Novel Dynamic Behaviors in Fractional Chaotic Systems: Numerical Simulations with Caputo Derivatives
Abstract
1. Introduction
2. Mathematical Preliminaries
3. Numerical Approach
4. Numerical Simulations
5. Numerical Solutions
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lai, Q.; Akgul, A.; Li, C.; Xu, G.; Çavuşoğlu, Ü. A New Chaotic System with Multiple Attractors: Dynamic Analysis, Circuit Realization and S-Box Design. Entropy 2017, 20, 12. [Google Scholar] [CrossRef] [PubMed]
- Petras, I. A note on the fractional-order Chua’s system. Chaos Solitons Fractals 2008, 38, 140–147. [Google Scholar] [CrossRef]
- El-Maksoud, A.J.A.; El-Kader, A.A.A.; Hassan, B.G.; Rihan, N.G.; Tolba, M.F.; Said, L.A.; Radwan, A.G.; Abu-Elyazeed, M.F. FPGA implementation of sound encryption system based on fractional-order chaotic systems. Microelectronics 2019, 90, 323–335. [Google Scholar] [CrossRef]
- Bingi, K.; Prusty, B.R.; Singh, A.P. A Review on Fractional-Order Modelling and Control of Robotic Manipulators. Fractal Fract. 2023, 7, 77. [Google Scholar] [CrossRef]
- Mekkaoui, T.; Atangana, A. New numerical approximation of fractional derivative with non-local and non-singular kernel: Application to chaotic models. Eur. Phys. J. Plus 2017, 132, 1–6. [Google Scholar] [CrossRef]
- Kumar, S.; Kumar, R.; Cattani, C.; Samet, B. Chaotic behaviour of fractional predator-prey dynamical system. Chaos Solitons Fractals 2020, 135, 109811. [Google Scholar] [CrossRef]
- Singh, J.; Kumar, D.; Hammouch, Z.; Atangana, A. A fractional epidemiological model for computer viruses pertaining to a new fractional derivative. Appl. Math. Comput. 2018, 316, 504–515. [Google Scholar] [CrossRef]
- Oldham, K.B.; Spanier, J. The Fractional Calculus; Academic Press: New York, NY, USA, 1974. [Google Scholar]
- Gorenflo, R.; Mainardi, F. Fractional Calculus. In Fractals and Fractional Calculus in Continuum Mechanics; Carpinteri, A., Mainardi, F., Eds.; International Centre for Mechanical Sciences; Springer: Vienna, Austria, 1997; Volume 378. [Google Scholar]
- Samko, S.; Kilbas, A.A.; Marichev, O. Fractional Integrals and Derivatives; CRC Press: Boca Raton, FL, USA, 1993. [Google Scholar]
- Dudkowski, D.; Jafari, S.; Kapitaniak, T.; Kuznetsov, N.V.; Leonov, G.A.; Prasad, A. Hidden attractors in dynamical systems. Phys. Rep. 2016, 637, 1–50. [Google Scholar] [CrossRef]
- Xu, G.; Shekofteh, Y.; Akgul, A.; Li, C.; Panahi, S. A New Chaotic System with a Self-Excited Attractor: Entropy Measurement, Signal Encryption, and Parameter Estimation. Entropy 2018, 20, 86. [Google Scholar] [CrossRef]
- Abdoon, M.A.; Alzahrani, A.B.M. Comparative Analysis of Influenza Modeling Using Novel Fractional Operators with Real Data. Symmetry 2024, 16, 1126. [Google Scholar] [CrossRef]
- Alzahrani Abdulrahman, B.M.; Saadeh, R.; Abdoon, M.A.; Elbadri, M.; Berir, M.; Qazza, A. Effective Methods for Numerical Analysis of the Simplest Chaotic Circuit Model with Atangana–Baleanu Caputo Fractional Derivative. J. Eng. Math. 2024, 144, 9. [Google Scholar] [CrossRef]
- Iqbal, M.A.; Miah, M.M.; Ali, H.M.S.; Shahen, N.H.M.; Deifalla, A. New Applications of the Fractional Derivative to Extract Abundant Soliton Solutions of the Fractional Order PDEs in Mathematics Physics. Partial. Differ. Equ. Appl. Math. 2024, 9, 100597. [Google Scholar] [CrossRef]
- Hossain, N.; Miah, M.M.; Alosaimi, M.; Alsharif, F.; Kanan, M. Exploring Novel Soliton Solutions to the Time-Fractional Coupled Drinfel’d–Sokolov–Wilson Equation in Industrial Engineering Using Two Efficient Techniques. Fractal Fract. 2024, 8, 352. [Google Scholar] [CrossRef]
- Lei, T.; Mao, B.; Zhou, X.; Fu, H. Dynamics Analysis and Synchronous Control of Fractional-Order Entanglement Symmetrical Chaotic Systems. Symmetry 2021, 13, 1996. [Google Scholar] [CrossRef]
- Rahman, Z.-A.S.A.; Jasim, B.H.; Al-Yasir, Y.I.A.; Abd-Alhameed, R.A. High-Security Image Encryption Based on a Novel Simple Fractional-Order Memristive Chaotic System with a Single Unstable Equilibrium Point. Electronics 2021, 10, 3130. [Google Scholar] [CrossRef]
- Ahmed, E.; Elgazzar, A.S. On fractional order differential equations model for nonlocal epidemics. Phys. A 2007, 379, 607–614. [Google Scholar] [CrossRef]
- Matouk, A.E.; Abdelhameed, T.N.; Almutairi, D.K.; Abdelkawy, M.A.; Herzallah, M.A. Existence of Self-Excited and Hidden Attractors in the Modified Autonomous Van Der Pol-Duffing Systems. Mathematics 2023, 11, 591. [Google Scholar] [CrossRef]
- Bhangale, N.; Kachhia, K.B.; Gómez-Aguilar, J.F. A New Iterative Method with ρ-Laplace Transform for Solving Fractional Differential Equations with Caputo Generalized Fractional Derivative. Eng. Comput. 2020, 38, 2125–2138. [Google Scholar] [CrossRef]
- ELbadri, M. A New Homotopy Perturbation Method for Solving Laplace Equation. Adv. Theor. Appl. Math. 2013, 8, 237–242. [Google Scholar]
- Elbadri, M. Comparison between the Homotopy Perturbation Method and Homotopy Perturbation Transform Method. Appl. Math. 2018, 9, 130–137. [Google Scholar] [CrossRef]
- Elbadri, M. An approximate solution of a time fractional Burgers’ equation involving the Caputo-Katugampola fractional derivative. Partial. Differ. Equ. Appl. Math. 2023, 8, 100560. [Google Scholar] [CrossRef]
- Elbadri, M. Initial Value Problems with Generalized Fractional Derivatives and Their Solutions via Generalized Laplace Decomposition Method. Adv. Math. Phys. 2022, 2022, 1–7. [Google Scholar] [CrossRef]
- Danca, M.-F.; Kuznetsov, N. Matlab Code for Lyapunov Exponents of Fractional-Order Systems. Int. J. Bifurc. Chaos Appl. Sci. Eng. 2018, 28, 1850067. [Google Scholar] [CrossRef]
- Rajagopal, K.; Vaidyanathan, S.; Karthikeyan, A.; Duraisamy, P. Dynamic analysis and chaos suppression in a fractional order brushless DC motor. Electr. Eng. 2016, 99, 721–733. [Google Scholar] [CrossRef]
- Rajagopal, K.; Karthikeyan, A.; Duraisamy, P. Hyperchaotic Chameleon: Fractional Order FPGA Implementation. Complexity 2017, 2017, 1–16. [Google Scholar] [CrossRef]
- Diouf, M.; Sene, N. Analysis of the Financial Chaotic Model with the Fractional Derivative Operator. Complexity 2020, 2020, 1–14. [Google Scholar] [CrossRef]
- Chen, W.-C. Nonlinear dynamics and chaos in a fractional-order financial system. Chaos Solitons Fractals 2008, 36, 1305–1314. [Google Scholar] [CrossRef]
- Rajagopal, K.; Akgul, A.; Jafari, S.; Karthikeyan, A.; Cavusoglu, U.; Kacar, S. An exponential jerk system, its fractional-order form with dynamical analysis and engineering application. Soft Comput. 2019, 24, 7469–7479. [Google Scholar] [CrossRef]
- Sene, N. Analysis of a fractional-order chaotic system in the context of the Caputo fractional derivative via bifurcation and Lyapunov exponents. J. King Saud Univ. Sci. 2021, 33, 101275. [Google Scholar] [CrossRef]
- Owolabi, K.M.; Gómez-Aguilar, J.F.; Fernández-Anaya, G.; Lavín-Delgado, J.E.; Hernández-Castillo, E. Modelling of Chaotic Processes with Caputo Fractional Order Derivative. Entropy 2020, 22, 1027. [Google Scholar] [CrossRef]
- Sene, N. Mathematical views of the fractional Chua’s electrical circuit described by the Caputo-Liouville derivative. Rev. Mex. De Física 2021, 67, 91–99. [Google Scholar] [CrossRef]
- Katugampola, U.N. New approach to a generalized fractional integral. Appl. Math. Comput. 2011, 218, 860–865. [Google Scholar] [CrossRef]
- Podlubny, I. Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications; Mathematics in Science and Engineering; Elsevier: Amsterdam, The Netherlands, 1999. [Google Scholar] [CrossRef]
- Caputo, M. Linear Models of Dissipation Whose Q Is Almost Frequency Independent–II. Geophys. J. Int. 1967, 13, 529–539. [Google Scholar] [CrossRef]
- Atıcı, F.M.; Chang, S.; Jonnalagadda, J.M. Grünwald-Letnikov Fractional Operators: From Past to Present. Fract. Differ. Calc. 2021, 11, 147–159. [Google Scholar] [CrossRef]
- Zhao, C.; Xue, D. Closed-Form Solutions to Fractional-Order Linear Differential Equations. Front. Electr. Electron. Eng. China 2008, 3, 214–217. [Google Scholar] [CrossRef]
- Xue, D.; Chunna, Z.; Yangquan, C. A Modified Approximation Method of Fractional Order System. In 2006 International Conference on Mechatronics and Automation; IEEE: Piscataway, NJ, USA, 2006. [Google Scholar] [CrossRef]
- Dai, D.; Li, X.; Li, Z.; Zhang, W.; Wang, Y. Numerical Simulation of the Fractional-Order Lorenz Chaotic Systems With Caputo Fractional Derivative. Comput. Model. Eng. Sci. 2023, 135, 1371–1392. [Google Scholar] [CrossRef]
- Odibat, Z.; Baleanu, D. Numerical simulation of initial value problems with generalized Caputo-type fractional derivatives. Appl. Numer. Math. 2020, 156, 94–105. [Google Scholar] [CrossRef]
- Fahd, J.; Abdeljawad, T. A modified Laplace transform for certain generalized fractional operators. Results Nonlinear Anal. 2018, 1, 88–98. [Google Scholar]
- Diethelm, K.; Ford, N.J.; Freed, A.D. A Predictor-Corrector Approach for the Numerical Solution of Fractional Differential Equations. Nonlinear Dyn. 2013, 29, 3–22. [Google Scholar] [CrossRef]
- Deressa, C.T.; Etemad, S.; Kaabar, M.K.A.; Rezapour, S. Qualitative Analysis of a Hyperchaotic Lorenz-Stenflo Mathematical Model via the Caputo Fractional Operator. J. Funct. Spaces 2022, 2022, 1–21. [Google Scholar] [CrossRef]
- Stenflo, L. Generalized Lorenz equations for acoustic-gravity waves in the atmosphere. Phys. Scr. 1996, 53, 83–84. [Google Scholar] [CrossRef]
- Zhang, F.; Chen, R.; Chen, X. Analysis of a Generalized Lorenz–Stenflo Equation. Complexity 2017, 2017, 1–6. [Google Scholar] [CrossRef]
h | x | y | z |
---|---|---|---|
1/320 | |||
1/640 | |||
1/1280 | |||
1/2560 | |||
1/5120 | |||
1/10240 | |||
RK4 |
h | x | y | z |
---|---|---|---|
1/320 | |||
1/640 | |||
1/1280 | |||
1/2560 | |||
1/5120 | |||
1/10240 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdoon, M.A.; Elgezouli, D.E.; Halouani, B.; Abdelaty, A.M.Y.; Elshazly, I.S.; Ailawalia, P.; El-Qadeem, A.H. Novel Dynamic Behaviors in Fractional Chaotic Systems: Numerical Simulations with Caputo Derivatives. Axioms 2024, 13, 791. https://doi.org/10.3390/axioms13110791
Abdoon MA, Elgezouli DE, Halouani B, Abdelaty AMY, Elshazly IS, Ailawalia P, El-Qadeem AH. Novel Dynamic Behaviors in Fractional Chaotic Systems: Numerical Simulations with Caputo Derivatives. Axioms. 2024; 13(11):791. https://doi.org/10.3390/axioms13110791
Chicago/Turabian StyleAbdoon, Mohamed A., Diaa Eldin Elgezouli, Borhen Halouani, Amr M. Y. Abdelaty, Ibrahim S. Elshazly, Praveen Ailawalia, and Alaa H. El-Qadeem. 2024. "Novel Dynamic Behaviors in Fractional Chaotic Systems: Numerical Simulations with Caputo Derivatives" Axioms 13, no. 11: 791. https://doi.org/10.3390/axioms13110791
APA StyleAbdoon, M. A., Elgezouli, D. E., Halouani, B., Abdelaty, A. M. Y., Elshazly, I. S., Ailawalia, P., & El-Qadeem, A. H. (2024). Novel Dynamic Behaviors in Fractional Chaotic Systems: Numerical Simulations with Caputo Derivatives. Axioms, 13(11), 791. https://doi.org/10.3390/axioms13110791