Hermite–Hadamard–Mercer Inequalities Associated with Twice-Differentiable Functions with Applications
Abstract
:1. Introduction
2. Main Results
3. Applications
- (1)
- The arithmetic mean
- (2)
- The harmonic mean
- (3)
- The logarithmic mean
- (4)
- The p-logarithmic mean for
4. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kirmaci, U.S. Inequalities for differentiable mappings and applications to special means of real numbers and to midpoint formula. Appl. Math. Comput. 2004, 147, 137–146. [Google Scholar] [CrossRef]
- Dragomir, S.S.; Agarwal, R.P. Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula. Appl. Math. Lett. 1998, 11, 91–95. [Google Scholar] [CrossRef]
- Set, E.; Akdemir, A.O.; Ozdemir, E.M. Simpson type integral inequalities for convex functions via Riemann-Liouville integrals. Filomat 2017, 31, 4415–4420. [Google Scholar] [CrossRef]
- Nie, D.; Rashid, S.; Akdemir, A.O.; Baleanu, D.; Liu, J.B. On some new weighted inequalities for differentiable exponentially convex and exponentially quasi-convex functions with applications. Mathematics 2019, 7, 727. [Google Scholar] [CrossRef]
- Mercer, A.M. A Variant of Jensen’s Inequality. J. Inequalities Pure Appl. Math. 2003, 4, 73. [Google Scholar]
- Moradi, H.R.; Furuichi, S. Improvement and generalization of some Jensen–Mercer-type inequalities. J. Math. Inequalities 2007, 14, 377–383. [Google Scholar] [CrossRef]
- Khan, M.A.; Husain, Z.; Chu, Y.M. New estimates for Csiszár divergence and Zipf–Mandelbrot entropy via Jensen– Mercer’s inequality. Complexity 2022, 2020, 8928691. [Google Scholar]
- Kian, M.; Moslehian, M.S. Refinements of the operator Jensen–Mercer inequality. Electron. J. Linear Algebra 2013, 26, 742–753. [Google Scholar] [CrossRef]
- Öğülmxuxş, H.; Sarikaya, M.Z. Hermite–Hadamard-Mercer-type inequalities for fractional integrals. Filomat 2021, 35, 2425–2436. [Google Scholar] [CrossRef]
- Wang, H.; Khan, J.; Khan, M.A.; Khalid, S.; Khan, R. The Hermite–Hadamard-Jensen–Mercer-type inequalities for Riemann–Liouville fractional integral. J. Math. 2021, 2021, 5516987. [Google Scholar] [CrossRef]
- Abdeljawad, T.; Ali, M.A.; Mohammed, P.O.; Kashuri, A. On inequalities of Hermite–Hadamard-Mercer-type involving Riemann-Liouville fractional integrals. AIMS Math. 2021, 6, 712–725. [Google Scholar] [CrossRef]
- Set, E.; Çelik, B.; Özdemir, M.E.; Aslan, M. Some New results on Hermite–Hadamard-Mercer-type inequalities using a general family of fractional integral operators. Fractal Fract. 2021, 5, 68. [Google Scholar] [CrossRef]
- Chu, H.H.; Rashid, S.; Hammouch, Z.; Chu, Y.M. New fractional estimates for Hermite–Hadamard-Mercer’s type inequalities. Alex. Eng. J. 2020, 59, 3079–3089. [Google Scholar] [CrossRef]
- Sial, I.B.; Patanarapeelert, N.; Ali, M.A.; Budak, H.; Sitthiwirattham, T. On some new Ostrowski-Mercer-type inequalities for differentiable functions. Axioms 2022, 11, 132. [Google Scholar] [CrossRef]
- Kara, H.; Ali, M.A.; Budak, H. Hermite–Hadamard–Mercer-type inclusions for interval-valued functions via Riemann–Liouville fractional integrals. Turk. J. Math. 2022, 46, 2193–2207. [Google Scholar] [CrossRef]
- Butt, S.I.; Yousaf, S.; Asghar, A.; Khan, K.A.; Moradi, H.R. New Fractional Hermite–Hadamard–Mercer Inequalities for Harmonically Convex Function. J. Funct. Spaces 2021, 2021, 5868326. [Google Scholar] [CrossRef]
- Sarikaya, M.Z.; Kiris, M.E. Some new inequalities of Hermite–Hadamard-type for s-convex functions. Miskolc Math. Notes 2015, 16, 491–501. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ali, M.A.; Sitthiwirattham, T.; Köbis, E.; Hanif, A. Hermite–Hadamard–Mercer Inequalities Associated with Twice-Differentiable Functions with Applications. Axioms 2024, 13, 114. https://doi.org/10.3390/axioms13020114
Ali MA, Sitthiwirattham T, Köbis E, Hanif A. Hermite–Hadamard–Mercer Inequalities Associated with Twice-Differentiable Functions with Applications. Axioms. 2024; 13(2):114. https://doi.org/10.3390/axioms13020114
Chicago/Turabian StyleAli, Muhammad Aamir, Thanin Sitthiwirattham, Elisabeth Köbis, and Asma Hanif. 2024. "Hermite–Hadamard–Mercer Inequalities Associated with Twice-Differentiable Functions with Applications" Axioms 13, no. 2: 114. https://doi.org/10.3390/axioms13020114
APA StyleAli, M. A., Sitthiwirattham, T., Köbis, E., & Hanif, A. (2024). Hermite–Hadamard–Mercer Inequalities Associated with Twice-Differentiable Functions with Applications. Axioms, 13(2), 114. https://doi.org/10.3390/axioms13020114