Sharp Second-Order Hankel Determinants Bounds for Alpha-Convex Functions Connected with Modified Sigmoid Functions
Abstract
1. Introduction and Definitions
2. Coefficient Bounds
3. Logarithmic Coefficients
4. Inverse Coefficients
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bieberbach, L. Über die Koeffizienten derjenigen Potenzreihen, welche eine schlichte Abbildung des Eintheitskreises vermitteln. Sitzungsber. Preuss. Akad. Wiss. Phys. Math. 1916, 138, 940–955. [Google Scholar]
- Löwner, K. Untersuchungen iiber schlichte konforme Abbildungen des Einheitskreises. Math. Ann. 1923, 89, 103–121. [Google Scholar] [CrossRef]
- Garabedian, P.R.; Schiffer, M. A proof of the Bieberbach conjecture for the fourth coefficient. J. Rational Mech. Anal. 1955, 4, 428–465. [Google Scholar] [CrossRef]
- Pederson, R.N.; Schiffer, M. A proof of the Bieberbach conjecture for the fifth coefficient. Arch. Ration. Mech. Anal. 1972, 45, 161–193. [Google Scholar] [CrossRef]
- Pederson, R.N. A proof of the Bieberbach conjecture for the sixth coefficient. Arch. Ration. Mech. Anal. 1968, 31, 331–351. [Google Scholar] [CrossRef]
- De Branges, L. A proof of the Bieberbach conjecture. Acta Math. 1985, 154, 137–152. [Google Scholar] [CrossRef]
- Brown, J.E.; Tsao, A. On the Zalcman conjecture for starlike and typically real functions. Math. Z. 1986, 191, 467–474. [Google Scholar] [CrossRef]
- Li, L.; Ponnusamy, S.; Qiao, J. Generalized Zalcman conjecture for convex functions of order α. Acta Math. Hung. 2016, 150, 234–246. [Google Scholar] [CrossRef]
- Ma, W.C. The Zalcman conjecture for close-to-convex functions. Proc. Am. Math. Soc. 1988, 104, 741–744. [Google Scholar] [CrossRef]
- Krushkal, S.L. Proof of the Zalcman conjecture for initial coefficients. Georgian Math. J. 2010, 17, 663–681. [Google Scholar] [CrossRef]
- Krushkal, S.L. A short geometric proof of the Zalcman and Bieberbach conjectures. arXiv 2014, arXiv:1408.1948. [Google Scholar]
- Ma, W. Generalized Zalcman conjecture for starlike and typically real functions. J. Math. Anal. Appl. 1999, 234, 328–339. [Google Scholar] [CrossRef]
- Mocanu, P.T. Une proprieté de convexité généralisée dans la théorie de la représentation conforme. Mathematica 1969, 11, 127–133. [Google Scholar]
- Acu, M.; Owa, S. On some subclasses of univalent functions. J. Inequal. Pure Appl. Math. 2005, 6, 70. [Google Scholar]
- Dziok, J.; Raina, R.K.; Sokół, J. On α-convex functions related to shell-like functions connected with Fibonacci numbers. Appl. Math. Comput. 2011, 218, 996–1002. [Google Scholar] [CrossRef]
- Singh, G.; Singh, G. Certain subclasses of alpha-convex functions with fixed point. J. Appl. Math. Inform. 2022, 40, 259–266. [Google Scholar]
- Mocanu, P.T.; Reade, M.O. On generalized convexity in conformal mappings. Rev. Roum. Math. Pures Appl. 1971, 16, 1541–1544. [Google Scholar]
- Goel, P.; Kumar, S. Certain class of starlike functions associated with modified sigmoid function. Bull. Malays. Math. Sci. Soc. 2019, 43, 957–991. [Google Scholar] [CrossRef]
- Costarelli, D.; Spigler, R. Approximation results for neural network operators activated by sigmoidal functions. Neural Netw. 2013, 44, 101–106. [Google Scholar] [CrossRef]
- Babu, K.; Edla, D. New algebraic activation function for multi-layered feed forward neural networks. IETE J. Res. 2016, 63, 71–79. [Google Scholar] [CrossRef]
- Jäntschi, L. Modelling of acids and bases revisited. Stud. Univ. Babes-Bolyai Chem. 2022, 67, 73–92. [Google Scholar] [CrossRef]
- Riaz, A.; Raza, M.; Thomas, D.K. Hankel determinants for starlike and convex functions associated with sigmoid functions. Forum Math. 2022, 34, 137–156. [Google Scholar] [CrossRef]
- Pommerenke, C. On the coefficients and Hankel determinants of univalent functions. J. Lond. Math. Soc. 1966, 1, 111–122. [Google Scholar] [CrossRef]
- Pommerenke, C. On the Hankel determinants of univalent functions. Mathematika 1967, 14, 108–112. [Google Scholar] [CrossRef]
- Fekete, M.; Szego, G. Eine bemerkung über ungerade schlichte funktionen. J. Lond. Math. Soc. 1933, 8, 85–89. [Google Scholar] [CrossRef]
- Janteng, A.; Halim, S.A.; Darus, M. Hankel determinant for starlike and convex functions. Int. J. Math. Anal. 2007, 1, 619–625. [Google Scholar]
- Janteng, A.; Halim, S.A.; Darus, M. Coefficient inequality for function whose derivative has a positive real part. J. Inequal. Pureand Appl. Math. 2006, 7, 50. [Google Scholar]
- Lee, S.K.; Ravichandran, V.; Supramaniam, S. Bounds for the second Hankel determinant of certain univalent functions. J. Inequal. Appl. 2013, 2013, 281. [Google Scholar] [CrossRef]
- Zaprawa, P. Second Hankel determinants for the class of typically real functions. Abstr. Appl. Anal. 2016, 2016, 3792367. [Google Scholar] [CrossRef]
- Riaz, A.; Raza, M. The third Hankel determinant for starlike and convex functions associated with lune. Bull. Sci. Math. 2023, 187, 103289. [Google Scholar] [CrossRef]
- Shi, L.; Shutaywi, M.; Alreshidi, N.; Arif, M.; Ghufran, S.M. The sharp bounds of the third-order Hankel determinant for certain analytic functions associated with an eight-shaped domain. Fractal Fract. 2022, 6, 223. [Google Scholar] [CrossRef]
- Barukab, O.M.; Arif, M.; Abbas, M.; Khan, S.A. Sharp bounds of the coefficient results for the family of bounded turning functions associated with a Petal-shaped domain. J. Funct. Space 2021, 2021, 5535629. [Google Scholar] [CrossRef]
- Marimuthu, K.; Jayaraman, U.; Bulboacă, T. Fekete-Szegö and Zalman functional estimates for subclasses of alpha-convex functions related to trigonometric functions. Mathematics 2024, 12, 234. [Google Scholar] [CrossRef]
- Pommerenke, C. Univalent Function. In Math Lehrbucher, Vandenhoeck and Ruprecht, Gottingen; Scientific Research: Irvine, CA, USA, 1975. [Google Scholar]
- Kwon, O.S.; Lecko, A.; Sim, Y.J. On the fourth coefficient of functions in the Carathéodory class. Comput. Methods Funct. Theory 2018, 18, 307–314. [Google Scholar] [CrossRef]
- Choi, J.H.; Kim, Y.C.; Sugawa, T. A general approach to the Fekete-Szegö problem. J. Math. Soc. Jpn. 2007, 59, 707–727. [Google Scholar] [CrossRef]
- Libera, R.J.; Zlotkiewicz, E.J. Coefficient bounds for the inverse of a function with derivative in P. Proc. Am. Math. Soc. 1983, 87, 251–257. [Google Scholar] [CrossRef]
- Kowalczyk, B.; Lecko, A. Second Hankel determinant of logarithmic coefficients of convex and starlike functions. Bull. Aust. Math. Soc. 2022, 105, 458–467. [Google Scholar] [CrossRef]
- Kowalczyk, B.; Lecko, A. Second Hankel determinant of logarithmic coefficients of convex and starlike functions of order alpha. Bull. Malays. Math. Sci. Soc. 2022, 45, 727–740. [Google Scholar] [CrossRef]
- Sunthrayuth, P.; Iqbal, N.; Naeem, M.; Jawarneh, Y.; Samura, S.K. The sharp upper bounds of the Hankel determinant on logarithmic coefficients for certain analytic functions connected with eight-shaped domain. J. Funct. Space 2022, 2022, 2229960. [Google Scholar] [CrossRef]
- Shi, L.; Arif, M.; Iqbal, J.; Ullah, K.; Ghufran, S.M. Sharp bounds of Hankel determinant on logarithmic coefficients for functions starlike with exponential function. Fractal Fract. 2022, 6, 645. [Google Scholar] [CrossRef]
- Sunthrayuth, P.; Aldawish, I.; Arif, M.; Abbas, M.; El-Deeb, S. Estimation of the second-order Hankel determinant of logarithmic coefficients for two subclasses of starlike functions. Symmetry 2022, 14, 2039. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Eker, S.S.; Şeker, B.; Çekiç, B. Second Hankel determinant of the logarithmic coefficients for a subclass of univalent functions. Miskolc Math. Notes 2024, 25, 479–488. [Google Scholar] [CrossRef]
- Guo, D.; Tang, H.; Zhang, J.; Xu, Q.; Li, Z. Hankel determinants for the logarithmic coefficients of a subclass of close-to-convex functions. J. Math. 2024, 1, 1315252. [Google Scholar]
- Allu, V.; Arora, V.; Shaji, A. On the second Hankel determinant of logarithmic coefficients for certain univalent functions. Mediter. J. Math. 2023, 20, 81. [Google Scholar] [CrossRef]
- Shi, L.; Arif, M.; Abbas, M.; Ihsan, M. Sharp bounds of Hankel determinant for the inverse functions on a subclass of bounded turning functions. Mediterr. J. Math. 2023, 20, 156. [Google Scholar] [CrossRef]
- Raza, M.; Riaz, A.; Thomas, D.K. The third Hankel determinant for inverse coefficients of convex functions. Bull. Aust. Math. Soc. 2024, 109, 94–100. [Google Scholar] [CrossRef]
- Kumar, K.S.; Rath, B.; Krishna, D.V. The sharp bound of the third Hankel determinant for the inverse of bounded turning functions. Contemp. Math. 2023, 4, 30–41. [Google Scholar]
- Rath, B.; Kumar, K.S.; Krishna, D.V. An exact estimate of the third Hankel determinants for functions inverse to convex functions. Mat. Stud. 2023, 60, 34–39. [Google Scholar] [CrossRef]
- Faisal, M.I.; Al-Shbeil, I.; Abbas, M.; Arif, M.; Alhefthi, R.K. Problems concerning coefficients of symmetric starlike functions connected with the sigmoid function. Symmetry 2023, 15, 1292. [Google Scholar] [CrossRef]
- Arif, M.; Rani, L.; Raza, M.; Zaprawa, P. Fourth Hankel determinant for the family of functions with bounded turning. J. Korean Math. Soci. 2018, 556, 1703–1711. [Google Scholar]
- Srivastava, H.M.; Arif, M.; Raza, M. Convolution properties of meromorphically harmonic functions defined by a generalized convolution q-derivative operator. AIMS Math. 2021, 6, 5869–5885. [Google Scholar] [CrossRef]
- Liu, L.; Zhai, J.; Liu, J.-L. Second Hankel determinant for a new subclass of bi-univalent functions related to the hohlov operator. Axioms 2023, 12, 433. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abbas, M.; Alhefthi, R.K.; Ritelli, D.; Arif, M. Sharp Second-Order Hankel Determinants Bounds for Alpha-Convex Functions Connected with Modified Sigmoid Functions. Axioms 2024, 13, 844. https://doi.org/10.3390/axioms13120844
Abbas M, Alhefthi RK, Ritelli D, Arif M. Sharp Second-Order Hankel Determinants Bounds for Alpha-Convex Functions Connected with Modified Sigmoid Functions. Axioms. 2024; 13(12):844. https://doi.org/10.3390/axioms13120844
Chicago/Turabian StyleAbbas, Muhammad, Reem K. Alhefthi, Daniele Ritelli, and Muhammad Arif. 2024. "Sharp Second-Order Hankel Determinants Bounds for Alpha-Convex Functions Connected with Modified Sigmoid Functions" Axioms 13, no. 12: 844. https://doi.org/10.3390/axioms13120844
APA StyleAbbas, M., Alhefthi, R. K., Ritelli, D., & Arif, M. (2024). Sharp Second-Order Hankel Determinants Bounds for Alpha-Convex Functions Connected with Modified Sigmoid Functions. Axioms, 13(12), 844. https://doi.org/10.3390/axioms13120844