More Effective Criteria for Testing the Oscillation of Solutions of Third-Order Differential Equations
Abstract
:1. Introduction
- (i)
- and
- (ii)
- (iii)
- and the bivariate function has nonnegative partial derivatives with
Motivation
2. Preliminaries
3. Main Results
4. Applications
- (c1)
- For
- (c2)
- For
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Strikwerda, J.C. Finite Difference Schemes and Partial Differential Equations; Chapman and Hall: New York, NY, USA, 1989. [Google Scholar]
- Ciarlet, P. The Finite Element Method for Elliptic Problems; North Holland: Amsterdam, The Netherlands, 1978. [Google Scholar]
- Versteeg, H.K.; Malalasekera, W. An Introduction to Computational Fluid Dynamics: The Finite Volume Method; Pearson Education: London, UK, 2007. [Google Scholar]
- Cottrell, J.A.; Hughes, T.J.R.; Bazilevs, Y. Isogeometric Analysis: Toward integration of CAD and FEA; John Wiley & Sons: Hoboken, NJ, USA, 2009. [Google Scholar]
- Böttcher, A.; Silbermann, B. Introduction to Large Truncated Toeplitz Matrices; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Garoni, C.; Serra-Capizzano, S. The Theory of Generalized Locally Toeplitz Sequences: Theory and Applications—Vol II; Springer Monographs in Mathematics; Springer: New York, NY, USA, 2018. [Google Scholar]
- Garoni, C.; Speleers, H.; Ekström, S.E.; Reali, A.; Serra-Capizzano, S.; Hughes, T.J. Symbol-based analysis of finite element and isogeometric B-spline discretizations of eigenvalue problems: Exposition and review. Arch. Comput. Methods Eng. 2019, 26, 1639–1690. [Google Scholar] [CrossRef]
- Dorostkar, A.; Neytcheva, M.; Serra-Capizzano, S. Stefano Spectral analysis of coupled PDEs and of their Schur complements via generalized locally Toeplitz sequences in 2D. Comput. Methods Appl. Mech. Engrgy 2016, 309, 74–105. [Google Scholar] [CrossRef]
- Kiguradze, I.T.; Chanturia, T.A. Asymptotic Properties of Solutions of Nonautonomous Ordinary Differential Equations; Springer: Dordrecht, The Netherlands, 1993; Volume 89. [Google Scholar] [CrossRef]
- Al-Jaser, A.; Qaraad, B.; Bazighifan, O.; Iambor, L.F. Second-Order Neutral Differential Equations with Distributed Deviating Arguments: Oscillatory Behavior. Symmetry 2023, 11, 2605. [Google Scholar] [CrossRef]
- Chatzarakis, G.E.; Grace, S.R.; Jadlovska, I. Oscillation criteria for third-order delay differential equations. Adv. Differ. Equ. 2017, 2017, 1–11. [Google Scholar] [CrossRef]
- Saker, S. Oscillation Theory of Delay Differential and Difference Equations: Second and Third-Orders; LAP Lambert Academic Publishing: Saarland, Germany, 2010. [Google Scholar]
- Padhi, S.; Pati, S. Theory of Third-Order Differential Equations; Springer: New Delhi, India, 2014; p. xvi+507. [Google Scholar] [CrossRef]
- Al Themairi, A.; Qaraad, B.; Bazighifan, O.; Nonlaopon, K. Third-Order Neutral Differential Equations with Damping and Distributed Delay: New Asymptotic Properties of Solutions. Symmetry 2022, 14, 2192. [Google Scholar] [CrossRef]
- Agarwal, R.; Bohner, M.; Li, T.; Zhang, C. Oscillation of third-order nonlinear delay differential equations. Taiwan J. Math. 2013, 17, 545–558. [Google Scholar] [CrossRef]
- Aktaş, M.F.; Tiryaki, A.; Zafer, A. Oscillation criteria for third-order nonlinear functional differential equations. Appl. Math. Lett. 2010, 23, 756–762. [Google Scholar] [CrossRef]
- Qaraad, B.; Bazighifan, O.; Nofal, T.A.; Ali, A.H. Neutral differential equations with distribution deviating arguments: Oscillation conditions. J. Ocean Eng. Sci. 2022, 21, 19–35. [Google Scholar] [CrossRef]
- Cecchi, M.; Došlá, Z.; Marini, M. Disconjugate operators and related differential equations. Electron J. Qual. Theory Differ. Equ. 2000. [Google Scholar]
- Cecchi, M.; Došlá, Z.; Marini, M. Some properties of third order differential operators. Czechoslov. Math. J. 1997, 47, 729–748. [Google Scholar] [CrossRef]
- Jayaraman, G.; Padmanabhan, N.; Mehrotra, R. Entry flow into a circular tube of slowly varying cross-section. Fluid Dyn. Res. 1986, 1, 131. [Google Scholar] [CrossRef]
- Al Themairi, A.; Qaraad, B.; Bazighifan, O.; Nonlaopon, K. Third-Order New Conditions for Testing the Oscillation of Third-Order Differential Equations with Distributed Arguments. Symmetry 2022, 14, 2416. [Google Scholar] [CrossRef]
- Vreeke, S.A.; Sandquist, G.M. Phase space analysis of reactor kinetics. Nucl. Sci. Eng. 1970, 42, 295–305. [Google Scholar] [CrossRef]
- Qaraad, B.; AL Nuwairan, M. Asymptotic behavior of solutions of the third-order nonlinear advanced differential equations. AIMS Mathematics 2023, 8, 23800–23814. [Google Scholar] [CrossRef]
- Gyori, I.; Ladas, G. Oscillation Theory of Differential Equations with Applications; Clarendon Press: Oxford, UK, 1991. [Google Scholar]
- Agarwal, R.P.; Grace, S.R.; O’Regan, D. Oscillation Theory for Difference and Functional Differential Equations; Springer: Amsterdam, The Netherlands, 2000. [Google Scholar]
- Philos, C.G. On the existence of nonoscillatory solutions tending to zero at ∞ for differential equations with positive delay. Arch. Math. 1981, 36, 168–178. [Google Scholar] [CrossRef]
- Saker, S.H.; Džurina, J. On the oscillation of certain class of third-order nonlinear delay differential equations. Math. Bohem. 2010, 135, 225–237. [Google Scholar] [CrossRef]
- Tang, X.H. Oscillation for first order superlinear delay differential equations. J. Lond. Math. Soc. 2002, 65, 115–122. [Google Scholar] [CrossRef]
- Li, T.; Zhang, C.; Xing, G. Oscillation of third-order neutral delay differential equations. Abstr. Appl. Anal. 2012, 2012, 569201. [Google Scholar] [CrossRef]
- Zhang, C.; Li, T.; Sun, B.; Thandapani, E. On the oscillation of higher-order half-linear delay differential equations. Appl. Math. Lett. 2011, 24, 1618–1621. [Google Scholar] [CrossRef]
- Baculíková, B.; Dzurina, J. Oscillation of third-order functional differential equations. Electron. J. Qual. Theory Differ. Equ. 2010, 2010, 1–10. [Google Scholar] [CrossRef]
- Grace, S.R.; Agarwal, R.P.; Pavani, R.; Thandapani, E. On the oscillation of certain third order nonlinear functional differential equations. Appl. Math. Comput. 2008, 202, 102–112. [Google Scholar] [CrossRef]
- Li, T.; Zhang, C.; Baculíková, B.; Džurina, J. On the oscillation of third-order quasi-linear delay differential equations. Tatra Mt. Math. Publ. 2011, 48, 117–123. [Google Scholar] [CrossRef]
- Baculíková, B.; Džurina, J. Oscillation of third-order nonlinear differential equations. Appl. Math. Lett. 2011, 24, 466–470. [Google Scholar] [CrossRef]
- Ladde, G.S.; Lakshmikantham, V.; Zhang, B.G. Oscillation Theory of Differential Equations with Deviating Arguments; M. Dekker: New York, NY, USA, 1987; p. 110. [Google Scholar]
- Baculíková, B.; Džurina, J.; Rogovchenko, Y.V. Oscillation of third order trinomial delay differential equations. Appl. Math. Comput. 2012, 218, 7023–7033. [Google Scholar] [CrossRef]
- Grace, S.R. Oscillation criteria for third order nonlinear delay differential equations with damping. Opusc. Math. 2015, 35, 485–497. [Google Scholar] [CrossRef]
- Elabbasy, E.M.; Hassan, T.; Elmatary, B.M. Oscillation criteria for third order delay nonlinear differential equations. Electron. J. Qual. Theory Differ. Equ. 2012, 2012, 1–9. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Omar, N.; Serra-Capizzano, S.; Qaraad, B.; Alharbi, F.; Moaaz, O.; Elabbasy, E.M. More Effective Criteria for Testing the Oscillation of Solutions of Third-Order Differential Equations. Axioms 2024, 13, 139. https://doi.org/10.3390/axioms13030139
Omar N, Serra-Capizzano S, Qaraad B, Alharbi F, Moaaz O, Elabbasy EM. More Effective Criteria for Testing the Oscillation of Solutions of Third-Order Differential Equations. Axioms. 2024; 13(3):139. https://doi.org/10.3390/axioms13030139
Chicago/Turabian StyleOmar, Najiyah, Stefano Serra-Capizzano, Belgees Qaraad, Faizah Alharbi, Osama Moaaz, and Elmetwally M. Elabbasy. 2024. "More Effective Criteria for Testing the Oscillation of Solutions of Third-Order Differential Equations" Axioms 13, no. 3: 139. https://doi.org/10.3390/axioms13030139
APA StyleOmar, N., Serra-Capizzano, S., Qaraad, B., Alharbi, F., Moaaz, O., & Elabbasy, E. M. (2024). More Effective Criteria for Testing the Oscillation of Solutions of Third-Order Differential Equations. Axioms, 13(3), 139. https://doi.org/10.3390/axioms13030139