Unified Generalizations of Hardy-Type Inequalities Through the Nabla Framework on Time Scales
Abstract
:1. Introduction
2. Preliminaries’ Overview
- Forward jump operator is
- Backward jump operator is
- Backward graininess function v is
- Right-dense if
- Left-dense if
- Right-scattered if
- Left-scattered if
2.1. ∇-Differentiability and Related Theorems
- Sum Rule: If are ∇-differentiable at , then
- Product Rule: The product is ∇-differentiable at s with
- Quotient Rule: If , then the quotient is ∇-differentiable at s and
- Chain Rule: If is continuous and ∇-differentiable, and is continuously differentiable, then
2.2. One-Dimensional Continuity and Integration on Time Scales
- –continuous: A function ℏ is –continuous if it is continuous at left-dense points and its right-sided limits exist at right-dense points. The set of all –continuous functions is denoted by , while the set of all continuous functions is denoted by .
- ∇ integral: If is a ∇-antiderivative of , then
- If , and , then
- Integration by Parts: If and , then
- If and , then
2.3. Hölder’s Inequality, Convexity and Submultiplicative Functions, as well as Jensen’s Inequality
3. Main Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hardy, G.H. Notes on a theorem of Hilbert. Math. Z. 1920, 6, 314–317. [Google Scholar] [CrossRef]
- Hardy, G.H. Notes on some points in the integral calculus (LX). An inequality between integrals. Mess. Math. 1925, 54, 150–156. [Google Scholar]
- Levinson, N. Generalizations of an inequality of Hardy. Duke Math. J. 1964, 31, 389–394. [Google Scholar] [CrossRef]
- Leindler, L. Generalization of inequalities of Hardy and Littlewood. Acta Sci. Math. 1970, 31, 285–297. [Google Scholar]
- Sinnamon, G.J. Weighted Hardy and Opial-type inequalities. J. Math. Anal. Appl. 1991, 160, 434–445. [Google Scholar] [CrossRef]
- Stepanov, V.D. Boundedness of linear integral operators on a class of monotone functions. Siberian Math. J. 1991, 32, 540–542. [Google Scholar] [CrossRef]
- Hardy, G.H.; Littlewood, J.E. Elementary theorems concerning power series with positive coefficents and moment constants of positive functions. J. Für Math. 1927, 157, 141–158. [Google Scholar]
- Opic, B.; Kufner, A. Hardy-Type Inequalities; Pitman Research Notes in Mathematics Series; Longman Scientific and Technical: Harlow, UK, 1990. [Google Scholar]
- Kufner, A.; Persson, L.E. Weighted Inequalities of Hardy Type; World Scientific Publishing: Singapore, 2003. [Google Scholar]
- Kufner, A.; Maligranda, L.; Persson, L.E. The Hardy Inequalities: About its History and Some Related Results; Vydavatelsk Servis. 2007. Available online: https://api.semanticscholar.org/CorpusID:117634406 (accessed on 21 August 2024).
- Hardy, G.H. Notes of some points in the integral calculus, LXIV. Further inequalities between integrals. Mess. Math. 1928, 57, 12–16. [Google Scholar]
- Knopp, K. Űber Reihen mit positiven Gliedern. J. Lond. Math. Soc. 1928, 3, 205–311. [Google Scholar] [CrossRef]
- Kaijser, S.; Persson, L.E.; Öberg, A. On Carleman and Knopp’s inequalities. J. Approx. Theory 2002, 117, 140–151. [Google Scholar] [CrossRef]
- Čižmešija, A.; Pečarić, J.E.; Persson, L.-E. On strenghtened Hardy and Pólya-Knopp’s inequalities. J. Approx. Theory 2003, 125, 74–84. [Google Scholar] [CrossRef]
- Sulaiman, W.T. Some Hardy type integral inequalities. Appl. Math. Lett. 2012, 25, 520–525. [Google Scholar] [CrossRef]
- Hilger, S. Ein Maßkettenkalkül mit Anwendung auf Zentrumsmannigfaltigkeiten. Ph.D. Thesis, Universität Würzburg, Würzburg, Germany, 1988. [Google Scholar]
- Hilger, S. Analysis on measure chains—A unified approach to continuous and discrete calculus. Results Math. 1990, 18, 18–56. [Google Scholar] [CrossRef]
- Řehak, P. Hardy inequality on time scales and its application to half-linear dynamic equations. J. Inequalities Appl. 2005, 2005, 495–507. [Google Scholar] [CrossRef]
- Agarwal, R.P.; O’Regan, D.; Saker, S.H. Hardy Type Inequalities on Time Scales; Springer: Cham, Switzerland, 2016. [Google Scholar]
- Rezk, H.M.; Saied, A.I.; Ali, M.; Glalah, B.A.; Zakarya, M. Novel Hardy-Type Inequalities with Submultiplicative Functions on Time Scales Using Delta Calculus. Axioms 2023, 12, 791. [Google Scholar] [CrossRef]
- Rezk, H.M.; Mohammed, M.I.; Balogun, O.S.; Saied, A.I. Exploring Generalized Hardy-Type Inequalities via Nabla Calculus on Time Scales. Symmetry 2023, 15, 1656. [Google Scholar] [CrossRef]
- Saker, S.H.; Rezk, H.M.; Krniĉ, M. More accurate dynamic Hardy-type inequalities obtained via superquadraticity. Rev. Real Acad. Cienc. Exactas FíSicas Nat. Ser. A MatemáTicas 2019, 1, 2691–2713. [Google Scholar] [CrossRef]
- AlNemer, G.; Zakarya, M.; El-Hamid, H.A.A.; Kenawy, M.R.; Rezk, H.M. Dynamic Hardy-type inequalities with non-conjugate parameters. Alex. Eng. J. 2020, 59, 4523–4532. [Google Scholar] [CrossRef]
- Bibi, R.; Bohner, M.; Pećarixcx, J.; Varošanec, S. Minkowski and Beckenbach-Dresher inequalities and functionals on time scales. J. Math. Inequal. 2013, 7, 299–312. [Google Scholar] [CrossRef]
- Bohner, M.; Georgiev, S.G. Multiple integration on time scales. In Multivariable Dynamic Calculus on Time Scales; Springer: Cham, Switzerland, 2016; pp. 449–515. [Google Scholar]
- Oguntuase, J.A.; Persson, L.E. Time scales Hardy-type inequalities via superquadracity. Ann. Funct. Anal. 2014, 5, 61–73. [Google Scholar] [CrossRef]
- Zakarya, M.; Saied, A.I.; Ali, M.; Rezk, H.M.; Kenawy, M.R. Novel Integral Inequalities on Nabla Time Scales with C-Monotonic Functions. Symmetry 2023, 15, 1248. [Google Scholar] [CrossRef]
- Saied, A.I.; AlNemer, G.; Zakarya, M.; Cesarano, C.; Rezk, H.M. Some new generalized inequalities of Hardy type involving several functions on time scale nabla calculus. Axioms 2022, 11, 662. [Google Scholar] [CrossRef]
- Anderson, D.; Bullock, J.; Erbe, L.; Peterson, A.; Tran, H. Nabla dynamic equations on time scales. Panamer. Math. J. 2003, 13, 1–47. [Google Scholar]
- Donchev, T.; Nosheen, A.; Pećarixcx, J.E. Hardy-type inequalities on time scales vie convexity in several variables. ISRN Math. Anal. 2013, 2013, 9. [Google Scholar]
- Güvenilir, A.F.; Kaymakçalan, B.; Pelen, N.N. Constantin’s inequality for nabla and diamond-alpha derivative. J. Inequal. Appl. 2015, 2015, 1–17. [Google Scholar] [CrossRef]
- Özkan, U.M.; Sarikaya, M.Z.; Yildirim, H. Extensions of certain integral inequalities on time scales. Appl. Math. Lett. 2008, 21, 993–1000. [Google Scholar] [CrossRef]
- Bohner, M.; Peterson, A. Dynamic Equations on Time Scales: An Introduction with Applications; Birkhäuser: Boston, MA, USA, 2001. [Google Scholar]
- Agarwal, R.P.; O’Regan, D.; Saker, S.H. Dynamic Inequalities on Time Scales; Springer: Cham, Switzerland; Heidlelberg, Germany; New York, NY, USA; Dordrechet, The Netherlands; London, UK, 2014. [Google Scholar]
- Dinu, C. Convex functions on time scales. Ann. Univ.-Craiova-Math. Comput. Sci. Ser. 2008, 35, 87–96. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rezk, H.M.; Balogun, O.S.; Bakr, M.E. Unified Generalizations of Hardy-Type Inequalities Through the Nabla Framework on Time Scales. Axioms 2024, 13, 723. https://doi.org/10.3390/axioms13100723
Rezk HM, Balogun OS, Bakr ME. Unified Generalizations of Hardy-Type Inequalities Through the Nabla Framework on Time Scales. Axioms. 2024; 13(10):723. https://doi.org/10.3390/axioms13100723
Chicago/Turabian StyleRezk, Haytham M., Oluwafemi Samson Balogun, and Mahmoud E. Bakr. 2024. "Unified Generalizations of Hardy-Type Inequalities Through the Nabla Framework on Time Scales" Axioms 13, no. 10: 723. https://doi.org/10.3390/axioms13100723
APA StyleRezk, H. M., Balogun, O. S., & Bakr, M. E. (2024). Unified Generalizations of Hardy-Type Inequalities Through the Nabla Framework on Time Scales. Axioms, 13(10), 723. https://doi.org/10.3390/axioms13100723