3F4 Hypergeometric Functions as a Sum of a Product of 2F3 Functions
Abstract
:1. Introduction
2. The Transition Amplitude
3. The Fourier–Legendre Series of a Bessel Function of the First Kind
- A More Direct Approach
4. For p = 1
5. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jackson, F.H. On basic double hypergeometric functions. Q. J. Math. 1942, 13, 69–82. [Google Scholar] [CrossRef]
- Jackson, F.H. On basic double hypergeometric functions II. Q. J. Math. 1944, 15, 49–61. [Google Scholar]
- Gradshteyn, I.S.; Ryzhik, I.M. Table of Integrals, Series, and Products, 5th ed.; Academic: New York, NY, USA, 1994. [Google Scholar]
- Ragab, F.M. Expansions of Generalized Hypergeometric Functions in Series of Products of Generalized Whittaker Functions. Math. Proc. Camb. Philos. Soc. 1962, 58, 239–243. [Google Scholar] [CrossRef]
- Slater, L.J. Expansions of Generalized Whittaker Functions. Math. Proc. Camb. Philos. Soc. 1954, 50, 628–631. [Google Scholar] [CrossRef]
- Verma, A. Certain expansions of generalised basic hypergeometric functions. Duke Math. J. 1962, 31, 79–90. [Google Scholar] [CrossRef]
- Choi, J.; Milovanovic, G.V.; Rathie, A.K. Generalized Summation Formulas for the Kampé de Fériet Function. Axioms 2021, 10, 318. [Google Scholar] [CrossRef]
- Wang, X.; Chen, Y. Finite summation formulas of double hypergeometric functions. Integral Transform. Spec. Funct. 2017, 28, 239–253. [Google Scholar] [CrossRef]
- Wang, X. Infinite summation formulas of double hypergeometric functions. Integral Transform. Spec. Funct. 2016, 27, 347–364. [Google Scholar] [CrossRef]
- Yakubovich, S. Voronoi–Nasim summation formulas and index transforms. Integral Transform. Spec. Funct. 2012, 23, 369–388. [Google Scholar] [CrossRef]
- Liu, H.; Wang, W. Transformation and summation formulae for Kampé de Fériet series. J. Math. Anal. Appl. 2014, 409, 100–110. [Google Scholar] [CrossRef]
- Choi, J.; Rathie, A.K. General summation formulas for the Kampé de Fériet function. Montes Taurus J. Pure Appl. Math. 2019, 1, 107–128. [Google Scholar]
- Awad, M.M.; Koepf, W.; Mohammed, A.O.; Rakha, M.A.; Rathie, A.K. A Study of Extensions of Classical Summation Theorems for the Series and with Applications. Results Math 2021, 76, 65. [Google Scholar] [CrossRef]
- Reiss, H.R. Limits on Tunneling Theories of Strong-Field Ionization. Phys. Rev. Lett. 2008, 101, 043002. [Google Scholar] [CrossRef] [PubMed]
- Reiss, H.R. Foundations of Strong-Field Physics. Lect. Ultrafast Intense Laser Sci. 2010, 1, 41–84. [Google Scholar]
- Reiss, H.R. Effect of an intense electromagnetic filed on a weakly bound system. Phys. Rev. A 1980, 22, 1786. [Google Scholar] [CrossRef]
- Reiss, H.R. Theoretical methods in quantum optics: S-matrix and Keldysh techniques for strong-field process. Prog. Quantum Electron. 1992, 16, 1–71. [Google Scholar] [CrossRef]
- Reiss, H.R. Relativistic strong-field photoionization. J. Opt. Soc. Am. B 1990, 7, 570. [Google Scholar] [CrossRef]
- Faisal, F.H.M. Multiple absorption of laser photons by atoms. J. Phys. B 1973, 6, L89. [Google Scholar] [CrossRef]
- Keating, C.M. Using Strong Laser Fields to Produce Antihydrogen Ions. Ph.D. Dissertation, Portland State University, Portland, OR, USA, 2018. Appendix D. Available online: https://pdxscholar.library.pdx.edu/open_access_etds/4519/ (accessed on 6 February 2024).
- Volkov, D.M. Über eine Klasse von Lösungen der Diracschen Gleichung. Z. Phys. Phys. 1935, 94, 250. [Google Scholar]
- Haber, H.E. Available online: http://scipp.ucsc.edu/~haber/ph116C/SphericalHarmonics_12.pdf (accessed on 6 February 2024).
- Straton, J.C. The Fourier–Legendre Series of Bessel Functions of the First Kind and the Summed Series Involving 1F2 Hypergeometric Functions that Arise from Them. Axioms 2024, 13, 134. [Google Scholar] [CrossRef]
- Kellogg, O.D. Foundations of Potential Theory; Springer: Berlin/Heidelberg, Germany, 1929; p. 132. [Google Scholar]
- Available online: http://functions.wolfram.com/07.26.26.0001.01 (accessed on 6 February 2024).
- Prudnikov, A.P.; Brychkov, Y.A.; Marichev, O.I. Integrals and Series; Gordon and Breach: New York, NY, USA, 1986; Volume 3. [Google Scholar]
- Luke, Y.L. The Special Functions and their Approximations; Academic Press: New York, NY, USA, 1975; Volume 1. [Google Scholar]
- Available online: http://functions.wolfram.com/03.01.26.0002.01 (accessed on 6 February 2024).
- Bateman, H. Higher Transcendental Functions; McGraw-Hill: New York, NY, USA, 1953; Volume 1, p. 185. [Google Scholar]
- Available online: http://functions.wolfram.com/07.17.26.0004.01 (accessed on 6 February 2024).
- Magnus, W.; Oberhettinger, F.; Soni, R.P. Formulas and Theorems for the Special Functions of Mathematical Physics; Springer: New York, NY, USA, 1966; p. 81. [Google Scholar]
- Joachain, C.J. Quantum Collision Theory; Equation (B.46); North-Holland: New York, NY, USA, 1983. [Google Scholar]
- Gröbner, W.; Hofreiter, N. Integraltafel Zweiter Teil Bestimmte Integrale; Springer: Vienna, Austria, 1966. [Google Scholar]
- Available online: http://functions.wolfram.com/03.21.06.0019.01 (accessed on 6 February 2024).
- Available online: http://functions.wolfram.com/07.26.03.0002.01 (accessed on 6 February 2024).
Left-Hand Side of (44) | Right-Hand Side of (44) | z | ||
---|---|---|---|---|
1.028881345119003 | 1.028881345119001 | 0 | 0 | 0.17 |
1.0344878191148 | 1.0344878191146 | 0 | 2 | 0.17 |
1.0369001971 | 1.0369001970 | 0 | 4 | 0.17 |
1.020434382759 | 1.020434382749 | 2 | 2 | 0.17 |
1.01777403 | 1.01777403 | 2 | 4 | 0.17 |
1.0140011 | 1.0140009 | 4 | 4 | 0.17 |
1.0258250454427744 | 1.0258250454427744 | 1 | 1 | 0.17 |
1.0230034607369 | 1.0230034607370 | 1 | 3 | 0.17 |
1.022243424630 | 1.022243424628 | 1 | 5 | 0.17 |
1.016657722535 | 1.016657722534 | 3 | 3 | 0.17 |
1.014587307 | 1.014587305 | 3 | 5 | 0.17 |
1.01205576 | 1.01205571 | 5 | 5 | 0.17 |
23.049 | 23.044 | 0 | 0 | 17.0 |
1.00013910008 | 1.00013910005 | 4 | 4 | 0.0017 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Straton, J.C. 3F4 Hypergeometric Functions as a Sum of a Product of 2F3 Functions. Axioms 2024, 13, 203. https://doi.org/10.3390/axioms13030203
Straton JC. 3F4 Hypergeometric Functions as a Sum of a Product of 2F3 Functions. Axioms. 2024; 13(3):203. https://doi.org/10.3390/axioms13030203
Chicago/Turabian StyleStraton, Jack C. 2024. "3F4 Hypergeometric Functions as a Sum of a Product of 2F3 Functions" Axioms 13, no. 3: 203. https://doi.org/10.3390/axioms13030203
APA StyleStraton, J. C. (2024). 3F4 Hypergeometric Functions as a Sum of a Product of 2F3 Functions. Axioms, 13(3), 203. https://doi.org/10.3390/axioms13030203