Next Article in Journal
Application of Fuzzy Subordinations and Superordinations for an Analytic Function Connected with q-Difference Operator
Next Article in Special Issue
Closed-Form Meromorphic Solutions of High-Order and High-Dimensional Differential Equations
Previous Article in Journal
Certain Fixed-Point Results for (e,ψ,Φ)-Enriched Weak Contractions via Theoretic Order with Applications
Previous Article in Special Issue
Sharp Second-Order Hankel Determinants Bounds for Alpha-Convex Functions Connected with Modified Sigmoid Functions
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

On Certain Analytic Functions Associated with Nephroid Function

1
Department of Mathematics, COMSATS University Islamabad, Islamabad 44000, Pakistan
2
Department of Mathematics, “1 Decembrie 1918” University of Alba Iulia, 510009 Alba Iulia, Romania
3
Department of Mathematics, Technical University of Cluj-Napoca, 400114 Cluj-Napoca, Romania
*
Authors to whom correspondence should be addressed.
Axioms 2025, 14(2), 136; https://doi.org/10.3390/axioms14020136
Submission received: 20 December 2024 / Revised: 7 February 2025 / Accepted: 10 February 2025 / Published: 14 February 2025
(This article belongs to the Special Issue Recent Advances in Complex Analysis and Related Topics)

Abstract

:
The normalized analytic function Φ N ( z ) = 1 + z z 3 3 , which connects the open unit disk onto a bounded domain within the right half of a nephroid-shaped region, is associated with the bounded turning of functions denoted by R n . It calculates the sharp coefficient inequalities, which include the upper bound of the third Hankel determinant and Logarithmic coefficients related to the functions of the Φ N ( z ) class. This research mainly focuses on identifying solutions to specific coefficient-related problems for analytic functions within the domain of nephroid functions.

1. Introduction and Definitions

Let A represent the class of function f defined by
f ( z ) = z + n = 2 b n z n ( z E ) ,
where these functions are analytic in the unit disk E = z C : z < 1 . Let S represent a subclass of A that contains the univalent functions in E. For two functions, f and g, belonging to the set A, the function f is said to be subordinate to the function g, denoted as f g , if an analytic function w satisfying w ( 0 ) = 0 and | w ( z ) | < 1 for all z E exists, such that:
f ( z ) = g ( w ( z ) ) .
The class of functions with bounded turning, introduced by the Zaprawa subclass [1], can be defined in the following way
R = f S : f z Φ ( z ) ,
where Φ is the analytic function that satisfies R e ( Φ ( z ) ) > 0 for all z E . We study the analytic function Φ N ( z ) = 1 + z z 3 3 , which maps the domain E into the nephroid-shaped region. The nephroid curve is an important test case for studying the behavior of functions under geometric transformations in the complex plane. It helps researchers analyze how analytic functions map the unit disk to nephroid-shaped regions, allowing for the exploration of concepts such as starlikeness, convexity, and other geometric properties. This region is a nephroid shape symmetric to the real axis, as shown in Figure 1 below.
Using the above-mentioned function Φ n , we introduce the following class
R n = f S : f z Φ N ( z ) ,
for all z E .
The aim is to find the sharp bound for H 3 , 1 f and b 3 b 5 b 4 2 for the class R n .
For n 0 and q 1 , Noonan and Thomas [2] determined the q t h Hankel determinant of f A of the form (1) in 1976.
H q , n ( f ) = b n b n + 1 b n + q 1 b n + 1 b n + 2 b n + q b n + q 1 b n + q b n + 2 q 2 .
The estimation of | H 2 , 2 ( f ) | has been the main focus of research on the Hankel determinant. Selvaraj and Kumar’s [3] proved | H 2 , 2 ( f ) | 1 for the class C of convex functions. More results may be obtained from [4,5,6,7].
Many authors have explored these Hankel determinants for various subclasses of analytic and univalent functions. Sharp bounds for | H 3 , 1 ( f ) | were recently obtained utilizing a result from [8]; for more in depth studies on Hankel determinants, see [9,10,11,12,13,14].
H 2 , 1 ( f ) = b 1 b 2 b 2 b 3 = b 3 b 2 2 ,
and
H 2 , 2 ( f ) = b 2 b 3 b 3 b 4 = b 2 b 4 b 3 2 .
The determinant of Hankel H 2 , 1 ( f ) = b 3 b 2 2 .
In the current research, we study the Hankel determinant, represented by H 3 , 1 ( f ) , for the cases q = 3 and n = 1 .
H 3 , 1 ( f ) = b 1 b 2 b 3 b 2 b 3 b 4 b 3 b 4 b 5 .
When b 1 = 1 for f A , we obtain
H 3 , 1 ( f ) = 2 b 2 b 3 b 4 b 3 3 b 4 2 + b 5 b 3 b 5 b 2 2 .
For the whole class S A of univalent functions, as well as for its subclasses, determining the growth of the Hankel determinant H q , n ( f ) depending on q and n is a fascinating problem to study. For class S, Pommerenke obtained some significant results [15]. The growth problem can be resolved to an estimate of the Hankel determinant for the suggested subclasses of A for fixed values of q and n. Srivastava et al. [16] discovered the same bound of Hankel and Toeplitz determinants for q-starlike functions connected to the generalized conic domain, while Arif et al. [17] determined the bound of the third Hankel determinant for functions associated with the sine function. Murugusundaramoorthy and Bulboacă [18] found the upper bound of Hankel determinants for certain analytic functions connected with the shell-shaped region. Khan et al. [19] determined the bound of third-order Hankel determinants for logarithmic coefficients of starlike functions connected with the sine function; Riaz et al. [20,21,22] studied the Hankel determinants for starlike and convex functions associated with the sigmoid function, lune, and cardioid domain; and Raza et al. [23] recently studied Hankel determinants for starlike functions connected with the symmetric Booth Lemniscate in 2022.
The logarithmic coefficients of f S , represented by γ n = γ n ( f ) , are defined by the series expansion as follows:
log f ( z ) z = 2 n = 1 γ n z n .
The third logarithmic coefficient in certain subclasses of close-to-convex functions was studied by Cho et al. [24], while Ali et al. [25] studied the logarithmic coefficients of specific close-to-convex functions. For a function f given by (1), the logarithmic coefficients are as follows:
γ 1 = 1 2 b 2 ,
γ 2 = 1 2 b 3 1 2 b 2 2 ,
γ 3 = 1 2 b 4 b 2 b 3 + 1 3 b 2 2 ,
γ 4 = 1 2 b 5 b 2 b 4 + b 2 2 b 3 1 2 b 3 2 1 4 b 2 4 ,
γ 5 = 1 2 b 6 b 2 b 5 b 3 b 4 + b 2 b 3 2 + b 2 2 b 4 b 2 3 b 3 + 1 5 b 2 5 .
Based on all of the above ideas, we propose studying the Hankel determinant, where its entries are derived from the logarithmic coefficients of f S .
H q , n ( f ) = γ n γ n + 1 γ n + q 1 γ n + 1 γ n + 2 γ n + q γ n + q 1 γ n + q γ n + 2 q 2 .
From the above, it is easy to conclude that
H 2 , 1 ( f ) = γ 1 γ 3 γ 2 2 ,
H 2 , 2 ( f ) = γ 2 γ 4 γ 3 2 .
The main aim of this article is to determine upper bounds for H 3 , 1 ( f ) for the class of nephroid functions.
Definition 1.
Let P denote the set of all functions p that are analytic in E and satisfy the condition R e ( p ( z ) ) 0 . These functions have the following series representation.
p ( z ) = 1 + n = 1 c n z n , z E .

2. A Set of Lemmas

Lemma 1.
If the series representation of the function p P is as defined in (10), then
c n + k λ c n c k 2 max 1 , 2 λ 1 = 2 for 0 λ 1 ; 2 2 λ 1 otherwise .
and
c n 2 for n 1 .
The proofs for two sharp inequalities (11) and (12) and can be obtained [26,27], respectively.
Lemma 2
([8]). If the series representation of the function p P is as defined in (10) and if B 0 , 1 with B ( 2 B 1 ) D B , then
c 3 2 B c 1 c 2 + D c 1 3 2 .
Lemma 3.
If the series representation of the function p P is as defined in (10), then x, δ , ρ E ¯ = z C : z 1 , we obtain
2 c 2 = m x + c 2 ,
4 c 3 = m x 2 c + 2 m x c + 2 m ( 1 | x | 2 ) δ + c 3 ,
8 c 4 = 4 x + x 2 3 x + 3 c 2 m x 4 m 1 | x | 2 ρ ( 1 | δ | 2 ) + x 1 δ c + δ 2 x ¯ + c 4 .
where m = ( 4 c 2 ) , we can use the formula for c 2 within [26]. Libera and Zlotkiewicz [28] are recognized with the formula for c 3 , while [29] for the formula of c 4 .
Lemma 4
([30]). If the series representation of the function p P is as defined in (10) and if η , a , α and β satisfies the inequality conditions 0 < α < 1 , 0 < a < 1 , and
8 ( α ( b + α ) β ) 2 + ( α β 2 η ) 2 1 b b + α ( β 2 b α ) 2 ( 1 α ) 4 b α 2 ( 1 α ) 2 ( 1 b ) ,
then,
η c 1 4 + b c 2 2 + 2 α c 1 c 3 3 2 β c 1 2 c 2 c 4 2 .

3. Third Hankel Determinant for the Class R n

In this section, we explore the sharp bound of the third-order Hankel determinant for f R n .
Theorem 1.
If the series representation of the function f R n as given in (1), then
H 3 , 1 ( f ) 1 144 .
The bound is sharp, and its sharpness can be attained from
f ( z ) = 0 z 1 + t t 3 3 d t = z + 1 2 z 2 1 12 z 4 + . . . .
Proof. 
Let f R n . Then,
f ( z ) 1 + z z 3 3 .
If p P , then
p ( z ) = 1 + w ( z ) 1 w ( z ) = 1 + c 1 z + c 2 z 2 + c 3 z +
Using (18), we obtain
f ( z ) = 1 + 1 2 c 1 z + ( 1 2 c 2 1 4 c 1 2 ) z 2 + ( 1 2 c 3 1 2 c 1 c + 1 12 c 1 3 ) z 3 + 1 2 c 1 c 3 + 1 4 c 1 2 c 2 + 1 2 c 4 1 4 c 2 2 z 4 + .
Considering that the series is defined in (1), it implies that
f ( z ) = 1 + 2 b 2 z + 3 b 3 z 2 + 4 b 4 z 3 + .
Comparing (20) and (19), we have
b 2 = 1 4 c 1 ,
b 3 = 1 6 c 2 1 12 c 2 ,
b 4 = 1 8 c 3 1 8 c 1 c + 1 48 c 1 3 ,
b 5 = 1 10 c 1 c 3 + 1 20 c 1 2 c 2 + 1 10 c 4 1 20 c 2 2 .
Substituting the expressions (21)–(24) into (2) and setting c 1 = c , we have
H 3 , 1 ( f ) = 1 L 936 c c 2 c 3 25 c 6 448 c 2 3 + 780 c 2 c 2 2 312 c 2 c 4 864 c 3 c 3 360 c 2 c 3 540 c 3 2 + 576 c 2 c 4 540 c 4 504 c 2 c 4 + 1080 c 2 c 3 + 360 c 5 ,
where L = 34560 . Now, letting c 1 = c and m = ( 4 c 2 ) , we obtain
c 2 = 1 2 m x + c 2 , c 3 = 1 4 m x 2 c + 2 m x c + 2 m ( 1 | x | 2 ) δ + c 3 , a n d c 4 = 1 8 4 x + x 2 3 x + 3 c 2 m x 4 m 1 | x | 2 ρ ( 1 | δ | 2 ) + x 1 δ c + δ 2 x ¯ + c 4 .
Then, from (25), we have
H 3 , 1 ( f ) = 1 L 11 4 c 6 420 c 4 + 9 x δ c 3 + 20 c 3 + 135 ( 4 c 2 ) 2 x 2 c ( 1 x 2 ) δ 36 ( 4 c 2 ) 2 x c ( 1 x 2 ) δ + 88 ( 4 c 2 ) x 3 9 δ c 3 + 36 δ c 2 9 ρ c 2 + 36 c ρ + 111 c 5 + 234 c 2 ( 4 c 2 ) 2 x 2 + 45 2 ( 4 c 2 ) x 2 c 4 195 ( 4 c 2 ) x c 2 36 ( 4 c 2 ) c 3 x 3 + 135 ( 4 c 2 ) 2 x 3 c 2 + 36 δ 2 x 2 ( 4 c 2 ) 144 ( 4 c 2 ) 2 ( 1 x 2 ) x 36 δ c 2 x 45 ( 4 c 2 ) x 2 c 3 + 144 c ( 4 c 2 ) ( 1 x 2 ) + 9 δ 2 x c 2 + 138 ( 4 c 2 ) x c 3 + 75 ( 4 c 2 ) x 2 c 2 48 ( 4 c 2 ) x 2 c 135 ( 4 c 2 ) ( 1 x 2 ) 2 δ 2 225 ( 4 c 2 ) x 3 c 2 36 c δ 2 x 36 ρ ( 4 c 2 ) x 36 c 2 ( 4 c 2 ) ( 1 x 2 ) + 9 ( 4 c 2 ) c 4 x 3 + 87 ( 4 c 2 ) x c 4 + 36 δ c x 2 ( 4 c 2 ) 99 c 3 ( 4 c 2 ) ( 1 x 2 ) δ + 306 c 2 ( 4 c 2 ) ( 1 x 2 ) δ 36 x c ( 4 c 2 ) δ + 9 4 ( 4 c 2 ) x 4 c 2 .
Since m = ( 4 c 2 ) , it follows that
H 3 , 1 ( f ) = 1 L m 0 ( c , x ) + m 1 ( c , x ) δ + m 2 ( c , x ) δ 2 + Π ( c , x , δ ) ρ ,
where ρ , x, δ E ¯ , and
m 0 ( c , x ) = ( 4 c 2 ) 9 4 c 2 + 88 x 3 + 45 2 x 2 c 4 195 x c 2 36 c 3 x 3 45 x 2 c 3 + 138 x c 3 48 x 2 c + 75 x 2 c 2 225 x 3 c 2 + 9 c 4 x 3 + 87 x c 4 + ( 4 c 2 ) 234 c 2 x 2 + 135 x 3 c 2 11 4 c 6 + 111 c 5 420 c 4 + 20 c 3 ,
m 1 ( c , x ) = ( 4 c 2 ) 135 ( 4 c 2 ) x 2 c ( 1 x 2 ) 36 ( 4 c 2 ) x c ( 1 x 2 ) 99 c 3 ( 1 x 2 ) + 306 c 2 ( 1 x 2 ) 36 x c + 36 c x 2 + 9 x c 3 9 c 3 + 36 c 2 36 c 2 x ,
m 2 ( c , x ) = ( 4 c 2 ) 36 δ 2 x 2 135 ( 1 x 2 ) 2 + 9 x c 2 36 c x ,
and
Π ( c , x , δ ) = 9 c 2 + 4 c 4 ( 4 c 2 ) x .
Taking | ρ | 1 and replacing | δ | by y and | x | by x, one obtains
| H 3 , 1 ( f ) | 1 L | ( m 0 ( c , x ) | + | m 1 ( c , x ) | y + | m 2 ( c , x ) | y 2 + | Π ( c , x , δ ) | 1 L ( f ( c , x , y ) ) ,
where
f ( c , x , y ) = n 0 ( c , x ) + n 1 ( c , x ) y + n 2 ( c , x ) y 2 + n 3 ( c , x ) ( 1 y 2 ) ,
with
n 0 ( c , x ) = ( 4 c 2 ) 9 4 c 2 + 88 x 3 + 45 2 x 2 c 4 + 195 x c 2 + 36 c 3 x 3 + 45 x 2 c 3 + 138 x c 3 + 48 x 2 c + 75 x 2 c 2 + 225 x 3 c 2 + 9 c 4 x 3 + 87 x c 4 + ( 4 c 2 ) 234 c 2 x 2 + 135 x 3 c 2 + 11 4 c 6 + 111 c 5 + 420 c 4 + 20 c 3 , n 1 ( c , x ) = ( 4 c 2 ) 135 ( 4 c 2 ) x 2 c ( 1 x 2 ) + 36 ( 4 c 2 ) x c ( 1 x 2 ) + 99 c 3 ( 1 x 2 ) + 306 c 2 ( 1 x 2 ) + 36 x c + 36 c x 2 y + 9 x c 3 y + 9 c 3 y + 36 c 2 y + 36 c 2 x y , n 2 ( c , x ) = ( 4 c 2 ) 36 2 x 2 + 135 ( 1 x 2 ) 2 y 2 + 9 x c 2 y 2 + 36 c x y 2 , a n d n 3 ( c , x ) = 9 c 2 + 4 c + 4 ( 4 c 2 ) x 1 y 2 .
Then, the partial derivative of the function (27) by ‘y’, is given by
f y = 36 c ( 4 c 2 ) x + 36 ( 4 c 2 ) x 2 c + 99 c 3 ( 4 c 2 ) ( 1 x 2 ) + 306 c 2 ( 4 c 2 ) ( 1 x 2 ) + 72 c y x + 18 y c 2 x + 36 c 2 x + 270 ( 4 c 2 ) ( 1 x 2 ) 2 y + 9 c 3 x + 72 y x 2 ( 4 c 2 ) + 504 c ( 4 c 2 ) 2 x ( 1 x 2 ) + 135 ( 4 c 2 ) 2 x 2 c ( 1 x 2 ) + 9 c 3 + 36 c 2 .
Taking f y = 0 , we have
y = c 45 c 2 + 34 c 3 + 11 c 4 + 451 c 2 x 4 c x 912 x + 168 c 2 x 2 + 136 x 2 c 26 c 4 x 2 34 x 2 c 3 + 240 x 4 120 c 2 x 4 + 15 x 4 c 4 + 896 x 3 448 c 2 x 3 56 c 4 x + 56 c 4 x 3 256 x 2 140 c . 2 ( c 2 x 60 + 104 x 2 60 x 4 + 15 c 2 26 c 2 x 2 + 15 c 2 x 4 4 c x ) : = y 1 .
For y 1 to belong to 0 , 1 , it is possible only if
45 c 3 34 c 4 11 c 5 451 c 3 x + 4 c 2 x + 912 c x 168 c 3 x 2 136 x 2 c 2 + 26 c 5 x 2 + 34 x 2 c 4 240 x 4 c + 120 c 3 x 4 15 x 4 c 5 896 x 3 c + 448 c 3 x 3 + 56 c 5 x 56 c 5 x 3 + 256 x 2 c 140 c 2 < 2 ( c 2 x 60 + 104 x 2 60 x 4 + 15 c 2 26 c 2 x 2 + 15 c 2 x 4 4 c x ) ,
and
c 2 > 26 c 5 x 2 + 15 x 4 c 5 56 c 5 x + 56 c 5 x 3 + 11 c 5 + 34 c 4 34 c 4 x 2 + 451 c 3 x 448 c 3 x 3 + 168 x 2 c 3 120 x 4 c 3 45 c 3 + 896 c x 3 912 c x + 240 x 4 c 256 x 2 c 140 136 x 2 + 4 x .
Suppose,
g ( x ) = 26 c 5 x 2 + 15 x 4 c 5 56 c 5 x + 56 c 5 x 3 + 11 c 5 + 34 c 4 34 c 4 x 2 + 451 c 3 x 448 c 3 x 3 + 168 x 2 c 3 120 x 4 c 3 45 c 3 + 896 c x 3 912 c x + 240 x 4 c 256 x 2 c 140 136 x 2 + 4 x .
This gives
g ( x ) = 31920 c + 45920 c x 1020 c 5 x 3 16320 c x 3 + 2896 x 2 c + 181 c 5 x 2 1448 c 3 x 2 22960 c 3 x + 2870 c 5 x + 45920 c x 31920 c 34 c 4 + 15830 c 3 1971 c 5 = h ( x ) .
Since g ( x ) < 0 for x ( 0 , 1 ) , as can be seen from the graph of h ( x ) in Figure 2.
It follows that g ( x ) decreases in ( 0 , 1 ) . Therefore, c 2 > 6 c 3 32 c 8 , and calculation shows that f has no critical points in ( 0 , 2 ) × ( 0 , 1 ) × ( 0 , 1 ) . As a result, (28) does not hold for all x ( 0 , 1 ) . To determine the value of c, we consider the function to be greater than zero. In the original function, we need to substitute the minimum value of the original function. Proper calculation of time is possible. If you have the interval x ( 0 , 1 ) or if you restrict the interval to a certain number, substitute that number into g ( x ) . The value of c 2 obtained from both the original interval x ( 0 , 1 ) and the restricted interval will be the same. In that case, the inequality will still hold, and a critical point will exist. There is no such number that, when restricting the interval, would cause the inequality to be unsatisfied.
Next, we will explore the maxima of f ( c , x , y ) within the interiors of all six faces of Δ . Using c = 0 in (27), we obtain
p 1 ( x , y ) = f ( 0 , x , y ) = 2448 x 1504 x 3 936 y 2 x 2 + 540 y 2 + 540 y 2 x 4 .
Consequently, ( x , y ) belongs to ( 0 , 1 ) × ( 0 , 1 ) , we have not found any maxima for f ( 0 , x , y ) . If we take c = 2 in (27), we obtain
f ( 2 , x , y ) = 10716 + 108 y 2 x + 216 y x + 216 y .
Putting x = 0 in (27), we obtain
p 2 ( x , y ) = f ( c , 0 , y ) = 405 y c 3 99 y c 5 + 1260 y c 2 306 y c 4 + 612 c 124 c 3 + 384 c 4 + 153 c 2 + 111 c 5 + 11 4 c 6 + 540 y 2 135 y 2 c 2 .
By solving p 2 y = 0 and p 2 c = 0 , the critical point if p 2 y = 0 , we have
y = c 2 ( 45 c + 11 c 3 140 + 34 c 2 ) 30 ( c 2 4 ) : = y 0 .
Further, p 2 c = 0 , gives
1215 y c 2 495 y c 4 + 2520 y c 1224 y c 3 + 612 372 c 2 + 1536 c 3 + 306 c + 555 c 4 + 33 2 c 5 270 y 2 c = 0 .
By inserting (31) into the above equation, we have
97920 38898 c 7 5601 c 9 80892 c 8 + 1452 c 11 + 48960 c 249120 c 3 108480 c 2 253320 c 4 + 211440 c 5 + 266460 c 6 + 7854 c 10 = 0 .
Now, solving for c ( 0 , 2 ) , we obtain c 1.693 . Therefore, no optimal solution exists for f ( c , x , y ) in ( 0 , 2 ) × ( 0 , 1 ) . When x = 1 in (27), we obtain
p 3 ( c , y ) = f ( c , 1 , y ) = 944 + 996 c + 7936 c 2 + 2864 c 3 660 c 5 + 5 4 c 6 + 72 y c 2 6459 4 c 4 54 y c 3 27 y 2 c 2 + 36 c y 2 + 144 y 2 + 288 y c .
If p 3 has no critical point, then p 3 c = 0 . Considering y = 0 in (27), we have
p 4 ( c , x ) = f ( c , x , 0 ) = 384 x 2 c + 279 x 4 c 2 + 1896 c 3 x + 2448 x + 612 c 1504 x 3 408 c 2 x + 153 c 2 124 c 3 + 111 c 5 + 11 4 c 6 + 384 c 4 + 948 x 2 c 3 261 c 5 x 2 1605 c 4 x 2 + 144 c 3 x 3 474 c 5 x 36 c 5 x 3 + 3900 c 2 x 2 + 4012 c 2 x 3 + 126 c 6 x 3 + 315 2 c 6 x 2 279 4 x 4 c 4 285 c 6 x + 1089 c 4 x 1413 c 4 x 3 .
If we take
p 4 c = 0 and p 4 x = 0 ,
The solution does not exist in 0 , 2 × 0 , 1 .
Taking y = 1 in (27), we obtain
p 5 ( c , x ) = f ( c , x , 1 ) = 540 + 2688 x 2 c + 144 x 4 c 2 2163 c 3 x + 2448 x + 612 c 1504 x 3 363 c 2 x + 1278 c 2 936 x 2 + 281 c 3 + 12 c 5 + 11 4 c 6 + 78 c 4 + 8244 c x 564 x 2 c 3 27 c 5 x 2 1299 c 4 x 2 2160 x 4 c + 1080 x 4 c 3 135 x 4 c 5 8064 c x 3 + 4176 c 3 x 3 + 30 c 5 x 540 c 5 x 3 + 2910 c 2 x 2 + 4012 c 2 x 3 + 126 c 6 x 3 + 315 2 c 6 x 2 279 4 x 4 c 4 285 c 6 x + 1089 c 4 x 1413 c 4 x 3 + 540 x 4 .
If we take
p 5 x = 0 and p 5 c = 0 ,
The solution does not exist in 0 , 2 × 0 , 1 . Finally, we evaluate the maximum f ( c , x , y ) close to Δ at the 12 edges.
When we substitute x = 0 and y = 0 in (27), we have
p 6 ( c ) = f ( c , 0 , 0 ) = 612 c + 153 c 2 124 c 3 + 111 c 5 + 11 4 c 6 + 384 c 4 .
It can be observed that p 6 c > 0 for c [ 0 , 2 ] , indicating that p ( c ) is an increasing function on the interval [ 0 , 2 ] . Therefore, it reaches its maximum value at c = 2 .
f ( c , 0 , 0 ) = 10716 .
Put x = 0 , y = 1 in (27), we obtain
p 7 ( c ) = f ( c , 0 , 1 ) = 11 4 c 6 + 281 c 3 + 12 c 5 + 540 + 78 c 4 + 1278 c 2 + 612 c + 540 .
It can be observed that p 7 c > 0 for c [ 0 , 2 ] , indicating that p ( c ) is an increasing function on the interval [ 0 , 2 ] . Therefore, it reaches its maximum value at c = 2 .
f ( c , 0 , 1 ) 10932 .
Put c = 0 , x = 0 in (27), we obtain
p 8 ( y ) = f ( 0 , 0 , y ) = 540 y 2 .
Clearly, p 8 c > 0 is obvious, while p 8 ( y ) increases for 0 , 1 , finding its maximum value at y = 1 , we obtain
f ( 0 , 0 , y ) 540 .
Put x = 1 , y = 1 and y = 0 in (27), we obtain
p 9 ( c ) = f ( c , 1 , 1 ) = 5 4 c 6 660 c 5 + 1320 c + 2810 c 3 6459 4 c 4 + 7981 c 2 + 1088 .
p 9 ( c ) = f ( c , 1 , 0 ) = 5 4 c 6 660 c 5 + 996 c + 2864 c 3 6459 4 c 4 + 7936 c 2 + 944 .
a n d f ( c , 1 , 1 ) f ( c , 1 , 0 ) .
It can be observed that p 9 c > 0 for c [ 0 , 2 ] , indicating that p ( c ) is an decreasing function on the interval [ 0 , 2 ] . Therefore, it reaches its maximum value at c = 1.641 .
f ( c , 1 , 1 ) = p 9 ( c ) 17624.39191 ,   f ( c , 1 , 0 ) = p 9 ( c ) 17066.15522 .
Put c = 0 , x = 1 in (27), we obtain
p 10 ( y ) = f ( 0 , 1 , y ) = 944 + 144 y 2 .
Put c = 2 , x = 0 , x = 1 and y = 1 , y = 0 in (27), we obtain
f ( 2 , 0 , y ) f ( 2 , 1 , y ) f ( 2 , x , 1 ) f ( 2 , x , 0 ) .
Put c = 0 , y = 0 in (27), we obtain
p 11 ( x ) = f ( 0 , x , 0 ) = 2448 x 1952 x 3 .
The maximum value of the function is x = 1.112 . That is,
f ( 0 , x , 0 ) 654.120460 .
Put c = 0 , y = 1 in (27), we obtain
p 12 ( x ) = f ( 0 , x , 1 ) = 540 936 x 2 + 540 x 4 + 2448 x 1504 x 3 .
We observe p 12 x > 0 , so p 12 reaches its maximum value at x = 0 , so we have
f ( 0 , x , 1 ) 540 .
By using (26), we obtain
H 3 , 1 ( f ) 1 L ( f ( c , x , y ) ) 1 144 .
Hence, achieving the required result. □
Theorem 2.
If the series representation of the function f R n as given in (1), then
| b 3 b 5 b 4 2 | 1 144 .
The following function preserves equality and gives the best possible result.
f ( z ) = 0 z 1 + t t 3 3 d t = z + 1 2 z 2 1 12 z 4 + .
Proof. 
Substituting (22)–(24) with c 1 = c , we have
b 3 b 5 b 4 2 = 1 11520 168 c c 2 c 3 36 c 2 c 2 2 + 192 c 2 c 4 96 c 2 3 + 36 c 3 c 3 + 12 c 4 c 2 96 c 2 c 4 5 c 6 180 c 3 2 .
By applying the resulting form of Equations (14)–(16), with m = ( 4 c 2 ) , we have
168 c c 2 c 3 = 21 m 2 x 3 c 2 + 42 m 2 x 2 c 2 + 42 c m 2 x δ ( 1 x 2 ) + 63 m x c 4 21 c 4 x 2 m + 42 c 3 δ m ( 1 x 2 ) + 21 c 6 , 36 c 2 c 2 2 = 9 m 2 x 2 c 2 18 m x c 4 9 c 6 , 192 c 2 c 4 = 48 m 2 x 3 + 12 m 2 c 2 x 4 36 m 2 c 2 x 3 + 36 x 2 m 2 c 2 48 x m 2 + 48 x 3 m 2 12 x m ρ ( 1 | δ | 2 ) + 12 x 2 m δ c 12 x m δ c + 12 x 2 m δ 2 + 12 x m c 4 + 48 c 2 x 2 m + 12 c 4 x 3 m 36 c 4 x 2 m + 36 c 4 x m 48 c 2 m + 48 c 2 m x 2 12 c 2 ρ ( 1 | δ | 2 ) + 12 c 3 δ x 12 c 3 δ + 12 c 2 δ 2 x + 12 c 6 , 96 c 2 3 = 12 m 3 x 3 36 m 2 x 2 c 2 36 m x c 4 12 c 6 , 36 c 3 c 3 = 9 x 2 c 4 m + 18 x m c 4 + 18 c 3 δ m ( 1 x 2 ) + 9 c 6 , 12 c 4 c 2 = 6 m x c 4 + 6 c 6 , 96 c 2 c 4 = 96 m x 2 c 2 12 m x 3 c 4 + 36 m x 2 c 4 36 m x c 4 + 48 m c 2 + 12 ρ ( 1 | δ | 2 ) c 2 12 δ x c 3 + 12 δ c 3 12 x c 2 δ 2 12 c 6 , a n d 180 c 3 2 = 45 4 c 6 45 2 x 2 c 4 m + 45 x 4 c m 2 δ + 45 δ m x 2 c 3 45 x m c 4 45 4 x 4 c 2 m 2 90 x c δ m 2 45 x 3 c 2 m 2 45 δ c x 2 m 2 + 90 δ c x 3 m 2 45 x c 2 m 2 45 m δ 2 + 90 m δ 2 x 2 45 m δ c 3 45 m δ 2 x 4 .
By inserting the above expressions in (34), we have
b 3 b 5 b 4 2 = 1 L 21 m 2 x 3 c 2 + 42 m 2 x 2 c 2 + 42 δ c m 2 x ( 1 x 2 ) + 21 m x c 4 21 m x 2 c 4 + 42 m x c 4 + 42 δ m c 3 ( 1 x 2 ) + 21 c 6 9 m x 2 c 2 18 m x c 4 9 c 6 + 48 m 2 x 3 + 12 m 2 x 4 c 2 36 m 2 c 2 x 3 + 36 x 2 m 2 c 2 48 x m 2 + 48 m 2 x 3 12 x m ρ ( 1 | δ | 2 ) + 12 x 2 m δ c 12 x m δ c + 12 m x 2 δ 2 + 12 x m c 4 + 48 c 2 x 2 m + 12 x 3 c 4 m 36 c 4 x 2 m + 36 c 4 x m 48 c 2 m + 48 c 2 m x 2 12 c 2 ρ ( 1 | δ | 2 ) + 12 c 3 δ x 12 c 3 δ + 12 c 2 δ 2 x + 12 c 6 12 m x 3 36 m x 2 c 2 36 m x c 4 12 c 6 9 x 2 c 4 m + 18 x c 4 m + 18 c 3 δ m ( 1 x 2 ) 9 c 6 + 6 m x c 4 + 6 c 6 96 m x 2 c 2 12 m x 3 c 4 + 36 c 4 m x 2 36 m x c 4 + 48 m c 2 + 12 ρ ( 1 | δ | 2 ) c 2 12 x δ c 3 + 12 c 3 δ 12 c 2 δ 2 x 12 c 6 5 c 6 45 4 c 6 + 45 2 x 2 c 4 m + 45 x 4 c m 2 δ + 45 x 2 m δ c 3 45 x m c 4 45 4 x 4 c 2 m 2 90 x c m 2 δ 45 x 3 c 2 m 2 + 45 x 2 c m 2 δ + 90 x 3 c m 2 δ 45 x c 2 m 2 45 m 2 δ 2 + 12 m δ 2 x 2 45 m δ c 3 45 m δ 2 x 4 .
As m = ( 4 c 2 ) , it follows that
b 3 b 5 b 4 2 = 1 11520 b 0 ( c , x ) + b 1 ( c , x ) δ + b 2 ( c , x ) δ 2 + b 3 ( c , x , δ ) ρ ,
where δ , ρ , x E ¯ , and
b 0 ( c , x ) = 85 4 c 6 + 159 2 c 4 x 2 + 33 c 4 x 48 c 2 12 x 3 36 x c 4 27 x c 4 93 x 2 c 2 + 12 x c 4 + 48 c 2 x 2 + 12 c 4 x 3 48 c 2 9 x 2 c 4 + 18 x c 4 12 x 3 c 4 + 36 c 4 x 2 + ( 4 c 2 ) ( 21 x 3 c 2 + 78 x 2 c 2 48 x + 96 x 3 + 3 4 c 2 x 4 81 c 2 x 3 45 x c 2 ) ( 4 c 2 ) , b 1 ( c , x ) = 60 c 3 ( 1 x 2 ) 12 x c + 12 x 2 c + 45 x 2 c 3 45 c 3 + ( 4 c 2 ) ( 45 c x 4 45 x 2 c 90 x c + 42 c x ( 1 x 2 ) + 90 x 3 c ) ( 4 c 2 ) , b 2 ( c , x ) = 45 + 102 x 2 45 x 4 ( 4 c 2 ) , a n d b 3 ( c , x ) = 12 ( 1 | δ | 2 ) ( 4 c 2 ) x .
If we apply | ρ | 1 and then by substituting | δ | for y and | x | by x, it can be concluded that
| b 3 b 5 b 4 2 | 1 11520 | b 0 ( c , x ) | + | b 1 ( c , x ) | y + b 2 ( c , x ) | y 2 + | b 3 ( c , x , δ ) | 1 11520 ( f ( c , x , y ) ) ,
where
f ( c , x , y ) = h 0 ( c , x ) + h 1 ( c , x ) y + h 2 ( c , x ) y 2 + h 3 ( c , x ) ( 1 y 2 ) ,
with
h 0 ( c , x ) = 85 4 c 6 + 159 2 c 4 x 2 + 33 c 4 x + 48 c 2 + 12 x 3 + 36 x c 4 + 27 x c 4 + 93 x 2 c 2 + 12 x c 4 + 48 c 2 x 2 + 12 c 4 x 3 + 48 c 2 + 9 x 2 c 4 + 18 x c 4 + 12 x 3 c 4 + 36 c 4 x 2 + ( 4 c 2 ) ( 21 x 3 c 2 + 78 x 2 c 2 + 48 x + 96 x 3 + 3 4 c 2 x 4 + 81 c 2 x 3 + 45 x c 2 ) ( 4 c 2 ) , h 1 ( c , x ) = 60 c 3 ( 1 x 2 ) + 12 x c + 12 x 2 c + 45 x 2 c 3 + 45 c 3 + ( 4 c 2 ) ( 45 c x 4 + 45 x 2 c + 90 x c + 42 c x ( 1 x 2 ) + 90 x 3 c ) ( 4 c 2 ) , h 2 ( c , x ) = 45 + 102 x 2 + 45 x 4 ( 4 c 2 ) , a n d h 3 ( c , x ) = 12 ( 1 | δ | 2 ) ( 4 c 2 ) x .
Differentiating (36) w.r.t ‘y’, using f y = 0 , we obtain
f y = 720 x 4 c + 768 x 3 c + 45 c 5 x 4 + 48 c 5 x + 48 c 5 x 3 + 90 y c 4 360 c 3 x 4 384 c 3 x 3 + 2976 x 2 y + 1440 y x 4 + 180 x 2 y c 4 720 y c 2 1464 x 2 y c 2 720 y c 2 x 4 + 96 x y 24 x y c 2 + 1440 y + 120 c 3 + 768 x 2 c 372 x 3 c 2 + 90 y x 4 c 4 + 816 x c + 45 x 2 c 5 396 x c 3 30 c 5 .
Taking f y = 0 , we have
y = c 60 x 4 64 x 3 + 15 x 4 c 2 + 16 c 2 x 3 + 15 x 2 c 2 68 x 10 c 2 64 x 2 + 16 x c 2 2 60 x 4 + 15 c 2 4 x 60 + 30 x 2 c 2 + 15 x 4 c 2 124 x 2 : = y 0 .
( 60 x 4 + 64 x 3 15 x 4 c 2 16 c 2 x 3 15 x 2 c 2 + 68 x + 10 c 2 + 64 x 2 16 x c 2 ) > 0 ,
and
c 2 > 60 x 4 64 x 3 64 x 2 68 x 10 16 x 15 x 2 16 x 3 15 x 4 .
Suppose,
g ( x ) = 60 x 4 64 x 3 64 x 2 68 x 10 16 x 15 x 2 16 x 3 15 x 4 .
As g ( x ) < 0 for x ( 0 , 1 ) , it follows that g ( x ) is decreases on ( 0 , 1 ) . Therefore, c 2 > 64 13 , and the calculation shows that f has no critical points in ( 0 , 2 ) × ( 0 , 1 ) × ( 0 , 1 ) . As a result, (37) does not hold for all x ( 0 , 1 ) .
Furthermore, we will look at the interior of each of Δ six faces for the maxima of f ( c , x , y ) .
Substituting c = 0 in (36), we obtain
k 1 ( x , y ) = f ( 0 , x , y ) = 1584 x 3 + 816 x + 180 y 2 + 408 x 2 y 2 + 180 x 4 y 2 48 x y 2 .
The above show that f ( 0 , x , y ) in ( 0 , 1 ) × ( 0 , 1 ) , has no point of extrema.
Placing c = 2 in (36), we have
f ( 2 , x , y ) = 1360 .
Place x = 0 in (36), we obtain
k 2 ( c , y ) = f ( c , 0 , y ) = 85 4 c 6 + 384 c 2 96 c 4 + 420 c 3 y 105 c 5 y + 180 y 2 45 c 2 y 2 .
The system of equations
k 2 c = 0 , k 2 y = 0 ,
has no solution between 0 , 2 × 0 , 1 . By using x = 1 in (36), we obtain
k 3 ( c , y ) = f ( c , 1 , y ) = 2400 1800 c 3 y + 180 c 5 y 180 c 2 y 2 + 4416 c y + 3384 c 2 801 c 4 + 720 y 2 55 2 c 6 .
The critical value k 3 c = 0 , does not exist.
Place y = 0 in (36), we obtain
k 4 ( c , x ) = f ( c , x , 0 ) = 267 c 4 x 2 + 1812 x 2 c 2 624 c 4 x 3 93 2 c 6 x 2 72 c 6 x + 852 c 2 x 3 54 x c 6 + 57 c 6 x 3 672 x 3 c + 192 x c 4 + 12 c 2 x 4 6 c 4 x 4 + 3 4 c 6 x 4 336 x c 3 81 x c 6 + 1584 x 3 + 78 x 3 c 6 + 816 x + 324 x c 2 + 384 c 2 96 c 4 + 85 4 c 6 + 336 x 3 c 3 .
The solution does not exist for the above equation
k 4 x = 0 , k 4 c = 0 ,
within the interval 0 , 2 × 0 , 1 .
Place y = 1 in (36), we obtain
k 5 ( c , x ) = f ( c , x , 1 ) = 108 + 768 x + 1488 x c 96 c 4 + 408 x 2 + 339 c 2 + 1584 x 3 + 216 x c 4 303 c 4 x 2 72 c 4 x + 1710 x 2 c 2 624 c 4 x 3 + 36 c 4 x 2 105 c 5 + 516 x 3 c 2 54 x c 6 + 85 4 c 6 231 2 c 6 x 2 72 c 6 x 3 c 6 x 3 9 x 2 c 6 384 c 2 x 6 c 4 x 4 + 180 x 4 + 720 x c 2 + 336 x 3 c 2 33 c 2 x 4 + 768 x 2 c 432 x 2 c 3 + 420 x 2 c 3 + 60 x 2 c 5 + 720 x 4 c + 672 c x + 768 x 3 c 1068 c 3 x 384 c 3 x 3 + 45 c 5 x 4 + 132 c 5 x + 48 c 5 x 3 360 c 3 x 4 .
The equation k 5 c = 0 , k 5 x = 0 , has no optimal solution in 0 , 2 × 0 , 1 .
Finally, we expect the maximum of f ( c , x , y ) close to six faces of Δ .
Place x = 0 , y = 0 in (36), we obtain
k 6 ( c ) = f ( c , 0 , 0 ) = 85 4 c 6 + 384 c 2 96 c 4 .
Place x = 0 , y = 1 in (36), we obtain
k 7 ( c ) = f ( c , 0 , 1 ) = 85 4 c 6 + 339 c 2 96 c 4 + 420 c 3 105 c 5 + 180 .
We observe k 7 c < 0 , so k 7 ( c ) has a maximum at c = 1.9 . We obtain
k 7 ( c ) 1433.309421 .
Place c = 0 , x = 0 in (36), we obtain
k 8 ( y ) = f ( 0 , 0 , y ) = 180 y 2 .
So, k 8 has maximum value at y = 1 , we obtain
f ( 0 , 0 , y ) = 180 .
Place x = 1 , y = 1 in (36), we obtain
k 9 ( c ) = f ( c , 1 , 1 ) = 55 2 c 6 801 c 4 + 3204 c 2 + 2352 + 4416 c 1800 c 3 + 180 c 5 .
Place x = 1 , y = 0 in (36), we obtain
k 9 ( c ) = f ( c , 1 , 0 ) = 55 2 c 6 801 c 4 + 3384 c 2 + 2400 .
f ( c , 1 , 1 ) f ( c , 1 , 0 ) .
Place c = 2 , x = 0 , 1 and y = 1 , 0 , we obtain
f ( 2 , 0 , y ) f ( 2 , 1 , y ) f ( 2 , x , 1 ) f ( 2 , x , 0 ) .
Place c = 0 , y = 0 in (36), we obtain
k 10 ( x ) = f ( 0 , x , 0 ) = 1584 x 3 + 816 x .
When x = 2 , k 10 ( x ) reaches its maximum value, we obtain
k 10 ( x ) 14304 .
Place c = 0 , y = 1 in (36), we obtain
k 11 ( x ) = f ( 0 , x , 1 ) = 1584 x 3 + 768 x + 180 + 408 x 2 + 180 x 4 .
When x = 1 ,   k 11 ( x ) reaches its maximum value, we obtain
f ( 0 , x , 1 ) 3120 .
Consequently, based on the previous situation, we determine that
f ( 0 , x , 1 ) 3120 .
| b 3 b 5 b 4 2 | 1 L ( f ( c , x , y ) ) 1 144 .
Hence, the required result. □

4. Logarithmic Coefficient Inequalities for the Class R n

We begin by determining the bound for the logarithmic coefficient of the function f R n .
Theorem 3.
If the series representation of the function f R n , as given in (1), then
| γ 1 | 1 4 ,
| γ 2 | 1 6 ,
| γ 3 | 1 8 ,
| γ 4 | 1 10 .
These inequalities are sharp, which can be seen from (3)–(6) and
f 0 ( z ) = 0 z 1 + t t 3 3 d t = z + 1 2 z 2 1 12 z 4 + , f 1 ( z ) = 0 z 1 + t t 3 3 2 d t = z + 1 3 z 3 2 15 z 5 + 1 63 z 7 + , f 2 ( z ) = 0 z 1 + t t 3 3 3 d t = z + 1 4 z 4 1 6 z 6 + 1 24 z 8 1 270 z 10 + , f 3 ( z ) = 0 z 1 + t t 3 3 4 d t = z + 1 5 z 5 4 21 z 7 + 2 27 z 9 4 297 z 11 + 11 1053 z 13 + .
Proof. 
Substituting (21)–(24), we have
γ 1 = 1 8 c 1 ,
γ 2 = 1 12 c 2 11 192 c 1 2 ,
γ 3 = 1 12 c 1 c + 3 128 c 1 3 + 1 16 c 3 ,
γ 4 = 21 320 c 1 c 3 + 19 360 c 1 2 c 2 + 1 20 c 4 23 720 c 2 2 137 18432 c 1 4 .
Applying (12) in (41), we can write
| γ 1 | 1 4 .
Now, from (42), we can write
γ 2 = 1 12 c 2 11 16 c 1 2 .
Applying (11), we have
| γ 2 | 1 6 .
For (43), we have
γ 3 = 1 16 c 3 2 8 12 c 1 c 2 + 3 8 c 1 3 ,
then
B = 2 3
and
D = 3 8 .
It is obvious that 0 B 1 , B D and
B 2 B 1 = 2 9 D .
Using Lemma (13), we obtain
| γ 3 | 1 8 .
From (44), we have
γ 4 = 1 20 2740 18432 c 4 + 23 36 c 2 2 + 2 21 32 c c 3 3 2 19 27 c 2 c 2 c 4 .
By using (14) to (16), we have
f ( c , α , β ) = 2903 368640 c 4 + 43 1920 c 2 α ( 4 c 2 ) + 23 2880 α 2 ( 4 c 2 ) 2 + 21 1280 c 2 ( 4 c 2 ) a 2 + 21 640 c ( 4 c 2 ) 1 α 2 β + 1 160 ( 4 c 2 ) c α 2 + 3 α + 3 2 + 4 α a + 1 40 ( 4 c 2 ) 1 α 2 c β α + c β + α β 2 + 1 β 2 .
Differentiate above function w.r.t β , we obtain
f β = 21 640 c ( 4 c 2 ) ( 1 α 2 ) + 1 40 ( 4 c 2 ) ( 1 α 2 ) ( c α + c + 2 α β 2 β ) .
If f β = 0 , we obtain
β = c 16 α + 37 32 α 1 = β 0 .
Put c = 0 in (45), we obtain
k 1 ( α , β ) = f ( 0 , α , β ) = 41 180 α 2 + 1 10 ( 1 α 2 ) ( 1 + α β 2 β 2 ) .
Therefore, we were able to find any maximum of f ( 0 , α , β ) in 0 , 1 × 0 , 1 .
When we use c = 2 in (45), we obtain
f ( 2 , α , β ) = 2903 23040 .
Put α = 0 in (45), we have
k 2 ( c , β ) = f ( c , 0 , β ) = 2903 18432 c 4 + 21 640 c ( 4 c 2 ) β + 1 40 ( 4 c 2 ) ( 1 + c β β 2 ) .
The critical points can be obtained by solving k 2 β = 0 . We have
β = 37 32 c = β 0 .
If k 2 c 0 , the above function has no critical points.
Place α = 1 in (45), we obtain
k 3 ( c , β ) = f ( c , 1 , β ) = 2903 18432 c 4 + 149 3840 c 2 ( 4 c 2 ) + 23 2880 ( 4 c 2 ) 2 + 1 160 ( 4 c 2 ) ( 49 c + 4 ) .
For the critical point k 3 c = 0 gives c 0 = 1.135 , at which k 3 reaches its maxima.
k 3 ( c , β ) = 1.217736919 .
Place β = 0 in (45), we obtain
k 4 ( c , α ) = f ( c , α , 0 ) = 2903 18432 c 4 + 43 1920 c 2 α ( 4 c 2 ) + 23 2880 α 2 ( 4 c 2 ) 2 + 21 1280 c 2 α 2 ( 4 c 2 ) 2 + 1 160 α ( 4 c 2 ) c ( α 2 + 3 α + 3 ) 2 + 4 α + 1 40 ( 4 c 2 ) ( 1 α 2 ) .
Place β = 1 in (45), we obtain
k 5 ( c , α ) = f ( c , α , 1 ) = 2903 18432 c 4 + 43 1920 c 2 α ( 4 c 2 ) + 23 2880 α 2 ( 4 c 2 ) 2 + 21 1280 c 2 α 2 ( 4 c 2 ) 2 + 21 640 α ( 4 c 2 ) ( 1 α 2 ) + 1 160 α ( 4 c 2 ) c ( α 2 + 3 α + 3 ) 2 + 4 α + 1 40 ( 4 c 2 ) ( 1 α 2 ) ( c α + c + α ) .
The solution for the system of equations k 5 c = 0 , k 5 α = 0 in 0 , 2 × 0 , 1 does not exist.
Place α = 0 , β = 0 in (45), we obtain
k 6 ( c ) = f ( c , 0 , 0 ) = 2903 18432 c 4 + 1 10 1 40 c 2 .
Taking k 6 c = 0 , we obtained c 0 = 0 , which is the critical point, where k 6 is the maximum value. That is,
f ( c , 0 , 0 ) 1 10 .
Place α = 0 , β = 1 in (45), we obtain
k 7 ( c ) = f ( c , 0 , 1 ) = 2903 18432 c 4 1 40 c 2 + 1 10 .
Equation k 7 c = 0 , and we obtain c 0 = 0.2817 , the critical point, where k 7 is the maximum value. That is,
f ( c , 0 , 1 ) = 0.09900792286 .
Place c = 0 , α = 0 in (45), we obtain
k 8 ( β ) = f ( 0 , 0 , β ) = 1 10 1 10 β 1 2 .
Clearly, k 8 ( β ) is decreasing over 0 , 1 with β = 0 , representing the minimum value. Consequently, we obtain
f ( 0 , 0 , y ) 1 10 .
Place α = 1 , β = 0 in (45), we obtain
k 9 ( c ) = f ( c , 1 , 0 ) = f ( c , 1 , 0 ) = 2335 18432 c 4 49 160 c 3 + 191 2880 c 2 + 49 40 c + 41 180 .
Taking differentiate k 9 c = 0 , which obtained c 0 = 2 , the critical point, where k 9 is the maximum value. That is,
k 9 ( c ) 2.5199 .
Place c = 0 , α = 1 in (45), we obtain
k 10 ( β ) = f ( 0 , 1 , β ) = 41 180 .
f ( 2 , 0 , β ) = f ( 2 , 1 , β ) = f ( 2 , α , 1 ) = f ( 2 , α , 0 ) = 2903 1152 .
Place c = 0 , β = 0 in (45), we obtain
k 11 ( α ) = f ( 0 , α , 0 ) = 1 10 + 23 180 α 2 .
Equation k 11 α = 0 , gives α 0 = 2 , the critical point, where k 11 ( α ) is the maximum value. We have
k 11 ( α ) 11 18 .
Place c = 0 , β = 1 in (45), we obtain
k 12 ( α ) = f ( 0 , α , 1 ) = 41 180 α 2 + 1 10 ( 1 α 2 ) α .
k 12 ( α ) obtains a maximum value at α = 1.719 , we obtain
f ( 0 , α , 1 ) 0.3370166541 .
Theorem 4.
If the series representation of the function f R n , as given in (1), then
γ 2 λ γ 1 2 max 1 6 , 3 + 3 | λ | 48 for λ C .
The inequality is sharp, which can be obtained from (3)–(4), and
f 1 ( z ) = 0 z 1 + t t 3 3 2 d t = z + 1 3 z 3 2 15 z 5 + 1 63 z 7 + .
Proof. 
From (41) and (42), we may write
γ 2 λ γ 1 2 = 1 12 c 2 11 192 c 1 2 λ c 1 2 64 .
Applying (11) results in the following.
γ 2 λ γ 1 2 2 12 max 1 , 11 + 3 λ 8 1 .
A simple calculation provides,
γ 2 λ γ 1 2 max 1 6 , 3 + 3 | λ | 48 .
Theorem 5.
If the series representation of the function f R n , as given in (1), then
γ 1 γ 2 γ 3 1 8 .
The result is sharp from (3)–(5), and
f 2 ( z ) = 0 z 1 + t t 3 3 3 d t = z + 1 4 z 4 1 6 z 6 + 1 24 z 8 1 270 z 10 + .
Proof. 
Using (41)–(43), we have
γ 1 γ 2 γ 3 = 1 16 c 3 7 96 c 1 c 2 47 1536 c 1 3 ,
γ 1 γ 2 γ 3 = 1 16 c 3 2 7 12 c 1 c 2 + 47 96 c 1 3 .
From (13), we have
B = 7 12 , D = 47 96 .
Applying lemma (12), we have
γ 1 γ 2 γ 3 1 8 .
Theorem 6.
If the series representation of the function f R n , as given in (1), then
γ 4 γ 2 2 1 10 .
The result is sharp for (4)–(6), and
f 3 ( z ) = 0 z 1 + t t 3 3 3 d t = z + 1 5 z 5 4 21 z 7 + 2 27 z 9 4 297 z 11 + 1 1053 z 13 + .
Proof. 
By using (42) and (44), we have
γ 4 γ 2 2 = 21 320 c 1 c 2 + 359 5760 c 2 c 1 2 + 1 20 c 4 7 180 c 2 2 395 36864 c 1 4 .
By using (14) to (16), we obtain
f ( c , α , β ) = 7 12288 c 4 1 40 c 2 + 7 45 α 2 1 10 β 2 + 37 160 c β + 3 20 c α 4 + 3 8 c α 3 + 9 20 c α 2 + 9 40 c α + 1 10 α β 2 + 1 10 + 1 40 c 2 α 3 β 2 37 160 c α 2 β + 1 40 c 3 α 3 β + 37 640 c 3 α 2 β 7 576 c 2 α 2 + 1 10 c α β 1 40 c 2 α β 2 1 40 c 2 α 2 β 2 1 40 c 3 α β + 27 320 c 2 α 1 10 α 3 c β 27 1280 c 4 α 77 11520 c 4 α 2 37 640 c 3 β 3 80 c 3 α 4 3 32 c 3 α 3 9 80 c 3 α 9 160 c 3 α + 1 40 c α 5 1 160 c 3 α 5 1 10 α 3 β 2 + 1 10 α 2 β 2 + 1 40 c 2 β 2 .
Differentiate (49), partially w.r.t parameter β , we have
f β = 1 5 β + 37 160 c + 1 5 α β + 1 5 α 2 β + 1 20 c 2 α 3 β 37 160 c α 2 + 1 40 c 3 α 3 + 37 640 c 3 α 2 + 1 10 c α 1 20 c 2 α 2 β 1 40 c 3 α 1 10 c α 3 37 640 c 3 + 1 20 β c 2 1 20 α β c 2 1 5 α 3 β .
Taking f β = 0 , we have
β = 16 α + 37 c 32 α + 1 = β 0 .
For β 0 to belong to ( 0 , 1 ) , its only possible through
c ( 16 α + 37 ) < 32 ( α + 1 )
and
c > 32 ( α + 1 ) 16 α + 37 .
Suppose,
g ( α ) = 32 ( α + 1 ) 16 α + 37 .
Since, g ( α ) < 0 for α ( 0 , 1 ) , it follows that g ( α ) is decreasing on ( 0 , 1 ) . Therefore, c > 0 , and the calculation shows that f has critical points in ( 0 , 2 ) × ( 0 , 1 ) × ( 0 , 1 ) . As a result, (50) is satisfied for all α ( 0 , 1 ) .
Next, we explore the maxima of f ( c , α , β ) within the interior of all six faces of Δ .
Place c = 0 in (49), we obtain
k 1 ( α , β ) = f ( 0 , α , β ) = 1 10 α β 2 + 1 10 α 2 β 2 1 10 α 3 β 2 + 7 45 α 2 1 10 β 2 + 1 10 .
Therefore, in 0 , 1 × 0 , 1 , we did not find any maxima for f ( 0 , α , β ) .
Using c = 2 , we obtain
f ( 2 , α , β ) = 7 768 .
Place α = 0 in (49), we obtain
k 2 ( c , β ) = f ( c , 0 , β ) = 37 160 c β 37 640 c 3 β + 1 40 c 2 β 2 + 7 12288 c 4 1 40 c 2 1 10 β 2 + 1 10 .
The critical point can be obtained by finding k 2 β = 0 and k 2 c = 0 , when we set k 2 β = 0 , we have
β = 37 32 c .
For c 0 = 0 , we have
k 2 c = 37 160 β 111 640 c 2 β + 1 20 c β 2 + 7 3072 c 3 1 20 c = 0 .
By inserting (53), we have
6678 c 4037 c 3 = 0 .
We now obtain c 0.763 by finding for c 0 , 2 . Therefore, in 0 , 2 × 0 , 1 , no optimal solution for f ( c , 0 , β ) is obtained.
Place α = 1 in (49), we obtain
k 3 ( c , β ) = f ( c , 1 , β ) = 23 90 49 160 c 3 + 17 360 c 2 1003 36864 c 4 + 49 40 c .
For the critical point k 3 c = 0 gives c 0 = 1.14 , at which, k 3 attains the maxima, which is
k 3 ( c , β ) 1.213749281 .
Place β = 0 in (49), we obtain
k 4 ( c , α ) = f ( c , α , 0 ) = 7 45 α 2 77 11520 c 4 α 2 9 80 c 3 α 2 + 27 320 c 2 α 3 32 c 3 α 3 + 3 20 α 4 c 1 160 α 5 c 3 9 160 c 3 α + 9 20 α 2 c + 3 8 α 3 c 27 1280 c 4 α 3 80 α 4 c 3 + 9 40 α + 1 40 α 5 c 7 576 c 2 α 2 1 40 c 2 + 7 12288 c 4 + 1 10 .
The solution does not exist for the above equations
k 4 c = 0 and k 2 α = 0 ,
in 0 , 2 × 0 , 1 .
Place β = 1 in (49), we obtain
k 5 ( c , α ) = f ( c , α , 1 ) = 7 12288 c 4 + 27 1280 ( 4 c 2 ) c 2 α + 21 1280 ( 4 c 2 ) c 2 α 2 + 37 640 c ( 4 c 2 ) + 7 128 ( 4 c 2 ) c 2 α 2 + 1 160 ( 4 c 2 ) c α 5 + 3 80 ( 4 c 2 ) c α 4 + 11 160 ( 4 c 2 ) c α 3 + 13 160 ( 4 c 2 ) c α + 1 40 ( 4 c 2 ) α 1 40 ( 4 c 2 ) α 3 + 1 40 ( 4 c 2 ) α 2 + 7 720 ( 4 c 2 ) 2 α 2 .
If we consider the solution, it does not exist
k 5 x = 0 and k 2 c = 0 ,
in 0 , 2 × 0 , 1 .
Place α = 0 , β = 0 in (49), we obtain
k 6 ( c ) = f ( c , 0 , 0 ) = 7 12288 c 4 + 1 10 1 40 c 2 .
Equation k 6 c = 0 , provides c 0 = 0 , where k 6 ( c ) is the maximum value. Thus, we have
k 6 ( c ) 1 10 .
Place α = 0 , β = 1 in (49), we obtain
k 7 ( c ) = f ( c , 0 , 1 ) = 7 12288 c 4 + 37 160 c 37 6 4 0 c 3 .
At c = 1.178 , k 7 ( c ) obtains its maximum value as it decreases. Consequently,
f ( c , 0 , 1 ) 0.1790038613 .
Place c = 0 , α = 0 in (49), we obtain
k 8 ( c ) = f ( 0 , 0 , β ) = 1 10 1 10 β 2 .
The maximum value of k 8 ( c ) attained at β = 0 , and it increases in the interval 0 , 1 , we obtain
f ( 0 , 0 , β ) 1 10 .
Place α = 1 , β = 0 and α = 1 , β = 1 in (49), we obtain
f ( c , 1 , 0 ) = f ( c , 1 , 1 ) = 23 90 + 17 60 c 2 1003 36864 c 4 49 160 c 3 + 49 40 c . = k 9 ( c )
Equation k 9 c = 0 , provides c 0 = 1.123 , where k 9 ( c ) is the maximum value. Thus, we have
k 9 ( c ) 1.213784911 .
Place c = 0 , α = 1 in (49), we obtain
k 10 ( β ) = f ( 0 , 1 , β ) = 23 90 .
Place c = 2, we observe that the Equation (52) is free from β , α . Therefore, it follows that
f ( 2 , 0 , β ) = f ( 2 , 1 , β ) = f ( 2 , α , 1 ) = f ( 2 , α , 0 ) = 7 768 .
Place c = 0 , β = 0 in (49), we obtain
k 11 ( α ) = f ( 0 , α , 0 ) = 1 10 + 7 45 α 2 .
Equation k 11 α = 0 , results in c 0 = 1 , where k 11 ( α ) is the maximum value. We obtain
f ( 0 , α , 0 ) 23 90 .
Place c = 0 , β = 1 in (49), we obtain
k 12 ( α ) = f ( 0 , α , 1 ) = 1 10 α 1 10 α 3 + 23 90 α 2 .
k 12 ( α ) obtain a maximum value at α = 1.88 , we obtain
f ( 0 , α , 1 ) 0.4267683556 .

5. Hankel Determinant with Logarithmic Coefficients for the Class R n

The following sections discuss the bound of the second-order Hankel determinant for functions in the class f R n
Theorem 7.
If the series representation of the function f R n as given in (1), then
H 2 , 1 f 1 36 .
This bound is sharp, and equality can be attained using (8), and
f 1 ( z ) = 0 z 1 + t t 3 3 2 d t = z + 1 3 z 3 2 15 z 5 + 1 63 z 7 + .
Proof. 
Substituting (41)–(43), we have
H 2 , 1 f = 1 1152 c 1 2 c 2 13 36864 c 1 4 + 1 128 c 1 c 3 1 144 c 2 2 .
Using (14) and (15) the value of c 2 and c 3 in term of c 1 and setting c 1 = c , we have
H 2 , 1 f = 7 12288 c 4 1 512 c 2 x 2 ( 4 c 2 ) + 1 256 c ( 4 c 2 ) 1 256 c x 2 ( 4 c 2 ) 1 576 x 2 ( 4 c 2 ) 2 .
Using the triangle inequality as well as x = u , δ 1 with u 1 , we obtain
H 2 , 1 f 7 12288 c 4 + 1 512 c 2 u 2 ( 4 c 2 ) + 1 256 c ( 4 c 2 ) + 1 256 c u 2 ( 4 c 2 ) + 1 576 u 2 ( 4 c 2 ) 2 : = ψ ( c , u ) .
By differentiating ψ ( c , u ) w.r.t parameter u, we obtain
ψ ( c , u ) u = 1 256 c 2 + 1 128 c + 1 128 ( 4 c 2 ) u .
ψ ( c , u ) ψ ( c , 1 ) , as we observe, shows that ψ ( c , u ) u 0 on 0 , 1 , we obtain
H 2 , 1 f 7 12288 c 4 + 1 512 c 2 ( 4 c 2 ) + 1 256 c ( 4 c 2 ) + 1 256 c ( 4 c 2 ) + 1 576 ( 4 c 2 ) 2 : = L ( c ) .
Thus, c = 0 , L ( c ) obtains its maximum value.
H 2 , 1 f 1 36 .
Theorem 8.
If the series representation of the function f R n , as given in (1), then
H 2 , 2 f 1 64 .
The result is sharp and equality can be obtained from (9), and
f 2 ( z ) = 0 z 1 + t t 3 3 3 d t = z + 1 4 z 4 1 6 z 6 + 1 24 z 8 1 270 z 10 + .
Proof. 
The determinant H 2 , 2 f is defined this way.
H 2 , 2 f = γ 2 γ 4 γ 3 2 .
By using (42) and (44), we obtain
H 2 , 2 f = 1 L 87552 c c 2 c 3 12672 c 2 c 2 2 + 73728 c 2 c 4 47104 c 2 3 + 4656 c 2 c 4 + 14688 c 3 c 3 50688 c 2 c 4 2185 c 6 69120 c 3 2 .
where L = 17694720 and by substituting m = 4 c 2 . Now, applying by (14) to (16), we have
87552 c c 2 c 3 = 10944 c 6 + 32832 c 4 m x 10944 c 4 m x 2 + 21888 c 3 m δ 21888 c 3 m x 2 δ + 21888 x 2 m 2 c 2 10944 x 3 m c 2 + 21888 c x m 2 δ 21888 c x 3 m 2 δ , 12672 c 2 c 2 2 = 3168 c 6 6336 c 4 m x 3168 c 2 x 2 m 2 , 73728 c 2 c 4 = 4608 c 6 + 4608 c 4 x 3 m 13824 c 4 x 2 m + 18432 c 4 x m + 50688 c 2 x 2 m + 4608 c 2 ρ δ 2 + 4608 c 3 x δ 4608 c δ 18432 c 2 m 4608 c 2 ρ + 4608 c 2 x δ 2 + 4608 c 2 x 4 m 13824 c 2 x 3 m 4608 x m ρ + 18432 x 3 m 2 18432 x m 2 + 4608 x m ρ δ 2 4608 c x m δ + 4608 x 2 m δ 2 + 4608 c x 2 m δ , 47104 c 2 3 = 5888 c 6 17664 c 4 x m 17664 c 2 x 2 m 2 5888 x 3 m 3 , 4656 c 2 c 4 = 2328 c 6 + 2328 c 4 x m , 14688 c 3 c 3 = 3672 c 6 + 7344 c 4 x m 3672 c 4 x 2 m + 7344 c 3 m δ 7344 c 3 m δ x 2 , 50688 c 2 c 4 = 6336 c 6 6336 c 4 x 3 m + 19008 c 4 m x 2 19008 c 4 x m 50688 x 2 m c 2 + 25344 c 2 m + 6336 c 2 ρ 6336 c 2 ρ δ 2 6336 c 3 x δ + 6336 c 3 δ 6336 c 2 x δ 2 , 2185 c 6 = 2185 c 6 , a n d 69120 c 3 2 = 34560 c x m 2 δ + 17280 c x 2 m 2 δ + 34560 c x 3 m 2 δ 17280 c x 3 m 2 δ + 34560 m 2 x 2 δ 2 17280 c 2 x 2 m 2 17280 m 2 δ 2 x 4 + 17280 c 2 m 2 x 3 17280 m 2 δ 2 17280 c 3 m δ + 8640 c 4 m x 2 4320 c 6 + 17280 c 3 m δ x 2 17280 c 4 m x 4320 c 2 x 4 m 2 .
By using (55), the above expression
H 2 , 2 f = 1 L 345 c 6 21888 c m 2 δ x 3 + 6336 m 2 x 3 c 2 + 4608 m 2 x 2 c 2 12672 c m 2 x δ 11952 c 3 m δ x 2 + 4608 m x 2 δ c + 17280 m 2 x 2 c δ 17280 m 2 x 4 c δ + 34560 m 2 x 3 c δ + 4608 m x 4 c 2 + 11952 c 3 m δ 13824 m x 3 c 2 792 c 4 m x 2 + 11952 c 4 m x 6912 m x 2 c + 12544 m x 3 18432 m 2 x 4608 m x ρ ( 1 δ 2 ) + 6912 c 2 m + 1728 c 2 ρ ( 1 δ 2 ) + 1728 c 3 δ 17280 m 2 δ 2 11304 m x c 4 13920 c 2 m x 2 4608 m x δ c + 4608 m x 2 δ 2 1728 c 4 m x 3 1728 c 3 δ x 1728 c 2 δ 2 x 4320 m 2 x 4 c 2 + 34560 m 2 δ 2 x 2 17280 m 2 δ 2 x 4 + 18432 m 2 x 3 .
As m = ( 4 c 2 ) , it follows that
H 2 , 2 f = 1 L g 1 ( c , x ) + g 2 ( c , x ) δ + g 3 ( c , x ) δ 2 + Π c , x , δ ρ ,
where δ , x , ρ E ¯ , and
g 1 ( c , x ) = ( 4 c 2 ) 4608 c 2 x 4 792 c 4 x 2 13824 c 2 x 3 13920 c 2 x 2 + 648 c 4 x 6912 x 2 c + 6912 c 2 1728 c 4 x 3 + ( 4 c 2 ) ( 6336 x 3 c 2 + 4608 c 2 x 2 18432 x 4320 c 2 x 4 + 18432 x 3 ) + 12544 x 3 ( 4 c 2 ) 345 c 6 ,
g 2 ( c , x ) = ( 4 c 2 ) 11952 c 3 x 2 + 4608 x 2 c + 11952 c 3 4608 c x + 4 c 2 12672 c x 3 12672 c x + 17280 c x 2 17280 c x 4 1728 c 3 1728 c 3 x ,
g 3 ( c , x ) = 1728 x c 2 + ( 4 c 2 ) 4608 x 2 c + ( 4 c 2 ) ( 34560 x 2 17280 17280 x 4 ) ,
and
Π ( c , x , δ ) = ( 1 δ 2 ) 1728 c 2 4608 x ( 4 c 2 ) .
If we apply | ρ | 1 and then by substituting | δ | for y and | x | by x, it is concluded that
H 2 , 2 f 1 L g 1 ( c , x ) + g 2 ( c , x ) y + g 3 ( c , x ) y 2 + c , x , δ 1 L F ( c , x , y ) ,
where
f ( c , x , y ) = k 0 ( c , x ) + k 1 ( c , x ) y + k 2 ( c , x ) y 2 + k 3 ( c , x ) ( 1 y 2 ) ,
with
k 0 ( c , x ) = ( 4 c 2 ) 4608 c 2 x 4 + 792 c 4 x 2 + 13824 c 2 x 3 + 13920 c 2 x 2 + 648 c 4 x + 6912 x 2 c + 6912 c 2 + 1728 c 4 x 3 + ( 4 c 2 ) ( 6336 x 3 c 2 + 4608 c 2 x 2 + 18432 x + 4320 c 2 x 4 + 18432 x 3 ) + 12544 x 3 ( 4 c 2 ) + 345 c 6 ,
k 1 ( c , x ) = ( 4 c 2 ) 11952 c 3 x 2 + 4608 x 2 c + 11952 c 3 + 4608 c x + 4 c 2 12672 c x 3 + 12672 c x + 17280 c x 2 + 17280 c x 4 + 1728 x c 3 + 1728 c 3 ,
k 2 ( c , x ) = 1728 x c 2 + ( 4 c 2 ) 4608 x 2 c + ( 4 c 2 ) 34560 x 2 + 17280 + 17280 x 4 ,
and
k 3 ( c , x , δ ) = 1728 c 2 + 4608 x ( 4 c 2 ) .
Differentiating (57) partially with respect to parameter y, we have
f y = 49536 c 3 + 11952 c 5 + 36864 y x + 273024 c 2 y + 1142784 y x 2 + 552960 y x 4 + 34560 y c 4 + 202752 c x 3 + 104256 c 3 x + 29232 c 5 x 2 + 17280 x 4 c 5 + 34560 y c 4 x 4 + 12672 c 5 x + 294912 c x 2 + 276480 y x 4 c 2 + 101376 c 3 x 3 + 69120 y c 4 x 2 + 276480 x 4 c + 12672 c 5 x 3 138240 x 4 c 3 + 562176 c 2 x 2 y + 12672 c 2 y x + 221184 c x + 190656 c 3 x 2 + 552960 y .
The equation f y = 0 gives
y = c 344 c 2 + 83 c 4 + 704 c 2 x 3 + 1408 x 3 + 1920 x 4 + 88 c 4 x 3 + 960 c 2 x 4 + 1324 c 2 x 2 + 724 c 2 x + 203 c 4 x 2 + 120 c 4 x 4 + 88 c 4 x + 2048 x 2 + 1536 x 8 237 c 2 + 30 c 4 x 4 + 60 c 4 x 2 + 992 x 2 + 240 c 2 x 4 + 32 x + 488 c 2 x 2 + 11 c 2 x + 480 x 4 + 30 c 4 + 480
c 344 c 2 + 83 c 4 + 704 c 2 x 3 + 1408 x 3 + 1920 x 4 + 88 c 4 x 3 + 960 c 2 x 4 + 1324 c 2 x 2 + 724 c 2 x + 203 c 4 x 2 + 120 c 4 x 4 + 88 c 4 x + 2048 x 2 + 1536 x < 8 480 240 c 2 + 30 c 4 + 480 x 4 240 c 2 x 4 + 30 c 4 x 4 + 992 x 2 488 c 2 x 2 + 60 c 4 x 2 + 32 x 5 c 2 x ,
and
c 2 > 344 c 3 83 c 5 704 c 3 x 3 1408 c x 3 1920 x 4 c 88 c 5 x 3 960 x 4 c 3 1324 c 3 x 2 724 c 3 x 203 c 5 x 2 120 x 4 c 5 88 c 5 x 2048 c x 2 1536 c x 240 x 4 c 4 480 x 2 c 4 7936 x 2 256 x 3840 x 4 240 c 4 3840 1896 + 1920 x 4 + 3904 x 2 + 88 x .
Suppose,
g ( x ) = 344 c 3 83 c 5 704 c 3 x 3 1408 c x 3 1920 x 4 c 88 c 5 x 3 960 x 4 c 3 1324 c 3 x 2 724 c 3 x 203 c 5 x 2 120 x 4 c 5 88 c 5 x 2048 c x 2 1536 c x 240 x 4 c 4 480 x 2 c 4 7936 x 2 256 x 3840 x 4 240 c 4 3840 1896 + 1920 x 4 + 3904 x 2 + 88 x .
As g ( x ) < 0 for x ( 0 , 1 ) , it follows that g ( x ) is decreasing on ( 0 , 1 ) . Therefore, c 2 > 582 c 5 960 c 4 4056 c 3 6912 c 15872 7808 , and the calculation shows that f has no critical points in ( 0 , 2 ) × ( 0 , 1 ) × ( 0 , 1 ) . As a result (58) does not hold for all x ( 0 , 1 ) .
Next, we calculate the interior of each of the six edges of Δ for the maximum of f ( c , x , y ) .
Place c = 0 , in (57) we obtain
k 1 ( x , y ) = f ( 0 , x , y ) = 313344 x + 276480 y 2 + 21299 x 3 + 276480 x 4 y 2 + 571392 x 2 y 2 + 18432 x y 2 .
Thus, we have not identified any maxima for f ( 0 , x , y ) within the interval 0 , 1 × 0 , 1 . Place c = 2 , in (57) we obtain
f ( 2 , x , y ) = 250176 + 1216512 x + 778752 y + 1099008 y 2 + 1056768 x 3 + 43776 y 2 x + 43776 y 2 x + 1105920 y 2 x 4 + 2248704 y 2 x 2 + 95539 x 2 + 73728 x 4 3050496 y x 2 + 1681920 y x + 1622016 x 3 y + 2211840 x 4 y .
Place x = 0 , in (57) we obtain
k 2 ( c , y ) = f ( c , 0 , y ) = 29376 c 2 + 276480 y 2 + 6912 c 4 + 345 c 6 + 49536 c 3 y + 136512 c 2 y 2 + 11952 c 5 y + 17280 y 2 c 4 .
If k 2 y = 0 , we obtain
y = c 3 ( 83 c 2 + 344 ) 24 79 c 2 + 160 + 10 c 4 = y 0 .
Further,
k 2 c = 58752 c + 2070 c 5 + 273024 c y 2 + 148608 c 2 y + 59760 c 4 y + 69120 c 3 y 2 + 27648 c 3 .
Inserting (61) into the above expression and k 2 c = 0 , we have
k 2 c = 13878624 c 11 1033020 c 13 + 1504051200 c + + 965803392 c 5 + 2193039360 c 3 + 74720640 c 7 52267338 c 9 = 0 .
Consequently, ( x , y ) belongs to 0 , 2 × 0 , 1 , no ideal solution for f ( c , 0 , y ) exists.
Place x = 1 , in (57) we obtain
k 3 ( c , y ) = f ( c , 1 , y ) = 526336 + 995328 y c + 411840 c 2 + 74112 c 4 + 1142784 y 2 + 3017 c 6 + 584064 c 3 y 562176 c 2 y 2 + 83808 y c 5 + 69120 y 2 c 4 .
The above function has no critical points.
Taking y = 0 , in (57) we have
k 4 ( c ) = f ( c , x , 0 ) = 128 c 6 x 3 + 2304 c 4 x 4 + 288 c 6 x 4 + 1608 c 6 x 2 + 152064 c 2 x + 132096 c 2 x 3 + 15840 c 4 x + 648 c 6 x + 313344 x + + 29376 c 2 + 6912 c 4 + 212992 x 3 + 345 c 6 + 29856 c 4 x 2 + 4608 c 2 x 4 + 19200 c 4 x 3 + 93696 c 2 x 2 .
The system of equations has no solution k 4 c = 0 , k 4 x = 0 in 0 , 2 × 0 , 1 does not exist.
Place y = 1 , in (57) we have
k 5 ( c ) = f ( c , x , 1 ) = 276480 + 128 c 6 x 3 + 19584 c 4 x 4 + 288 c 6 x 4 + 1608 c 6 x 2 + 158400 c 2 x + 132096 c 2 x 3 + 15840 c 4 x + 648 c 6 x + 12672 c 5 x + 190656 c 3 x 2 + 29232 c 5 x 2 + 101376 c 3 x 3 + 12672 c 5 x 3 + 138240 c 3 x 4 + 17280 c 5 x 4 + 221184 c x + 276480 c x 4 + 202752 c x 3 + 294912 c x 2 + 331776 x + 165888 c 2 + 2419 c 4 + 571392 x 2 + 21299 x 3 + 276480 x 4 + 345 c 6 + 64416 c 4 x 2 + 142848 x 4 c 2 + 19200 c 4 x 3 + 374784 x 2 c 2 + 11952 c 5 + 104256 c 3 x + 49536 c 3 .
The given system of equations has no solution k 5 c = 0 , k 5 x = 0 within the interval 0 , 2 × 0 , 1 .
Place x = 0 , y = 0 , in (57) we obtain
k 6 ( c ) = f ( c , 0 , 0 ) = 29376 c 2 + 345 c 6 + 6912 c 4 .
The maximum value is k 6 ( c ) , occurs at the critical point i 6 c = 0 , which obtains c = 2 . That is
k 6 ( c ) 250176 .
Place x = 0 , y = 1 in (57), we obtain
k 7 ( c ) = f ( c , 0 , 1 ) = 165888 c 2 + 49536 c 3 + 345 c 6 + 24192 c 4 + 276480 + 11952 c 5 .
We see that k 7 ( c ) obtain the maximum value of c = 1 , we obtain
f ( c , 0 , 1 ) 528393 .
Place c = 0 , x = 0 in (57), we obtain
k 8 ( y ) = f ( 0 , 0 , y ) = 276480 y 2 .
It follows that k 8 y > 0 for 0 , 1 , which shows that k 8 ( y ) is the maximum value at x = 1 , then
f ( 0 , 0 , y ) 276480 .
Put x = 1 , y = 1 , 0 in (57), we obtain
k 9 ( c ) = f ( c , 1 , 1 ) f ( c , 1 , 0 ) .
The k 9 has no critical points.
f 2 , 1 , y f 2 , 0 , y f 2 , x , 1 f 2 , x , 0 .
Put c = 0 , y = 0 in (57), we obtain
k 10 ( x ) = f ( 0 , x , 0 ) = 313344 x + 21299 x 3 .
The maximum value for k 10 ( x ) occurs when x 0 = 1 , which is the critical point k 10 x = 0 . Therefore, we obtain
f ( 0 , x , 0 ) 526336 .
Place c = 0 , y = 1 , in (57) we obtain
k 11 ( x ) = f ( 0 , x , 1 ) = 276480 + 331776 x + 571392 x 2 + 966656 x 3 + 276480 x 4 .
It is obvious from the simple equation that k 11 ( x ) reaches its maximum value at x = 1 , we have
f ( 0 , x , 1 ) = 1669120 .
Equation (56), may be utilized to obtain that
H 2 , 2 f 1 64 .
Hence, the required proof is achieved. □

6. Conclusions

A new subclass of nephroid functions associated with bounded turning has been introduced. The function used to define the class R n has not been explored completely; this can be used further to define more classes such as the class of starlike function, the class of convex function, the class of closed-to-convex function, and many more. All these proposed classes would be defined through a subordinate to the function Φ n ( z ) . Similar and many other coefficient-related problems, such as coefficient bounds Hankel determinants, Toeplitz determinants, and toeplitz hermitian determinants, can be investigated for the proposed classes. The upper bounds for the second and third Hankel determinants and the logarithmic coefficients have been derived for this class. This article presents and proves the main results as Theorems 1–8. The third Hankel determinant problem for different subclasses of analytic functions has been studied and explored by numerous researchers in Geometric Function Theory (GFT), as mentioned in the introduction. This work will help to determine the fourth-order Hankel determinants for the same classes of analytic functions explored for further studies.

Author Contributions

Conceptualization, W.U. and R.F.; Methodology, W.U. and R.F.; Validation, L.-I.C.; Formal analysis, R.F.; investigation, W.U; Resources, D.B.; Data curation, D.B.; Visualization, R.F.; Supervision, R.F.; Project administration, L.-I.C.; Funding acquisition, D.B. and L.-I.C. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Data Availability Statement

No data were used to support this study.

Acknowledgments

This work was carried out for the requirement of a degree program under the synopsis notification no. CUI-Reg/Notif-2297/24/2383, dated 2 October 2024.

Conflicts of Interest

The authors declare no conflicts of interest.

References

  1. Zaprawa, P. Third Hankel determinants for subclasses of univalent functions. Mediterr. J. Math. 2017, 14, 19. [Google Scholar] [CrossRef]
  2. Noonan, J.W.; Thomas, D.K. On the second Hankel determinant of mean p-valent functions. Trans. Am. Math. 1976, 223, 337–346. [Google Scholar] [CrossRef]
  3. Selvaraj, C.; Kumar, T.R.K. Second Hankel determinant for certain classes of analytic functions. Int. J. Appl. Math. 2015, 28, 37–50. [Google Scholar]
  4. Hayami, T.; Owa, S. Generalized Hankel determinant for certain classes. Int. J. Math. Anal. 2010, 4, 2573–2585. [Google Scholar]
  5. Liu, M.S.; Xu, J.F.; Yang, M. Upper bound of second Hankel determinant for certain subclasses of analytic functions. Abstr. Appl Anal. 2014, 2014, 603180. [Google Scholar] [CrossRef]
  6. Noonan, J.W.; Thomas, D.K. On the Hankel determinants of mean p-valent functions. Proc. Lond. Math. Soc. 1972, 3, 503–524. [Google Scholar] [CrossRef]
  7. Vamshee Krishna, D.; Ram Reddy, T. Hankel determinant for starlike and convex functions of order alpha. Tbil. Math. J. 2012, 5, 65–76. [Google Scholar]
  8. Libera, R.J.; Zlotkiewicz, E.J. Coefficient bounds for the inverse of a function with derivative in P. Proc. Am. Math. Soc. 1983, 87, 251–257. [Google Scholar] [CrossRef]
  9. Banga, S.; Kumar, S.S. The sharp bounds of the second and third Hankel determinants for the class SL*. Math. Slovaca 2020, 70, 849–862. [Google Scholar] [CrossRef]
  10. Kowalczyk, B.; Lecko, A.; Sim, Y.J. The sharp bound of the Hankel determinant of the third kind for convex functions. Bull. Aust. Math. Soc. 2018, 97, 435–445. [Google Scholar] [CrossRef]
  11. Kowalczyk, B.; Lecko, A.; Lecko, M.; Sim, Y.J. The sharp bound of the third Hankel determinant for some classes of analytic functions. Bull. Korean Math. Soc. 2018, 55, 1859–1868. [Google Scholar]
  12. Kwon, O.S.; Lecko, A.; Sim, Y.J. The bound of the Hankel determinant of the third kind for starlike functions. Bull. Malays. Math. Sci. Soc. 2019, 42, 767–780. [Google Scholar] [CrossRef]
  13. Riaz, A.; Raza, M.; Thomas, D.K. Hankel determinants for starlike and convex functions associated with sigmoid functions. Forum Math. 2021, 34, 137–156. [Google Scholar] [CrossRef]
  14. Zhang, H.-Y.; Tang, H.; Niu, X.-M. Third-order Hankel determinant for a certain class of analytic functions related with an exponential function. Symmetry 2018, 10, 501. [Google Scholar] [CrossRef]
  15. Pommerenke, C. On the coefficients and Hankel determinant of univalent functions. J. Lond. Math. Soc. 1966, 41, 111–122. [Google Scholar] [CrossRef]
  16. Srivastava, H.M.; Ahmad, Q.Z.; Khan, N.; Khan, N.; Khan, B. Hankel and Toeplitz Determinants for a Subclass of q-Starlike Functions Associated with a General Conic Domain. Mathematics 2019, 7, 181. [Google Scholar] [CrossRef]
  17. Arif, M.; Raza, M.; Tang, H.; Hussain, S.; Khan, H. Hankel determinant of order three for familiar subsets of analytic functions related with sine function. Open Math. 2019, 17, 1615–1630. [Google Scholar] [CrossRef]
  18. Murugusundaramoorthy, G.; Bulboacă, T. Hankel Determinants for New Subclasses of Analytic Functions Related to a Shell Shaped Region. Mathematics 2020, 8, 1041. [Google Scholar] [CrossRef]
  19. Khan, B.; Aldawish, I.; Araci, S.; Khan, M.G. Third Hankel Determinant for the Logarithmic Coefficients of Starlike Functions Associated with Sine Function. Fractal Fract. 2022, 6, 261. [Google Scholar] [CrossRef]
  20. Raza, M.; Riaz, A.; Xin, Q.; Malik, S.N. Hankel Determinants and Coefficient Estimates for Starlike Functions Related to Symmetric Booth Lemniscate. Symmetry 2022, 14, 1366. [Google Scholar] [CrossRef]
  21. Riaz, A.; Raza, M.; Thomas, D.K. The Third Hankel determinant for starlike functions associated with sigmoid functions. Forum Math. 2022, 34, 137–156. [Google Scholar]
  22. Riaz, A.; Raza, M. Hankel determinants for starlike and convex functions associated with lune. Bull. Sci. MathéMatiques 2023, 187, 103289. [Google Scholar] [CrossRef]
  23. Riaz, A.; Raza, M.; Thomas, D.K. Hankel determinants for starlike and convex functions associated with a cardioid domain. Preprint 2022. [Google Scholar] [CrossRef]
  24. Cho, N.E.; Kowalczyk, B.; Kwon, O.S.; Lecko, A.; Sim, Y.J. On the third logarithmic coefficient in some subclasses of close-to-convex functions. Rev. R. Acad. Cienc. Exactas Fís. Nat. (Esp.) 2020, 114, 52. [Google Scholar] [CrossRef]
  25. Ali, M.F.; Vasudevarao, A. On logarithmic coefficients of some close-to-convex functions. Proc. Am. Math. Soc. 2018, 146, 1131–1142. [Google Scholar] [CrossRef]
  26. Pommerenke, C. Univalent Function; Vanderhoeck & Ruprecht: Göttingen, Germany, 1975. [Google Scholar]
  27. Carathéodory, C. Über den Variabilitätsbereich der Fourier’schen Konstanten von position harmonischen Funktionen. Rend. Circ. Mat. Palermo 1911, 32, 193–217. [Google Scholar] [CrossRef]
  28. Libera, R.J.; Złotkiewicz, E.J. Early coefficients of the inverse of a regular convex function. Proc. Am. Math. Soc. 1982, 85, 225–230. [Google Scholar] [CrossRef]
  29. Kwon, O.S.; Lecko, A.; Sim, Y.J. On the fourth coefficient of functions in the Carathéodory class. Comput. Methods Funct. Theory 2018, 18, 307–314. [Google Scholar] [CrossRef]
  30. Ravichandran, V.; Verma, S. Bound for the fifth coefficient of certain starlike functions. C. R. Math. Acad. Sci. Paris 2015, 353, 505–510. [Google Scholar] [CrossRef]
Figure 1. The image domain of the nephroid function Φ n ( z ) .
Figure 1. The image domain of the nephroid function Φ n ( z ) .
Axioms 14 00136 g001
Figure 2. The graph of h ( x ) .
Figure 2. The graph of h ( x ) .
Axioms 14 00136 g002
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Ullah, W.; Fayyaz, R.; Breaz, D.; Cotîrlă, L.-I. On Certain Analytic Functions Associated with Nephroid Function. Axioms 2025, 14, 136. https://doi.org/10.3390/axioms14020136

AMA Style

Ullah W, Fayyaz R, Breaz D, Cotîrlă L-I. On Certain Analytic Functions Associated with Nephroid Function. Axioms. 2025; 14(2):136. https://doi.org/10.3390/axioms14020136

Chicago/Turabian Style

Ullah, Wahid, Rabia Fayyaz, Daniel Breaz, and Luminiţa-Ioana Cotîrlă. 2025. "On Certain Analytic Functions Associated with Nephroid Function" Axioms 14, no. 2: 136. https://doi.org/10.3390/axioms14020136

APA Style

Ullah, W., Fayyaz, R., Breaz, D., & Cotîrlă, L.-I. (2025). On Certain Analytic Functions Associated with Nephroid Function. Axioms, 14(2), 136. https://doi.org/10.3390/axioms14020136

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop