, J.; Knopf, D.; Young, A. Cross curvature flow on a negatively curved solid torus. Algebr. Geom. Topol. 2010, 10, 343–372. [Google Scholar] [CrossRef]
- Ma, L.; Chern, D. Examples for cross curvature flow on 3-manifolds. Calc. Var. Partial Differ. Equ. 2006, 26, 227–243. [Google Scholar] [CrossRef]
- Di Cerbo, F.L. Generic properties of homogeneous Ricci solitons. Adv. Geom. 2014, 14, 225–237. [Google Scholar] [CrossRef]
- Hervik, S. Ricci nilsoliton black holes. J. Geom. Phys. 2008, 58, 1253–1264. [Google Scholar] [CrossRef]
- Klepikov, P.N.; Oskorbin, D.N. Homogeneous invariant Ricci solitons on four-dimensional Lie groups. Izv. AltGU 2015, 85, 122–129. [Google Scholar]
- Payne, T.L. The existence of soliton metrics for nilpotent Lie groups. Geom. Dedicata 2010, 145, 71–88. [Google Scholar] [CrossRef]
- Baird, P.; Danielo, L. Three-dimensional Ricci solitons which project to surfaces. J. Reine Angew. Math. 2007, 608, 65–91. [Google Scholar] [CrossRef]
- Lauret, J. Ricci solitons solvmanifolds. J. Reine Angew. Math. 2011, 650, 1–21. [Google Scholar] [CrossRef]
- Lauret, J. Ricci soliton homogeneous nilmanifolds. Math. Ann. 2001, 319, 715–733. [Google Scholar] [CrossRef]
- Onda, K. Examples of algebraic Ricci solitons in the pseudo-Riemannian case. Acta Math. Hung. 2014, 144, 247–265. [Google Scholar] [CrossRef]
- Calvaruso, G.; Fino, A. Ricci Solitons and geometry of four-dimensional non-reductive homogeneous spaces. Canad. J. Math. 2012, 64, 778–804. [Google Scholar] [CrossRef]
- Jablonski, M. Homogeneous Ricci solitons are algebraic. Geom. Topol. 2014, 18, 2477–2486. [Google Scholar] [CrossRef]
- Arroyo, R.M.; Lafuente, R. Homogeneous Ricci solitons in low dimensions. Int. Math. Res. Not. 2015, 13, 4901–4932. [Google Scholar] [CrossRef]
- Calvaruso, G. Homogeneous structures on three-dimensional homogeneous Lorentzian manifolds. J. Geom. Phys. 2007, 57, 1279–1291. [Google Scholar] [CrossRef]
- García-Río, E.; Haji-Badali, A.; Vázquez-Lorenzo, R. Lorentzian 3-manifolds with special curvature operators. Class. Quantum Grav. 2008, 25, 015003. [Google Scholar] [CrossRef]
- Cordero, L.A.; Parker, P. Left-invariant Lorentzian metrics on 3-dimensional Lie groups. Rend. Mat. 1997, VII, 129–155. [Google Scholar]
- Calvaruso, G. Einstein-like metrics on three-dimensional homogeneous Lorentzian manifolds. Geom. Dedicata 2007, 127, 99–119. [Google Scholar] [CrossRef]
G | |||
---|---|---|---|
or | + | + | + |
or | + | − | − |
or | + | + | − |
+ | + | 0 | |
+ | 0 | − | |
+ | − | 0 | |
+ | 0 | + | |
+ | 0 | 0 | |
0 | 0 | − | |
0 | 0 | 0 |
G | ||
---|---|---|
or | ≠0 | ≠0 |
0 | ≠0 | |
<0 | 0 | |
>0 | 0 | |
0 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Azami, S.; Jafari, M.; Haseeb, A.; Ahmadini, A.A.H. Cross Curvature Solitons of Lorentzian Three-Dimensional Lie Groups. Axioms 2024, 13, 211. https://doi.org/10.3390/axioms13040211
Azami S, Jafari M, Haseeb A, Ahmadini AAH. Cross Curvature Solitons of Lorentzian Three-Dimensional Lie Groups. Axioms. 2024; 13(4):211. https://doi.org/10.3390/axioms13040211
Chicago/Turabian StyleAzami, Shahroud, Mehdi Jafari, Abdul Haseeb, and Abdullah Ali H. Ahmadini. 2024. "Cross Curvature Solitons of Lorentzian Three-Dimensional Lie Groups" Axioms 13, no. 4: 211. https://doi.org/10.3390/axioms13040211
APA StyleAzami, S., Jafari, M., Haseeb, A., & Ahmadini, A. A. H. (2024). Cross Curvature Solitons of Lorentzian Three-Dimensional Lie Groups. Axioms, 13(4), 211. https://doi.org/10.3390/axioms13040211