A Comparison between Invariant and Equivariant Classical and Quantum Graph Neural Networks
Abstract
:1. Introduction
2. Data
2.1. Graphically Structured Data
2.2. Feature Engineering
2.3. Training, Validation, and Testing Sets
3. Models
3.1. Invariance and Equivariance
3.2. Graph Neural Network
3.3. SE(2) Equivariant Graph Neural Network
3.4. Quantum Graph Neural Network
3.5. Permutation Equivariant Quantum Graph Neural Network
4. Results and Analysis
5. Conclusions
6. Software and Code
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
API | Application Programming Interface |
AUC | Area Under the Curve |
CNN | Convolutional Neural Network |
EGNN | Equivariant Graph Neural Network |
EQGNN | Equivariant Quantum Graph Neural Network |
FPR | False Positive Rate |
GAN | Generative Adversarial Network |
GNN | Graph Neural Network |
LHC | Large Hadron Collider |
MDPI | Multidisciplinary Digital Publishing Institute |
MLP | Multilayer Perceptron |
NLP | Natural Language Processor |
NN | Neural Network |
QGCNN | Quantum Graph Convolutional Neural Network |
QGNN | Quantum Graph Neural Network |
QGRNN | Quantum Graph Recurrent Neural Network |
TPR | True Positive Rate |
Appendix A. Equivariant Coordinate Update Function
Appendix B. Coupling Hamiltonian Simplification
Appendix C. Quantum Product State Permutation Equivariance
References
- Andreassen, A.; Feige, I.; Frye, C.; Schwartz, M.D. JUNIPR: A framework for unsupervised machine learning in particle physics. Eur. Phys. J. C 2019, 79, 102. [Google Scholar] [CrossRef]
- Shlomi, J.; Battaglia, P.; Vlimant, J.R. Graph neural networks in particle physics. Mach. Learn. Sci. Technol. 2020, 2, 021001. [Google Scholar] [CrossRef]
- Mikuni, V.; Canelli, F. Point cloud transformers applied to collider physics. Mach. Learn. Sci. Technol. 2021, 2, 035027. [Google Scholar] [CrossRef]
- Mokhtar, F.; Kansal, R.; Duarte, J. Do graph neural networks learn traditional jet substructure? arXiv 2022, arXiv:2211.09912. [Google Scholar]
- Mikuni, V.; Canelli, F. ABCNet: An attention-based method for particle tagging. Eur. Phys. J. Plus 2020, 135, 463. [Google Scholar] [CrossRef] [PubMed]
- Veličković, P. Everything is connected: Graph neural networks. Curr. Opin. Struct. Biol. 2023, 79, 102538. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Cui, G.; Hu, S.; Zhang, Z.; Yang, C.; Liu, Z.; Wang, L.; Li, C.; Sun, M. Graph neural networks: A review of methods and applications. AI Open 2020, 1, 57–81. [Google Scholar] [CrossRef]
- Kipf, T.N.; Welling, M. Semi-Supervised Classification with Graph Convolutional Networks. arXiv 2016, arXiv:1609.02907. [Google Scholar]
- Kipf, T.N.; Welling, M. Semi-Supervised Classification with Graph Convolutional Networks. In Proceedings of the 5th International Conference on Learning Representations (ICLR ’17), Toulon, France, 24–26 April 2017. [Google Scholar]
- Gilmer, J.; Schoenholz, S.S.; Riley, P.F.; Vinyals, O.; Dahl, G.E. Neural Message Passing for Quantum Chemistry. In Proceedings of the 34th International Conference on Machine Learning, Sydney, Australia, 6–11 August 2017; Volume 70, pp. 1263–1272. [Google Scholar]
- Veličković, P.; Cucurull, G.; Casanova, A.; Romero, A.; Liò, P.; Bengio, Y. Graph Attention Networks. In Proceedings of the International Conference on Learning Representations, Vancouver, BC, Canada, 30 April–3 May 2018. [Google Scholar]
- Lim, L.; Nelson, B.J. What is an equivariant neural network? arXiv 2022, arXiv:2205.07362. [Google Scholar] [CrossRef]
- Ecker, A.S.; Sinz, F.H.; Froudarakis, E.; Fahey, P.G.; Cadena, S.A.; Walker, E.Y.; Cobos, E.; Reimer, J.; Tolias, A.S.; Bethge, M. A rotation-equivariant convolutional neural network model of primary visual cortex. In Proceedings of the International Conference on Learning Representations, New Orleans, LA, USA, 6–9 May 2019. [Google Scholar]
- Forestano, R.T.; Matchev, K.T.; Matcheva, K.; Roman, A.; Unlu, E.B.; Verner, S. Deep learning symmetries and their Lie groups, algebras, and subalgebras from first principles. Mach. Learn. Sci. Tech. 2023, 4, 025027. [Google Scholar] [CrossRef]
- Forestano, R.T.; Matchev, K.T.; Matcheva, K.; Roman, A.; Unlu, E.B.; Verner, S. Discovering Sparse Representations of Lie Groups with Machine Learning. Phys. Lett. B 2023, 844, 138086. [Google Scholar] [CrossRef]
- Forestano, R.T.; Matchev, K.T.; Matcheva, K.; Roman, A.; Unlu, E.B.; Verner, S. Accelerated Discovery of Machine-Learned Symmetries: Deriving the Exceptional Lie Groups G2, F4 and E6. Phys. Lett. B 2023, 847, 138266. [Google Scholar] [CrossRef]
- Forestano, R.T.; Matchev, K.T.; Matcheva, K.; Roman, A.; Unlu, E.B.; Verner, S. Identifying the Group-Theoretic Structure of Machine-Learned Symmetries. Phys. Lett. B 2023, 847, 138306. [Google Scholar] [CrossRef]
- Roman, A.; Forestano, R.T.; Matchev, K.T.; Matcheva, K.; Unlu, E.B. Oracle-Preserving Latent Flows. Symmetry 2023, 15, 1352. [Google Scholar] [CrossRef]
- Maron, H.; Ben-Hamu, H.; Shamir, N.; Lipman, Y. Invariant and Equivariant Graph Networks. In Proceedings of the International Conference on Learning Representations, New Orleans, LA, USA, 6–9 May 2019. [Google Scholar]
- Gong, S.; Meng, Q.; Zhang, J.; Qu, H.; Li, C.; Qian, S.; Du, W.; Ma, Z.M.; Liu, T.Y. An efficient Lorentz equivariant graph neural network for jet tagging. J. High Energy Phys. 2022, 7, 030. [Google Scholar] [CrossRef]
- Satorras, V.G.; Hoogeboom, E.; Welling, M. E(n) Equivariant Graph Neural Networks. arXiv 2021, arXiv:2102.09844. [Google Scholar]
- Preskill, J. Quantum Computing in the NISQ era and beyond. Quantum 2018, 2, 79. [Google Scholar] [CrossRef]
- Beer, K.; Khosla, M.; Köhler, J.; Osborne, T.J.; Zhao, T. Quantum machine learning of graph-structured data. Phys. Rev. A 2023, 108, 012410. [Google Scholar] [CrossRef]
- Verdon, G.; Mccourt, T.; Luzhnica, E.; Singh, V.; Leichenauer, S.; Hidary, J.D. Quantum Graph Neural Networks. arXiv 2019, arXiv:1909.12264. [Google Scholar]
- Ai, X.; Zhang, Z.; Sun, L.; Yan, J.; Hancock, E.R. Decompositional Quantum Graph Neural Network. arXiv 2022, arXiv:2201.05158. [Google Scholar]
- Niu, M.Y.; Zlokapa, A.; Broughton, M.; Boixo, S.; Mohseni, M.; Smelyanskyi, V.; Neven, H. Entangling Quantum Generative Adversarial Networks. Phys. Rev. Lett. 2022, 128, 220505. [Google Scholar] [CrossRef]
- Chu, C.; Skipper, G.; Swany, M.; Chen, F. IQGAN: Robust Quantum Generative Adversarial Network for Image Synthesis On NISQ Devices. In Proceedings of the ICASSP 2023—2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Rhodes Island, Greece, 4–10 June 2023; pp. 1–5. [Google Scholar] [CrossRef]
- Sipio, R.D.; Huang, J.H.; Chen, S.Y.C.; Mangini, S.; Worring, M. The Dawn of Quantum Natural Language Processing. In Proceedings of the ICASSP 2022—2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Virtual, 7–13 May 2021; pp. 8612–8616. [Google Scholar]
- Cherrat, E.A.; Kerenidis, I.; Mathur, N.; Landman, J.; Strahm, M.C.; Li, Y.Y. Quantum Vision Transformers. arXiv 2023, arXiv:2209.08167. [Google Scholar] [CrossRef]
- Meyer, J.J.; Mularski, M.; Gil-Fuster, E.; Mele, A.A.; Arzani, F.; Wilms, A.; Eisert, J. Exploiting Symmetry in Variational Quantum Machine Learning. PRX Quantum 2023, 4, 010328. [Google Scholar] [CrossRef]
- Nguyen, Q.T.; Schatzki, L.; Braccia, P.; Ragone, M.; Coles, P.J.; Sauvage, F.; Larocca, M.; Cerezo, M. Theory for Equivariant Quantum Neural Networks. arXiv 2022, arXiv:2210.08566. [Google Scholar]
- Schatzki, L.; Larocca, M.; Nguyen, Q.T.; Sauvage, F.; Cerezo, M. Theoretical Guarantees for Permutation-Equivariant Quantum Neural Networks. arXiv 2022, arXiv:2210.09974. [Google Scholar] [CrossRef]
- Komiske, P.T.; Metodiev, E.M.; Thaler, J. Energy flow networks: Deep sets for particle jets. J. High Energy Phys. 2019, 2019, 121. [Google Scholar] [CrossRef]
- Rodrigues, E.; Schreiner, H. Scikit-Hep/Particle: Version 0.23.0; Zenodo: Geneva, Switzerland, 2023. [Google Scholar] [CrossRef]
- Franceschini, R.; Kim, D.; Kong, K.; Matchev, K.T.; Park, M.; Shyamsundar, P. Kinematic Variables and Feature Engineering for Particle Phenomenology. arXiv 2022, arXiv:2206.13431. [Google Scholar] [CrossRef]
- Esteves, C. Theoretical Aspects of Group Equivariant Neural Networks. arXiv 2020, arXiv:2004.05154. [Google Scholar]
- Murnane, D.; Thais, S.; Thete, A. Equivariant Graph Neural Networks for Charged Particle Tracking. arXiv 2023, arXiv:2304.05293. [Google Scholar]
- Worrall, D.E.; Garbin, S.J.; Turmukhambetov, D.; Brostow, G.J. Harmonic Networks: Deep Translation and Rotation Equivariance. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Los Alamitos, CA, USA, 21–26 July 2017; pp. 7168–7177. [Google Scholar] [CrossRef]
- Thiede, E.H.; Hy, T.S.; Kondor, R. The general theory of permutation equivarant neural networks and higher order graph variational encoders. arXiv 2020, arXiv:2004.03990. [Google Scholar]
- Mernyei, P.; Meichanetzidis, K.; Ceylan, İ.İ. Equivariant Quantum Graph Circuits. arXiv 2022, arXiv:2112.05261. [Google Scholar]
- Skolik, A.; Cattelan, M.; Yarkoni, S.; Bäck, T.; Dunjko, V. Equivariant quantum circuits for learning on weighted graphs. Npj Quantum Inf. 2023, 9, 47. [Google Scholar] [CrossRef]
- East, R.D.P.; Alonso-Linaje, G.; Park, C.Y. All you need is spin: SU(2) equivariant variational quantum circuits based on spin networks. arXiv 2023, arXiv:2309.07250. [Google Scholar]
- Zheng, H.; Kang, C.; Ravi, G.S.; Wang, H.; Setia, K.; Chong, F.T.; Liu, J. SnCQA: A hardware-efficient equivariant quantum convolutional circuit architecture. arXiv 2023, arXiv:2211.12711. [Google Scholar]
Model | P | Train ACC | Val ACC | Test AUC | ||
---|---|---|---|---|---|---|
GNN | 5122 | 10 | 5 | 74.25% | 74.80% | 63.36% |
EGNN | 5252 | 10 | 4 | 73.66% | 74.08% | 67.88% |
QGNN | 5156 | 8 | 6 | 61.43% | ||
EQGNN | 5140 | 8 | 6 | 75.17% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Forestano, R.T.; Comajoan Cara, M.; Dahale, G.R.; Dong, Z.; Gleyzer, S.; Justice, D.; Kong, K.; Magorsch, T.; Matchev, K.T.; Matcheva, K.; et al. A Comparison between Invariant and Equivariant Classical and Quantum Graph Neural Networks. Axioms 2024, 13, 160. https://doi.org/10.3390/axioms13030160
Forestano RT, Comajoan Cara M, Dahale GR, Dong Z, Gleyzer S, Justice D, Kong K, Magorsch T, Matchev KT, Matcheva K, et al. A Comparison between Invariant and Equivariant Classical and Quantum Graph Neural Networks. Axioms. 2024; 13(3):160. https://doi.org/10.3390/axioms13030160
Chicago/Turabian StyleForestano, Roy T., Marçal Comajoan Cara, Gopal Ramesh Dahale, Zhongtian Dong, Sergei Gleyzer, Daniel Justice, Kyoungchul Kong, Tom Magorsch, Konstantin T. Matchev, Katia Matcheva, and et al. 2024. "A Comparison between Invariant and Equivariant Classical and Quantum Graph Neural Networks" Axioms 13, no. 3: 160. https://doi.org/10.3390/axioms13030160
APA StyleForestano, R. T., Comajoan Cara, M., Dahale, G. R., Dong, Z., Gleyzer, S., Justice, D., Kong, K., Magorsch, T., Matchev, K. T., Matcheva, K., & Unlu, E. B. (2024). A Comparison between Invariant and Equivariant Classical and Quantum Graph Neural Networks. Axioms, 13(3), 160. https://doi.org/10.3390/axioms13030160